高速列车驾驶仿真器动感模拟系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
列车运行速度的提高对列车驾驶仿真器中的关键——动感模拟系统提出了新的更高要求,很有必要对其进行深入研究,以改善系统性能,提高模拟逼真度。本博士学位论文深入系统地探索了高速列车驾驶仿真器动感模拟系统中的体感模拟算法设计、系统参数匹配及运动平台设计等重要问题,主要研究工作和取得的研究成果如下。
     1.在分析三种常见体感模拟算法在高速列车驾驶仿真器应用中的不足,和研究高速列车驾驶仿真器体感模拟算法设计中的关键问题的基础上,提出了设计高速列车驾驶仿真器体感模拟算法的实现方法。在该方法中,基于不同洗出位置对模拟逼真度的影响,找到最合适的洗出位置;基于遗传算法,在满足运动平台的快速回位和人体运动感觉阈值的要求下,优化了高速列车驾驶仿真器体感模拟算法固定参数;基于模糊控制,提出了两种高速列车驾驶仿真器的体感模拟算法——模糊经典洗出算法和模糊自适应洗出算法,新算法不仅能满足高速列车驾驶仿真器实时计算要求,而且能获得更高的模拟逼真度。
     2.提出了高速列车驾驶仿真器动感模拟系统参数的优化匹配策略。通过给出运动平台在六个方向上最大线(角)位移的快速求解方法,建立了高速列车驾驶仿真器运动平台结构参数与洗出算法参数之间的关系,并提出了根据运动平台结构参数确定洗出算法参数的新思路和面向模拟逼真度的仿真器运动平台结构参数优化新方法,利用该方法同时获得了最优的高速列车驾驶仿真器运动平台结构参数和与之匹配的洗出算法参数。
     3.研究了高速列车驾驶仿真器运动平台的创新设计。提出了一种基于型数综合的六自由度并联机构系统构型新方法。运用该法构造出3PPRS并联机构作为高速列车驾驶仿真器新型运动平台,并面向模拟逼真度优化出其结构参数。运动学动力学仿真和与6SPS并联机构的性能比较结果表明:3PPRS并联机构能模拟高速列车运动,更有潜力作为高速列车驾驶仿真器运动平台。
     借助ADAMS、MATLAB软件完成本论文的建模、分析、仿真和优化工作。
With the increase of train running speed, the movement perception simulation system, which is the key to train driving simulator, must meet some new and tough needs to improve system performance, and enhance simulation fidelity. Some important problems of movement perception simulation system for high speed train driving simulator such as the proprioceptive simulation algorithm, optimal match of system parameters and design of movement platform are studied systematically in this doctoral dissertation as follows.
     Firstly, the deficiencies of three commonly used proprioceptive simulation algorithms applied to high speed train driving simulator are analyzed, and the key problems for design of proprioceptive simulation algorithms for high speed train driving simulator are investigated. On these basis, the implementation method for design of proprioceptive simulation algorithms for high speed train driving simulator is developed. In this method, the best washout location is found by studying the effect of different washout location on simulation fidelity. Based on Genetic Algorithm, the fixed parameters of proprioceptive simulation algorithms for high speed train driving simulator is optimized to satisfy such requirements as quick return to initial position of movement platform and thresholds of human body movement sensation. Two new proprioceptive simulation algorithms for high speed train driving simulator, i.e., the fuzzy classical washout algorithm and the fuzzy adaptive washout algorithm, are presented combined with fuzzy control theory. It is demonstrated that the new algorithms can carry out real-time calculation of high speed train driving simulator with higher simulation fidelity.
     Secondly, Optimal matching strategy on parameters of movement perception simulation system for high speed train driving simulator is put forward. The relationship between simulator platform structure parameters and washout algorithm parameters is established by giving a fast solution for the maximum linear (angular) displacement in six directions of simulator platform. And, a new idea for determining the washout parameters based on structural parameters of movement platform and a new method for simulator platform structure parameters optimization oriented to simulation fidelity are proposed. By using the new method, the optimal platform structure parameters of high speed train driving simulator and the matched washout algorithm parameters are gotten simultaneously.
     Lastly, the creative design for the movement platform of high speed train driving simulator is discussed. A new systematic configuration method for designing 6-DOF parallel mechanism based on type number synthesis is presented. By applying the presented method, a 3PPRS parallel mechanism is obtained as the movement platform of high speed train driving simulator, whose structure parameters are optimized oriented to simulation fidelity. Compared with 6SPS parallel manipulator, the simulation results on the kinematics and dynamics show that the 3PPRS parallel mechanism can realize the movements of high speed train with more potential to be the movement platform of high speed train driving simulator.
     The modeling, analysis, simulation and optimization in this dissertation are conducted utilizing the software of ADAMS and MATLAB.
引文
[1]周美玉.机车驾驶模拟装置[J].西南交通大学学报,1992(2):23-27.
    [2]何鸿云,周美玉.机车模拟装置发展综述及建议[J],中国铁路,1998(12):31-35.
    [3]苏虎,金炜东.列车驾驶仿真器及其关键技术[J],科技导报,2007,25(12):12-17.
    [4]尹振远编译自《Railway Gazette International》,1988, (1).
    [5]Johnson M R, Rother L. An Adanced Locomotive Simulator:Its Capabilities and Applications [J]. ASME,1983, WA-RJ (9).
    [6]周美玉.新型列车运行仿真器[J],西南交通大学学报,1991(1):28-34.
    [7]周美玉,孙翔.司机操纵模拟装置[J],中国铁路,1991(5):25-27.
    [8]上海铁道学院电气系.列车驾驶模拟器[J],中国铁路,1991(6):36.
    [9]熊坚,曾纪国,管欣.驾驶模拟器用于交通系统仿真的研究[J].系统仿真学报,2001(13):385-387.
    [10]Hess R., Malsbuty T. A methodology for the assessment of manned flight simulator fidelity[J]. AIAA-89-0014,1989,191-197.
    [11]Zhang Boding. How to consider simulation fidelity and validity for an engineering simulator [J]. AIAA-93-3598-CP,1993,299-308.
    [12]俞志刚.飞行模拟逼真度概念[J].飞行力学,1997.3,15(1):18-22.
    [13]巴彦文.六自由度飞行模拟器运动系统设计研究[D].南京:南京航空航天大学,2006.1.
    [14]王素静,章伯定.飞行模拟器逼真度与飞行试验[J].飞行力学,1998,16(2):19-23.
    [15]王远达,宋笔锋,李小奇,等.飞行模拟器逼真度的实用评价方法[J].海军工程大学学报,2005.12,17(6):53-57.
    [16]张伟,王行仁.仿真可信度[J].系统仿真学报,2001,13(3):312-314.
    [17]周忠良,康熊,裘立红.高速列车驾驶模拟器的发展[J].铁道机车车辆,2006(6):1-3.
    [18]刘志军.继续提速再创辉煌[J].铁道运输与经济,2001(13):1-4.
    [19]沈志云.关于高速铁路及高速列车的研究[J].振动、测试与诊断, 1998(1):1-7.
    [20]张顺广.机车仿真器中声音系统的研究与开发[D].成都:西南交通大学,2002.
    [21]廖三平,李维嘉.驾驶模拟器自适应滤波算法中控制参数的优化研究[J].机械与电子,2003,(6):63-66.
    [22]Hess R H. Validation of a flight aircraft simulation using high angle-of-attack flight test data [J]. AIAA-86-2681,1986.
    [23]Vladislav Klem, James G Batterson. Determination of airplane model structure from flight data using splines and stepwise regression [J]. NASA TP2 126,1983,1-52.
    [24]James J Adams, Howard G Hatch Jr. An approach to the determination of aircraft handling qualities by using pilot transfer function [J]. NASA TN D-6 104,1971,319-324.
    [25]Ronald A Hess. Prediction of aircraft handling qualities using analytical models of the human pilot [J]. NASA TM84 233,1982,1-16.
    [26]陈志雄.列车驾驶模拟器体感模拟的仿真研究[D].成都:西南交通大学,2006.5.
    [27]宗昌富.人—车—环境闭环系统的体感模拟技术及其算法研究[D].长春:吉林工业大学硕士论文,1994.
    [28]Schmidt S.F, Conrad B. Motion Drive Signals for Piloted Flight Simulators [J], NASA CR-1601, May,1970,639-646.
    [29]Gilles Reymond, Andras Kemeny. Motion cueing in the Renault driving simulator [J], Vehicle system dynamics,34(2000):249-259.
    [30]Federico Barbagli, Diego Ferrazzin, Carlo Alberto Avizzano, Massimo Bergamasco. Washout Filter Design for a Motorcycle Simulator [J]. Proceeding of the IEEE international conference on Systems, Man and Cybernetics,2000(2):995-1000.
    [31]Kuo-Yang Tu, Tung-Chung Wu, Tsu-Tian Lee. A study of Stewart platform specification for motion cueing system [J], IEEE international conference on System, Man and Cybernetics,2004,3950-3955.
    [32]Russel V. Parrish, James E. Dieudonne, Roland l. Bowles and Denneis J. Martine Jr. Coordinated Adaptive Washout for Motion Simulator [J], J. AIRCRAFT,1975,44-50.
    [33]Raphael Sivan, Jehuda Ish-Shlom, Jen-Kuang Huang. An Optimal Control Application to the Design of Moving Flight Simulators [J], IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-12, No.6, November/December 1982,818-827.
    [34]Meyer A. Nahon, Lloyd D. Reid. Simulator Motion Drive Algorithms:A Designer's Perspective [J], J.GUIDANCE, VOL.13, NO.2,1990,356-362.
    [35]M. A. Nahon, L. D. Reid, J. Kirdeikis. Adaptive Simulator Motion Software with Supervisory Control [J]. Journal of Guidance, Control, and Dynamics, 1992,15(2):376-383.
    [36]Peter R. Grant and Lloyd D. Reid. Motion washout filter tuning:Rules and Requirements [J], Journal of Aircraft, AIAA, Vol.34, No.2, March-April, 1997,145-151.
    [37]Sigeru Omatu, Michifumi Yoshioka. Self-tuning Neuro-PID control and application [J], systems, man, andcybernetics,1997 Computational Cybernetics and Simulation,1997 IEEE International Conference on, 1985-1989.
    [38]Richard Anthony Romano. Motion control logic for large excursion driving simulators [D] Iowa:University of Iowa,1999.
    [39]Robert J. Telban, Frank M. Cardullo. Developments in human centered cueing algorithms for control of flight simulator motion systems [J], AIAA, 1999,1-11.
    [40]Min Kyu Park, Min Cheol Lee, Ki Sung Yoo. Development of the PNU vehicle driving simulator and its performance evaluation [J], Proceeding of the 2001 IEEE international conference on Robotics & Automation, Seoul, Korea, May 21-26,2001,2325-2330.
    [41]Robert J. Telban. New human-centered linear and nonlinear motion cueing algorithms for control of simulator motion systems [D] Binghamton: Binghamton university,2003.
    [42]Robert J. Telban, et al. Motion Cueing Algorithm Development:New Motion Cueing Program Implementation and Tuning[R]. NASA/CR-2005-213746, 2005.5.
    [43]Robert J. Telban, et al. Motion Cueing Algorithm Development:Piloted Performance Testing of the Cueing Algorithms[R]. NASA/CR-2005-213748, 2005.5.
    [44]Chung-Shu LIAO, Chih-Fang HUANG, Wei-Hua CHIENG. A novel washout filter design for a six degree-of-freedom motion simulator [J], JSME International Journal, series C, VOL.47, NO.2,2004,626-636.
    [45]Amir Naseri, Peter Grant. An improved adaptive motion drive algorithm [J], AIAA Modeling and Simulation Technologies conference and Exhibit 15-18 August 2005, San Francisco, California,1-9.
    [46]杨小波,宗昌富.汽车驾驶员体感模拟算法研究[J],哈尔滨工业大学学报(增刊),1993(10)
    [47]杨小波,宗昌富,胡子正.开发型驾驶模拟器体感模拟算法及其评价[J],汽车工程,1994,16(6):321-328.
    [48]陈言忠,胡子正,宗昌富,杨小波.汽车动态仿真器运动系统控制算法研究[J],汽车技术,1995,(8):16-21.
    [49]管欣,胡子正,杨小波.汽车动态仿真器运动系统的最优控制[J],吉林工业大学学报,1995,25(1):1-7.
    [50]宗昌富,麦莉,胡子正,杨小波.汽车动态仿真器运动系统的两种驱动算法模拟逼真度分析与比较[J],汽车工程,1997,19(5):268-273.
    [51]宗昌富,高越,麦莉.ADSL驾驶模拟器运动模拟逼真度的改进[J],系统仿真学报,2001,13(2):178-181.
    [52]熊晓华,李维嘉.六自由度飞行模拟器体感模拟算法及仿真实现[J],系统仿真学报,2002,14(1):27-30.
    [53]韩蕾,王立文.洗出滤波算法在飞行模拟器中的应用[J],中国民航学院学报,2003,21(4):24-28.
    [54]韩俊伟,张晋.飞行模拟器的洗出算法研究[J],中国民航学院学报,2005,23(4):37-42.
    [55]胡长春.六自由度列车驾驶运动平台研究[D].成都:西南交通大学,2005.3.
    [56]王小亮,李立,张卫华.列车模拟器经典算法的参数优化[J],中国铁道科学,2008,29(5):102-107.
    [57]王小亮,李立,张卫华.基于平台结构尺寸参数的驾驶模拟器逼真度分析[J],机械设计,2009,26(5):53-57.
    [58]王小亮,李立,张卫华.面向模拟逼真度的仿真器运动平台结构参数优化[J],机械科学与技术,已录用.
    [59]F. Behi. Kinematic Analysis for a six-DOF 3-PRPS Parallel Mechanism [J]. IEEE Journal of Robotics and Automation.1988,4(5):561-565.
    [60]N. Mouly, J. P. Merlet. Singular configurations and direct kinematics of a new parallel manipulator [C]. IEEE International Conference on Robotics and Automation, France,1992:338-343.
    [61]R. I. Alizade, N. R. Tagiyev and J. Duffy. A forward and reverse displacement analysis of a 6-DOF in-parallel manipulator. Mechanism and Machine Theory,1994,29(1):115-124.
    [62]R. P. Podhorodeski, K.H. Pittens. A Class of Parallel Manipulators Based on Kinematically Simple Branches [J]. Transactions of the ASME,1994.9,116: 908-914.
    [63]Pritschow G, Wurst K H. Systematic design of hexapods and other parallel link system [J]. CIRP Annals,1997,46(1):291-295.
    [64]Anjan Kumar Dash, I-Ming Chen, Song Huat Yeo, et al. Task-based configuration design for 3-legged modular parallel robots using simplex methods [C]. Proceedings 2003 IEEE International Symposium on Computational Intelligence in Robotics and Automation, July 16-20,2003, Kobe, Japan,998-1003.
    [65]Yan Jin, I.-Ming Chen,Guilin Yang. Kinematic Design of a 6dof Parallel Manipulator with Decoupled Translation and Rotation [J]. IEEE International Conference on Robotics and Automation, New Orlans, LA, April 2004,1-7.
    [66]Guilin Yang, I-Ming Chen, Weihai Chen, et al. Kinematic Design of a Six-DOF Parallel-Kinematics Machine with Decoupled-Motion Architecture [J]. IEEE Transactions on Robotics,2004.10,20(5):876-884.
    [67]Yan Jin, I-Ming Chen, Guilin Yang. Kinematic design of a family of 6-DOF partially decoupled parallel manipulators [J]. Mechanism and Machine Theory,2008,1-11.
    [68]Jose M. Rico, J. Jesus Cervantes-Sanchez, Alejandro Tadeo-Chavez, et al. New Consideration on the Theory of Type Synthesis of Fully Parallel Platforms [J]. Journal of Mechanical Design,2008,130:112302-1-112302-9, 1-9.
    [69]黄真.平行支路机械手动力模型(二)模型建立及实例[J].第2届机构学专题讨论会.1984:10.
    [70]高峰,金振林,刘辛军等.六自由度虚拟轴机床[P].中国发明专利,公开号:CN1261018A.
    [71]杨廷力.机器人机构拓扑结构学[M].机械工业出版社,2004.3,208-220.
    [72]沈惠平,杨廷力,马履中.6自由度弱耦合并联机构机型设计及其方法[J],机械工程学报,2004.7,40(7):14-19.
    [73]Stewart D A. Platform with six degrees of freedom [C]. Proc. On Institution of Mechanical Engineering,1965,180(1):371-386.
    [74]Dasguta B, Mruthyunjaya T S. The Stewart platform manipulator:a review[J]. Mechanism and Machine Theory,2000,35(1):15-40.
    [75]黄真,孔令富,方跃法.并联机器人机构学理论及控制[M].北京:机械工业出版社,1997.
    [76]罗继曼.少自由度并联装备构型及约束链研究[D].东北大学,2006.2.
    [77]李秦川.对称少自由度并联机器人型综合理论及新机型综合[D].秦皇岛:燕山大学,2003.7.
    [78]Rasim Alizade, Cagdas Bayram. Structural synthesis of parallel manipulators [J]. Mechanism and Machine Theory 39 (2004),857-870.
    [79]Hunt K H. Structural kinematics of in-parallel-actuated robot-arms [J]. ASME J Mechanism Transmissions and Automation in Design,1983,105(5): 705-712.
    [80]Merlet J. P. Geometrical Determination of Workspace of a Constrained Parallel Manipulators[J], In ARK, France,1992,326-329.
    [81]L.W.Tsai. Mechanism design:Enumeration of kinematics structures according to function [M]. CRC Press, USA,2000,221-247.
    [82]朱煜,汪劲松,张华,等.并联机床构型及其设计方法初探[J].中国矿业大学学报,2003,32(3):297-303.
    [83]J-P. Merlet. An improved design algorithm based on interval analysis for spatial parallel manipilaotr with specified workspace[C]. In Proccedings of IEEE International Conference on Robotics and Automation,2001, 1289-1294.
    [84]E. Ottaviano and M. Ceccareli. Optimal design of CAPAMAN(Cassino parallel manipulator) with a specific orientataion workspace. Robotica,2002, 20(2):159-166.
    [85]Gosselin C, Guillot M. The synthesis of manipulators with prescribed workspace [J]. ASME Journal of Mechanical Design,1991,113:451-455.
    [86]Boureau R. Gosselin C.M. The synthesis of planar parallel manipulators with a genetic algorithm [J]. Journal of mechanical design,1999,121(4):533-537.
    [87]Merlert J P. Designing a parallel manipulator for a specific workspace [J]. The International Journal of Robotics Research,1997,16(4):545-556.
    [88]Merlert J P. Parallel Robot [M]. Kluwer Academic Publishers,2000.
    [89]Sung-Gaun Kim, Jeha Ryu. Optimal Design of 6 DOF Parallel Manipulators Using Three Point Coordinates [C]. Proceeding of the 2001 IEEE/RSJ International Conference on Intelligence Robots and Systems, Marri, Hawaii, USA, Oct.29-Nov.03,2001,2178-2183.
    [90]Michael Stock and Karol Miller. Optimal kinematic design of spatial parallel manipulators:Application of linear delta robot [J]. Transaction of the ASME, Journal of Mechanical Design,2003,125(2):292-301.
    [91]H. H. Pham and I. M. Chen. Optimal synthesis for workspace and manipulability of parallel flexure mechanism [C]. In Proceeding of the 11th World Congress in Mechanism and Machine Science.2004,1-4.
    [92]姜虹,王小椿,陈丽萍.6自由度机器人结构参数的优化[J].机械科学与技术,1999,18(3):432-434.
    [93]周兵,杨汝清.3自由度平动并联机构结构参数的优化[J].机械设计与研究,2002,18(5):25-28.
    [94]乔俊伟,詹永麟.6自由度并联平台结构参数优化[J].机械设计,2000(3):44-46.
    [95]陈在礼,陈学生,谢涛.用遗传算法解具有给定工作空间的并联机构综合问题[J].中国机械工程,2002,13(3):187-191.
    [96]陆荣鑑,殷跃红,孙宇.6轴并联机器人的优化设计[J].机械设计与制造工程,2002,31(6):9-11.
    [97]赵慧,韩俊伟,张尚盈等.六自由度并联机器人运动学分析和计算[J].机床与液压,2003,(3):70-72.
    [98]王伟,谢海波,傅新.一种基于固有频率分析的液压6自由度并联机构参数优化方法[J].机械工程学报,2006,42(3):77-82.
    [99]孙凡国,黄伟.基于粒子群算法的并联机构结构参数优化设计[J].机械设计与研究,2006,22(3):16-19.
    [100]陈水增.6-SPS并联机器人研究及其结构参数优化[D].南京:南京理工大学,2007.6.
    [101]高彦锟,刘忠途,程源.按照性能指标进行机构优化设计[J].机械科学与技术,2007,26(12):1600-1607.
    [102]曹永刚,张玉茹,马运忠.6-RSS型并联机构的工作空间分析与参数优化[J],机械工程学报,2008,44(1):19-24.
    [103]王小亮,李立,张卫华.洗出位置对列车驾驶模拟器的影响研究[J].机 械与电子,2007(4):21-24.
    [104]王小亮,李立,张卫华.列车驾驶模拟器模糊控制洗出算法研究[C].第7届全球智能控制与自动化大会(WCICA08),重庆,2008.6,3737-3741.
    [105]王小亮,李立,张卫华.高速列车垂向振动的模拟器再现方法研究[J].振动、测试与诊断,2009,29(1):101-104.
    [106]王小亮,李立,张卫华.列车驾驶模拟器模糊自适应洗出算法研究[J].铁道学报,2009,已录用.
    [107]吴博,吴盛林,董彦良,等.水陆坦克运动模拟洗出滤波算法设计[J],南京理工大学学报,2005,29(2):169-173.
    [108]章伯定,俞志刚.如何考虑工程模拟器的逼真度和有效性[J].飞行力学,1992,(4):7-16.
    [109]Max Mulder, dr.ir. A cybernetic approach to assess simulator fidelity [R]. Innovational Research Incentives Scheme,1999.11,1-16.
    [110]Gareth Padfield, Mark White. Measuring simulation fidelity through an adaotive pilot model [J]. Aerospace Science and Technology,2005, (9): 400-408.
    [111]林以军,王鸣歌,范万岗,等.基于模糊评价法的飞行模拟器逼真度评估[J].科学技术与工程,2008.1,8(2):543-546.
    [112]胡子正,宗昌富,杨小波,陈言忠.驾驶员运动感觉及其评价[J],汽车工程,1996,18(4):223-229.
    [113]叶正茂,张辉,张晋,等.飞行模拟器的洗出算法研究[J],机床与液压,2006,(6):177-180.
    [114]M. A. Nahon, L. Reid. Flight Simulation Motion-base Drive Algorithms: Part 1-Developing and Testing the Equations [R]. University of Toronto, Canada, UTIAS Rept.307, May 1986.
    [115]宗昌富,胡子正,麦莉.人-车-环境闭环模拟系统的体感模拟机理、算法及实施[J],吉林工业大学学报,1997,(3):12-17.
    [116]Carlo Alberto Avizzano, Federico Barbagli, Massimo Bergamasco. Washout Filter Design for a Motorcycle Simulator [J].2000, IEEE,0-7803-6583-6/00, 995-1000.
    [117]何其昌,范秀敏,陈聪,等.交互式自行车模拟器系统关键技术[J].上海交通大学学报,2005,39(9):1422-1426.
    [118]付百川,范秀敏,何其昌.自行车模拟器的体感模拟算法[J].机械设计与研究,2004,20(6):61-66.
    [119]宗昌富,胡子正,杨小波.开发型车辆驾驶模拟器体感模拟技术研究[J].自然科学进展,1997,7(5):606-611.
    [120]雷英杰,张善文,李续武,等.MATLAB遗传算法工具箱及应用[M].西安:电子科技大学出版社,2005:1-8.
    [121]延皓,李洪人,姜洪州,等.六自由度运动模拟器的动感模拟算法研究[J],机械工程师,2003.11,25-28.
    [122]Robert J. Telban, et al. Motion Cueing Algorithm Development:New Initial Investigation and Redesign of the algorithms [R]. NASA/CR-2000-209863, 2000.3.
    [123]龙升照.人操作者的模糊控制模型[J].航天医学与医学工程,1998,1(2):97-101.
    [124]汪培庄,李洪兴.模糊系统理论与模糊计算机[M].北京:科学出版社,1996:103-108,103-108.
    [125]张国良,曾静,柯熙政,等.模糊控制及其MATLAB应用[M].西安:西安交通大学出版社,2002,14-32.
    [126]李国勇.智能控制及其MATLAB应用[M].北京:电子工业出版社,2005,25-55.
    [127]刘金琨.先进PID控制MATLAB仿真(第2版)[M].北京:电子工业出版社,2004:115-118.
    [128]郭明松.战车模拟器动感参数的实时调整与模拟验证:[D].台湾:逢甲大学自动控制工程系,2004.
    [129]沈志云.高速列车的动态环境及其技术的根本特点[J].铁道学报,2006,28(4):1-5.
    [130]翟婉明.车辆—轨道耦合动力学[M].北京:中国铁道出版社,2002,79-81.
    [131]Amir Naseri, Peter Grant. An Improved Adaptive Motion Drive Algorithm [C]. AIAA Modeling and Simulation Technologies Conference and Exhibit. San Francisco, California,2005:1-9.
    [132]M. A. Nahaon, L. Reid. Flight Simulation Motion-base Drive Algorithms: Part 1-Developing and Testing the Equations [R]. University of Toronto, Ontario, Canada, UTIAS Rept.307, May 1986.
    [133]胡国盛.并联机器人的工作空间研究现状[J].仪器仪表用户,2004,11(6):1-3.
    [134]赵迎祥,鲁开讲,郭旭侠,等.6-SPS并联机床工作空间分析[J].机械设计,2005,22(8):37-39.
    [135]Gosselin C M, Angeles J. The optimum Kinematic Design of a Planar 3-DOF Parallel Manipulator [J]. ASME Jounal Mechanical Transactions and Automation In Design,1988,110:35-41.
    [136]Pennock G R, Kassner D J. The Workspace of a General Geometry Planar 6-DOF Platform-Type Manipulator [J]. ASME Journal Mechanical Design, 1993,115:269-276.
    [137]Gosselin C M, Angeles J. Singularity Analysis of Closed-Loop Kinematic Chains [J]. IEEE Transactions on Robotics and Automation,1990,6(3): 281-290.
    [138]Gosselin C M. Determination of the workspace of 6-DOF parallel Manipulators [J]. Journal of Mechanical Design,1990c,112:331-336.
    [139]Gosselin C M, Angeles J. Kinematic Inversion of Parallel Manipulator in the Presence of Incompletely Specified [J]. Tasks ASME Journal of Mechanical Design,1990b,112:454-500.
    [140]GOSSELIN C, GUILLOT M. The synthesis of manipulators with prescribed workspace [J]. ASME Journal of Mechanical Design,1991,113: 451-455
    [141]MERLERT J P. Designing a parallel manipulator for a specific workspace [J]. The International Journal of Robotics Research,1997,16(4):545-556
    [142]姜虹,王小椿,陈丽萍.6自由度机器人结构参数的优化[J].机械科学与技术,1999,18(3):432-434.
    [143]周兵,杨汝清.3自由度平动并联机构结构参数的优化[J].机械设计与研究,2002,18(5):25-28.
    [144]孙凡国,黄伟.基于粒子群算法的并联机构结构参数优化设计[J].机械设计与研究,2006,22(3):16-19.
    [145]乔俊伟,詹永麟.6自由度并联平台结构参数优化[J].机械设计,2000(3):44-46.
    [146]赵慧,韩俊伟,张尚盈,等.六自由度并联机器人运动学分析和计算[J].机床与液压,2003(3):70-72.
    [147]王伟,谢海波,傅新,等.一种基于固有频率分析的液压6自由度并联机构参数优化方法[J].机械工程学报,2006,42(3):77-82.
    [148]刘荣,王宣银.并联六自由度平台的运动仿真及其可视化设计研究[J].液压与气动,2005,24(1):5-7.
    [149]谭喜堂,李广俊.城市轨道交通列车驾驶仿真器研究[J].中国铁道科学,2006,27(2):110-115.
    [150]Merlet J. P, Gosselin C, Mouly N. Workspace of Planar Parallel Manipulators [J], MMT,1998,33(1):7-20.
    [151]Jorge Angles. The Qualitative Synthesis of Parallel Manipulators [J]. Journal of Mechanical Design,2004.7,126:617-624.
    [152]Robert S. Stoughton, Tatsuo Arai. A Modified Stewart Platform Manipulator with Improved Dexterity [J]. IEEE TRANSARIONS ON ROBOTICS AND AUTOMATION, VOL 9, NO.2,1993,166-173.
    [153]姜继海等.液压与气动传动[M].北京:高等教育出版社,2002,291-305.
    [154]郑凯,胡仁喜,陈鹿民.ADAMS 2005机械设计高级应用实例[M].北京:机械工业出版社,2006,25-42.
    [155]张秀峰,于凌涛,孙立宁.并联机构雅可比矩阵的新式解法[J].机械设计与制造,2003,(6):60-61.
    [156]任宝生.理论力学[M].西安:西安交通大学出版社,1995,202-365.
    [157]Alain Codourey. Dynamic Modeling of Parallel Robots for Computed Torque Control Implementation [J]. The International Journal of Robotic Research.1998,17(12):1325-1336.
    [158]Tsai L W. Solving the inverse dynamoics of parallel manipulators by the principle of virtual work [C]. In Proc. ASME design engineering Technical Conferences,1998,451-457.
    [159]邹慧君,高峰.现代机构学进展[M].北京:高等教育出版社,2007.4,163-173.
    [160]曹毅.六自由度并联机器人奇异位形的研究[D].秦皇岛:燕山大学,2005.9.
    [161]吴宇列,吴学忠,刘冠峰,等.并联机构奇异点分析的新方法[J].国防科技大学学报,2001,23(6):95-98.
    [162]洪振宇.机构精度分析与综合方法研究[D].天津:天津大学,2004.1.
    [163]杨廷力.机械系统基本理论—结构学、运动学、动力学[M].北京:机 械工业出版社,1996,26-35.
    [164]邢海峰,彭立坤,朱石坚,熊有伦.Stewart平台的综合谐振频率研究[J],机械科学与技术,2007,26(1):84-87.
    [165]张庚霞,王增礼,张庚磊.并联6SPS空间机构的奇异点研究[J].齐齐哈尔轻工学院学报,1995,11(3):78-83.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.