脂质代谢中活性蛋白的结构与功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 副题名:1. 人载脂蛋白A-V(apoA-V)及其缺失突变体的结构与功能研究 2. 小鼠脂质营养不良相关蛋白lipin1的功能研究
  • 英文副题名:1. Structural and Functional Properties of Apolipoprotein A-V and Its Deletion Mutants
  • 作者:孙国涛
  • 论文级别:博士
  • 学科专业名称:生物化学与分子生物学
  • 学位年度:2006
  • 导师:陈保生
  • 学科代码:071010
  • 学位授予单位:中国协和医科大学
  • 论文提交日期:2005-08-01
摘要
第一部分人载脂蛋白A-Ⅴ(apoA-Ⅴ)及其缺失突变体的结构与功能研究
     实验背景:
     高甘油三酯血症是冠心病发生的独立危险因素,而血浆甘油三酯(triglyceride,TG)水平是由非遗传因素(如肥胖、饮食、酗酒、吸烟等)和遗传因素共同决定的,其中遗传因素约占21~40%。载脂蛋白A-Ⅴ(apolipoprotein A-Ⅴ,apoA-Ⅴ)基因位于载脂蛋白A-Ⅰ/C-Ⅲ/A-Ⅳ基因簇内,含有4个外显子和编码366个氨基酸。ApoA-Ⅴ主要由肝脏合成,切除信号肽后,分泌到血浆,主要分布在高密度脂蛋白(high-density lipoprotein,HDL),少量分布在极低密度脂蛋白(very low-density lipoprotein,VLDL)和乳糜微粒(chylomicron,CM)。研究显示,apoA-Ⅴ基因敲除小鼠血浆TG水平是对照小鼠的4倍;而apoA-Ⅴ转基因小鼠血浆TG水平比对照小鼠降低约1/3。另外,基因敲除小鼠血浆VLDL水平升高,而在转基因小鼠降低。一些独立的研究已经表明,apoA-Ⅴ特定单核苷酸多态(single nucleotide polymorphism,SNP)位点与人甘油三酯水平密切相关。这些研究显示apoA-Ⅴ是一个重要的血浆甘油三酯水平决定因子和一个主要的冠心病危险因素。ApoA-Ⅴ通过激活LPL发挥降甘油三酯作用的结论,还存在争议。ApoA-Ⅴ可以结合脂质(如DMPC),形成直径大约15-20nm的圆盘状复合物。已有研究表明,ApoA-Ⅴ在大肠杆菌内表达为包涵体,变性条件下纯化后,普通PH条件下,溶解度较低(<0.1mg/ml);极端PH条件(50mM枸橼酸钠,PH3.0)下,溶解度提高;在此条件下,ApoA-Ⅴ二级结构中α螺旋占32%。
     实验目的:
     本研究对人apoA-Ⅴ和及其不同部位发生大片段缺失的突变体的二级结构和功能进行了研究和比较,以观察不同部位的序列对apoA-Ⅴ蛋白的结构和功能的影响;我们希望这些问题的解答能够对我们更深入、更全面的认识apoA-Ⅴ降甘油三酯的机制有所帮助。
     实验方法:
     根据预测的二级结构和疏水性特征,通过DNA重组,将apoA-Ⅴ按6部分依次进行缺失,产生一系列apoA-Ⅴ缺失突变体:A-Ⅴ(△(1-51))、A-Ⅴ(△(51-128))、A-Ⅴ(△(132-188))、A-Ⅴ(△(192-238))、A-Ⅴ(△(246-299))、A-Ⅴ(△(301-343)),利用pET原核表达系统表达成熟型及突变的apoA-Ⅴ蛋白,复性后进行Ni~(2+)亲和柱纯化,获得多肽链C-末端带有6个组氨酸标签(6×His tag)的高纯度蛋白(纯度>90%)用于下面的结构和功能实验。我们利用圆二色实验分析apoA-Ⅴ的二级结构和盐酸胍变性过程;浊度澄清实验分析野生型apoA-Ⅴ和缺失突变体与脂质结合的动力学特点,寻找能与脂质特异结合的片段;脂蛋白脂酶激活实验用于明确apoA-Ⅴ是否对脂蛋白脂酶有激活作用,进一步确定发挥激活作用的片段。
     实验结果:
     圆二色(CD)实验:ApoA-Ⅴα螺旋含量为46.26±5.08%。盐酸胍诱导的化学变性圆二色(CD)实验显示,apoA-Ⅴ的变性标准自由能(△G_D~0)为1.94 kcal/mol apoA-Ⅴ,变性中点盐酸胍浓度(D_(1/2))为2.02±0.19M。
     浊度澄清实验:分别在第192至238位间和第301至343位间片段缺失的突变体,即A-Ⅴ(△(192-238))和A-Ⅴ(△(301-343)),的浊度澄清速率常数k_(1/2)值都明显小于apoA-Ⅴ(P<0.05),尤其是A-Ⅴ(△(192-238))突变体降低更为显著,提示这些缺失突变影响了apoA-Ⅴ多肽链与磷脂的相互作用,从而破坏蛋白与脂质的结合。A-Ⅴ(△(56-227))突变体浊度澄清速率常数k_(1/2)值接近A-Ⅴ(△(192-238)),进一步印证前述实验结果。而A-Ⅴ(△(51-128))和A-Ⅴ(△(132-188))突变体的k_(1/2)值显著大于apoA-Ⅴ(P<0.05),提示缺失这两部分促进了apoA-Ⅴ与脂质的结合。其它各突变体的脂质结合动力学与apoA-Ⅴ无明显差异(p>0.05)。
     脂蛋白脂酶激活实验:apoA-Ⅴ缺失突变体对LPL的激活作用都不同程度地降低。其中,A-Ⅴ(△(1-51))、A-Ⅴ(△(51-128))、A-Ⅴ(△(246-299))和A-Ⅴ(△(301-343))突变体在40pmol时LPL激活作用约为apoA-Ⅴ的2/3,A-Ⅴ(△(132-188))突变体激活作用约为apoA-Ⅴ的1/3,而突变体A-Ⅴ(△(192-238))和A-Ⅴ(△(56-227))几乎没有LPL激活作用。初步推断载脂蛋白A-Ⅴ激活LPL的活性结构域介于第192至第227这一较短的片段。
     结论:
     1.ApoA-Ⅴ属于α螺旋含量较高的蛋白,而且不同溶液环境下,二级结构会有一定程度的变化。相对于apoA-Ⅰ,apoA-Ⅴ维持着更为松散的结构。
     2.ApoA-Ⅴ蛋白不同部位对其脂质结合能力的影响差别很大;多肽链靠近氨基端区域主要维持apoA-Ⅴ的低可塑性;多肽链中央区域和羧基末端在介导apoA-Ⅴ与脂质结合过程中发挥重要作用,与apoA-Ⅰ相似。
     3.ApoA-Ⅴ不同片段对LPL激活作用有明显不同。多肽链中央区域对LPL激活作用至关重要,第192—227位氨基酸之间的片段,可能是激活LPL的关键结构域。
     第二部分小鼠脂质营养不良相关蛋白lipin1的功能研究
     脂质营养不良和肥胖正好是脂肪代谢的两个极端,而且可以归因于一些功能分类不同的基因表达的改变。研究已经表明,lipin1突变导致脂肪细胞分化障碍和小鼠脂质营养不良。通过组织特异性的脂肪细胞和骨骼肌细胞过表达动物模型,证明其可以促进肥胖。但机制不同,在脂肪细胞,影响脂肪贮存能力;而在骨骼肌细胞则决定整体能量消耗和脂肪利用。因此,单是lipin1水平的变化就可以引起脂肪代谢的极端状态,也反应了脂肪组织和骨骼肌调控脂肪多少和能量平衡的一种机制。
     我们的初步实验结果如下:
     (一)、完整小鼠lipin1蛋白在大肠杆菌中不表达,可能跟含有串联稀有密码有关;氨基端肽段原核表达为包涵体形式,制备出的兔抗小鼠多克隆抗体,与重组蛋白可以反应。
     (二)、荧光定位实验证实小鼠lipin1蛋白主要定位于细胞核内,而Gly84Arg突变确实导致定位改变,主要分布于胞浆,而Cys30Arg可以抑制这一突变体的作用。
     (三)、伴随绿色荧光蛋白的RNAi实验表明,像酵母细胞同源蛋白SMP2一样,lipin1可能与哺乳动物细胞的核被膜、内质网结构有关系,因为干扰lipin1表达后,绿色荧光蛋白在胞浆内呈斑点状分布。但需要进一步实验验证。
     (四)、建立的3T3-L1细胞分化模型为进一步研究lipin1的功能奠定基础。
     综上所述,我们克隆了小鼠lipin1全长编码区,并制备了多克隆抗体;对lipin1的核定位问题进行了初步研究;并对lipin1表达被干扰后细胞结构变化变化进行了简单探讨。
PartⅠStructural and Functional Properties of Apolipoprotein A-Ⅴand Its Deletion Mutants
     Background:
     Hypertriglyceridemia is known to be an independent risk factor for coronaryartery disease (CAD). In addition to non-genetic factors such as overweight, diet,heavy smoking, excessive alcohol consumption, genetic factors are important indetermining serum triglyceride levels, accounting for 21-40%.
     APOA-Ⅴis located proximal to the well-characterized APOA-Ⅰ/C-Ⅲ/A-Ⅳgenecluster on human 11q23. Mice expressing a human APOA-Ⅴtransgene showed adecrease in plasma triglyceride concentrations to one-third of those in control mice;conversely, knockout mice lacking apoa-ⅴhad four times as much plasmatriglycerides as controls. The levels of very low-density lipoprotein (VLDL) particleswere increased in the homozygous knockout mice and decreased in the transgenicmice compared with controls. VLDL levels in a heterozygous knockout mouse wereintermediate between homozygous knockout and control mice. In humans, singlenucleotide polymorphisms (SNPs) across the APOA-Ⅴlocus were found to besignificantly associated with plasma triglyceride levels in several independent studies.These findings indicate that APOA-Ⅴis an important determinant of plasmatriglyceride levels, a major risk factor for coronary artery disease.
     The APOA-Ⅴgene consists of 4 exons and encodes a 366-amino acid protein.Far-UV circular dichroism analysis reveals that apoA-Ⅴpossesses 32%α-helixcontent. Protein structure analyses predicted several amphipathic helical domains andan N-terminal signal peptide, characteristic features of lipid-binding apolipoproteins, in both human and mouse apoA-Ⅴ. The apoA-Ⅴprotein is secreted by the liver and istransport primarily on large high-density lipoprotein (HDL).
     Objectives:
     In this study, we compared the structural and functional properties of wild-typeapoA-Ⅴ(wtapoA-Ⅴ) and its 6 deletion mutants, each occurring on a separate segment.Our aim is to explore how each segment influences the structure and function ofapoA-Ⅴ, and whether there is a relationship between the segments and functions ofapoA-Ⅴ. We hope that our findings could shed some lights on the potentialmechanisms of the prominent triglyceride-lowering effects of apoA-Ⅴ.
     Methods:
     Six deletion mutants of apoA-Ⅴwere designed, according to structure predictionand hydrophobility analysis, and generated by DNA recombition. These mutants,named as A-Ⅴ(△(1-51)), A-Ⅴ(△(51-128)), A-Ⅴ(△(132-188)), A-Ⅴ(△,(192-238)),A-Ⅴ(△(246-299)), A-Ⅴ(△(301-343)), delete corresponding fragments between thetwo number from amino-terminal to carboxyl-terminal in turn. Both of wtapoA-Ⅴandthe deletion mutants were expressed with pET30b (+) as the expression vector andBL21 (DE3) as the host bacterial, respectively. After purified by Ni~(2+) affinitychromatography, all of the recombinant proteins were examined about the propertiesof their structures and functions. Circular dichrosim (CD) was employed to determinethe secondary structure and conformation stability of apoA-Ⅴ; Turbility clearanceassay was used to assess their abilities to bind DMPC liposome; LPL activation assaywas used to observe their capacities to promote TG hydrolysis by LPL.
     Results:
     CD Assays:
     Theα-helix content of wild-type apoA-Ⅴ(wtapoA-Ⅴ) in detergent-binding statewas 46.26±5.08%. Guanidine was used as a chemical denaturant to assess theconformation stability of apoA-Ⅴ. CD results showed that free energy of denaturation(△G_D~0) of wtapoA-Ⅴwas 1.94±0.14 kcal/mol apoA-Ⅴand concentration ofguanidine at the midpoint of denaturation was 2.02±0.19.
     Turbility Clearance Assay:
     The mutations with deletion from 192 to 238 and 301 to 343 showedsubstantially reduced activities of binding lipids, for their binding rate constants (K_(1/2))were low enough, compared with wtapoA-Ⅴ(p<0.05). Specially, the former mutantfell more obviously. And mutant A-Ⅴ(△(56-227)) showed a similar decrease in lipidaffinity. While on the contrary mutants A-Ⅴ(△(51-128)) and A-Ⅴ(△(132-188))displayed increase in lipid binding rates. And other mutants exhibited the samecapacities of disrupting DMPC liposomes as wtapoA-Ⅴ(p>0.05).
     LPL Activation Assay:
     All mutants showed reduced activation ability to LPL. The extent of activation ofmutants A-Ⅴ(△(1-51)),A-Ⅴ(△(51-128)),A-Ⅴ(△(246-299)) and A-Ⅴ(△(301-343))were about 2/3 of wtapoA-Ⅴ. And mutant A-Ⅴ(△(132-188)) reserved approximately1/3 activation ability. Although most mutants retained some activating ability, deletionof fragment between 192 and 238 caused almost complete loss of activity.
     Conclusion:
     1. ApoA-Ⅴexhibits a highα-helix content of 46%and a low free energy of stabilityof its alpha-helical segments (△G_D~0) of 1.94 kcal/mol. ApoA-Ⅴadopts a looselyfolded conformation in solution, compared to apoA-Ⅰ.
     2. ApoA-Ⅴinteracts with bilayer vesicles of dimyristoylphosphatidylcoline to formdiscoidal complexes. Each fragment of apoA-Ⅴhas very different influence onthe lipid association property of this protein. The central and C-terminal region ofpolypeptide chain seems to play important roles in mediating the interactionbetween apoA-Ⅴand lipid. And the domain proximal to N-terminus of apoA-Ⅴmay give rise to low structure plasticity.
     3. ApoA-Ⅴcould activate lipoprotein lipase (LPL) effectively. Our data demonstratethat the central region of polypeptide chain is of special importance for the LPLactivation function of apoA-Ⅴ. And the structure integrality of apoA-Ⅴalso playsan essential role.
     PartⅡ
     Lipodystrophy and obesity represent extreme and opposite ends of the adiposityspectrum and have typically been attributed to alterations in the expression or functionof distinct sets of genes. Previous sdudies have demonstrated that lipin1 deficiencyimpairs adipocyte differentiation and causes lipodystrophy in the mouse. Using twodifferent tissue-specific lipin transgenic mouse strains, it has been demonstrated thatenhanced lipin1 expression in either adipose tissue or skeletal muscle promotesobesity. Thus, variations in lipin1 levels alone are sufficient to induce extreme statesof adiposity and may represent a mechanism by which adipose tissue and skeletalmuscle modulate fat mass and energy balance.
     Our primary experimental results show: (A). The mouse lipin1 protein was notsuccessfully produced in E.coli as a whole, probably dueing to the existence of severalrare codons for E.coli. And the N-terminal fragment was overproduced as inclusionbodies in E.coli BL21(DE3). We successfully produced rabbit polyclonal antibodiesagainst this fragment. (B). Fluorescence localiztion analysis revealed that mouselipin1 protein is predominantly located in the nucleus of 3T3-L1 cell. Point mutationanalysis revealed that Cys(30) and Gly(84) in the N-terminal region are essential tolocalization of lipin1.(C).We eatablished a primary relation between lipin1 and thestructure of nuclear envelope and endoplasmic reticulum by RNAi test withfluorescence.(D). The construction of adipocyte differentiation model would offer achance to study the function of lipin1 deeply.
     In conclusion, we got the complete coding sequence of mouse lipin1 gene andproduced rabbit polyclonal antibodies. We studied the localization of mouse lipin1protein. And we also analyzed the relation between lipin1 and cell structure.
引文
1. Cullen P. Evidence that triglycerides are an independent coronary heart disease risk factor. Am. J. Cardiol. 2000; 86:943-949.
    
    2. Jeppesen J, et al. Triglyceride concentration and ischemic heart disease. Circulation. 1998; 97:1029-1036.
    
    3. Fruchart JC, et al. HDL and triglyceride as therapeutic targets. Curr. Opin. Lipidol.2002; 13:605-616.
    
    4. Valentine CM, et al. Apolipoprotein A5 and hypertriglyceridemia. Clinical Chemistry.2005; 51:295-297.
    
    5. Hodis HN.Triglyceride-rich lipoprotein remnant particles and risk of atherosclerosis. Circulation. 1999; 99:2852 - 4.
    
    6. Hunt SC, et al. Genetic heritability and common environmental components of resting and stressed blood pressures, lipids, and body mass index in Utah pedigrees and twins. Am. J.Epidemiol. 1989; 129:625-638.
    
    7. Brenn T. Genetic and environmental effects on coronary heart disease risk factors in northern Norway.The cardiovascular disease study in Finnmark. Ann.Hum.Genet. 1994; 58 (Pt 4): 369-379.
    
    8. Pennacchio LA, et al.: An apolipoprotein influencing triglycerides in humans and mice revealed by comparative sequencing. Science.2001; 294: 169-173.
    
    9. Vliet HN, et al. Apolipoprotein A-V: a novel apolipoprotein associated with an early phase of liver regeneration. J.Biol.Chem. 2001; 276:44512-44520.
    
    10. Brien PJ, et al. The Novel Apolipoprotein A5 Is Present in Human Serum, Is Associated with VLDL, HDL, and Chylomicrons, and Circulates at Very Low Concentrations Compared with Other Apolipoproteins. Clin.Chem. 2005; 51: 351-359.
    
    11. Ishihara, M. et al. A sandwich enzyme-linked immunosorbent assay for human plasma apolipoprotein A-V concentration. J.Lipid.Res. 2005; 46: 2015-2022.
    
    12. Pennacchio LA, et al. Apolipoprotein A5, a newly identified gene that affects plasma triglyceride levels in humans and mice. Arterioscler.Thromb.Vasc.Biol. 2003; 23:529-34.
    
    13. Seda O, et al. New Apolipoprotein A-V: Comparative Genomics Meets Metabolism. Physiol.Res. 2003; 52: 141-146.
    
    14. Vliet HN, et al. Adenoviral overexpression of apolipoprotein A-V reduces serum levels of triglycerides and cholesterol in mice. Biochem.Biophys.Res.Commun. 2002; 295:1156-1159.
    
    15. Baroukh N, et al. Analysis of apolipoprotein A5, c3, and plasma triglyceride concentrations in genetically engineered mice. Arterioscler.Thromb.Vasc.Biol. 2004; 24(7): 1297-302.
    
    16. Pennacchio, LA, et al. Two independent apolipoprotein A5 haplotypes influence human plasma triglyceride levels. Hum. Molec. Genet.2002; 11: 3031-3038.
    
    17. Endo K, et al. Association found between the promoter region polymorphism in the apolipoprotein A-V gene and the serum triglyceride level in Japanese school children. Hum.Genet. 2002; 111:570-572.
    
    18. Talmud PJ, et al. Relative contribution of variation within the APOC3/A4/A5 gene cluster in determining plasma triglycerides. Hum.Mol.Genet. 2002; 11:3039-3046.
    
    19. Kao JT, et al. A novel genetic variant in the apolipoprotein A5 gene is associated with hypertriglyceridemia. Hum. Molec. Genet.2003; 12: 2533-2539.
    
    20. Martin, S, et al. Contribution of APOA5 gene variants to plasma triglyceride determination and to the response to both fat and glucose tolerance challenges. Biochim. Biophys. Acta 2003; 1637: 217-225.
    
    21. Talmud PJ, et al. APOA5 gene variants, lipoprtein distribution, and progression of coronary heart disease: result from the LOCAT study. J.Lip.Res. 2004; 45:750-756.
    
    22. Szalai C, et al. Polymorphism in the promoter region of the apolipoprotein A5 gene is associated with an increased susceptibility for coronary artery disease. Athersclerosis.2004; 173:109-114.
    
    23. Li GP, et al. Genetic effect of two polymorphisms in the apolipoprotein A5 gene and apolipoprotein C3 gene on serum lipids and lipoproteins levels in a Chinese population. Clin.Genet. 2004; 65(6): 470-6.
    24. Bi N, et al. A single nucleotide polymorphism -1131T>C in the apolipoprotein A5 gene is associated with an increased risk of coronary artery disease and alters triglyceride metabolism in Chinese. Mol.Genet.Metab. 2004; 83(3): 280-6.
    25. Ribalta J, et al. Newly Identified Apolipoprotein AV Gene Predisposes to High Plasma Triglycerides in Familial Combined Hyperlipidemia. Clin.Chem. 2002; 48: 1597-1600.
    26. Oliva, CP. et al. Inherited Apolipoprotein A-V Deficiency in Severe Hypertriglyceridemia. Arterioscler.Thromb.Vasc.Biol. 2005; 25:411-417.
    27. Vu-Dac N, et al. Apolipoprotein A5, a crucial determinant of plasma triglyceride levels, is highly responsive to peroxisome proliferator-activated receptor alpha activators. J.Biol.Chem. 2003; 278(20): 17982-5.
    28. Prieur X, et al. The human apolipoprotein AV gene is regulated by peroxisome proliferator-activated receptor-alpha and contains a novel farnesoid X-activated receptor response element. J.Biol.Chem. 2003; 278: 25468-25480.
    29. Jakel H, et al. The liver X receptor ligand T0901317 down-regulates APOA5 gene expression through activation of SREBP-1c. J.Biol.Chem. 2004; 279(44): 45462-9.
    30. Genoux A, et al. Transcriptional regulation of apolipoprotein A5 gene expression by the nuclear receptor RORalpha. Arterioscler.Thromb.Vasc.Biol. 2005; 25(6): 1186-92.
    31. Nowak M, et al. Insulin-mediated down-regulation of apolipoprotein A5 gene expression through the phosphatidylinositol 3-kinase pathway: role of upstream stimulatory factor. Mol.Cell.Biol. 2005; 25(4): 1537-48.
    32. Prieur, X. et al. Thyroid Hormone Regulates the Hypotriglyceridemic Gene APOA5. J.Biol.Chem. 2005; 280: 27533-27543.
    33. Weinberg RB, et al. Structure and interfacial properties of human apolipoprotein A-V. J.Biol.Chem. 2003; 278: 34438-34444.
    34. Beckstead JA, et al. Structure-function studies of human apolipoprotein AV: a regulator of plasma lipid homeostasis. Biochemistry. 2003; 42: 9416-23.
    35. Schaap FG, et al. Apo AV reduces plasma triglycerides by inhibiting very low-density lipoprotein-triglyceride production and stimulating lipoprotein lipase-mediated VLDL-TG hydrolysis. J.Biol.Chem. 2004; 279: 27941-7.
    36. Merkel M, et al. Apolipoprotein AV accelerates plasma hydrolysis of triglyceride-rich lipoproteins by interaction with proteoglycan-bound lipoprotein lipase. J.Biol.Chem. 2005; 280(22): 21553-60.
    37. Fruchart NJ, et al. Mechanism of triglyceride lowering in mice expressing human apolipoprotein A5. Biochem.Biophys.Res.Commun. 2004; 319(2): 397-404.
    38. Lookene A, et al. Apolipoprotein AV-heparin interactions: implications for plasma lipoprotein metabolism. J.Biol.Chem. 2005; 280(27): 25383-7.
    39. Gergiou G, Valax P: Isolating inclusion bodies from bacteria. Methods. Enzymol. 1999; 309: 48-58.
    40. Patra AK, et al. Optimization of inclusion body solubilization and renaturation of recombinant human growth hormone from Escherichia coli. Protein. Expr. Purif. 2000; 18: 182-192.
    41. Kurucz I, et al. Correct disulfide pairing and efficient refolding of detergent-solubilized single-chain Fv proteins from bacterial inclusion bodies. Mol .Immunol. 1995; 32: 1443-1452.
    42. Vallejo LF, et al. Strategies for the recovery of active proteins through refolding of bacterial inclusion body proteins.Microb.Cell.Fact. 2004;3:11. (http://www.microbialcellfactories.com/content/3/1/11)
    43. Kleinschmidt JH, et al. Folding Intermediates of a a-Barrel Membrane Protein. Kinetic Evidence for an multi-Step Membrane Insertion Mechanism.Biochemistry. 1996;35(40):12993-13000.
    44. Marshak DR, et al. Strategies for protein purification and characterization: A laboratory course manual. Cold Spring Harber Laboratory Press, 1996.
    45. Yu SM, et al. An improved tripod amphiphile for membrane protein solubilization.Protein Science 2000; 9:2518 - 2527.
    46. Ahmad F, " Measuring the conformational stability of enzymes," In: Thermostability of Enzymes, editor: Gupta MN, (Berlin: Springer-Verlag, 1993),pp96-112.
    47. Moller JV, et al. Detergent binding as a measure of hydrophobic surface area of integral membrane proteins. J Biol Chem 1993;268:18659 - 18672.
    48. Tandon S, et al. Detergent-assisted refolding of guanidinium chloride-denatured rhodanese. The effect of lauryl maltoside.J Biol Chem. 1986;261(33):15615-8.
    49. Chen YH, et al. Determination of the secondary structures of proteins by circular dichroism and optical rotatory dispersion. Biochemistry. 1972; 11:4120-31.
    50. Narayanaswami V, et al. Molecular basis of exchangeable apolipoprotein function. Biochim.Biophys.Acta. 2000; 1483(1): 15-36.
    51. Edelstein C, et al. Effect of guanidine hydrochloride on the hydrodynamic and thermodynamic properties of human apolipoprotein A-I in solution. J. Biol. Chem. 1980; 255: 5747-5754.
    52. Gursky O, et al. Thermal unfolding of human high-density apolipoprotein A-I: Implications for a lipid-free molten globular state. Proc. Natl. Acad. Sci. USA. 1996; 93: 2991-2995.
    53. Segrest JP, et al. The amphipathic helix in the exchangeable apolipoproteins: a review of secondary structure and function. J. Lipid Res. 1992; 33: 141 - 166.
    54. Palgunachari MN. et al. Only the two end helixes of eight-tandem amphipathic helical domains of human apo A-I have significant lipid affinity-implications for HDL assembly. Arterioscler. Thromb. Vasc. Biol. 1996; 16: 328-338.
    55. Saito H, et al. Domain Structure and Lipid Interaction in Human Apolipoproteins A-I and E, a General Model. J. Biol. Chem. 2003; 278: 23227 - 23232.
    56. Voyta JC. et al. Interaction of synthetic N-5-dimethylaminonaphthalene-l-sulfonyl-apolipoprotein C-II peptides with lipoprotein lipase. J. Biol. Chem. 1983; 258: 2934-2939.
    57. Olivecrona G, et al. Lipid binding of apolipoprotein CII is required for stimulation of lipoprotein lipase activity agaist apolipoprotein CII-deficient chylomicrons. Arterioscler. Thromb. Vasc. Biol. 1997; 17:1545-1549.
    58. Pace CN. Determination and analysis of urea and guanidine hydrochloride denaturation curves. Methods Enzymol. 1986; 131:266-80.
    59. Sparks DL, et al. The charge and structural stability of apolipoprotein A-I in discoidal and spherical recombinant high density lipoprotein particles J. Biol. Chem. 1992; 267:25839-25847.
    60. Zhu XW, et al. Cysteine mutants of human apolipoprotein A-I: a study of secondary structural and functional properties. J. Lipid Res.2005; 46:1303-1311.
    1. Grundy SM. et al. Assessment of cardiovascular risk by use of multiple-risk-factor assessment equations: a statement for healthcare professionals from the American Heart Association and the American College of Cardiology. Circulation 1999; 100: 1481-92.
    2. Havel RJ. et al. Introduction: structure and metabolism of plasma lipoproteins. In: Striver CR. et al. The metabolic and molecular bases of inherited disease. 7th ed. New York, NY: McGraw-Hill, Inc, 1995:1841-51.
    3. Fitch WM. Phylogenies constrained by the crossover process as illustrated by human hemoglobins and a thirteen-cycle, eleven-amino-acid repeat in human apolipoprotein A-I. Genetics. 1977; 86: 623-644.
    4. McLachlan AD. 1977. Repeated helical pattern in apolipoprotein-A-I. Nature. 1977; 267:465-466.
    5. Segrest JP. et al. The amphipathic helix: A multifunctional structural motif in plasma apolipoproteins. Adv.Protein.Chem.1994; 45: 303-369.
    6. Vitello LB. et al. Studies on human serum high-density lipoproteins. Self-association of apolipoprotein A-I in aqueous solutions. J. Biol. Chem. 1976; 251:1131-1136.
    7. Edelstein C. et al. Effect of guanidine hydrochloride on the hydrodynamic and thermodynamic properties of human apolipoprotein A-I in solution. J. Biol. Chem. 1980; 255:5747-5754.
    8. Reijngoud DJ. et al. Mechanism of dissociation of human apolipoprotein A-I from complexes with dimyristoylphosphatidylcholine as studied by guanidine hydrochloride denaturation. Biochemistry. 1982; 21:2969-2976.
    9. Sparks DL. et al. The charge and structural stability of apolipoprotein A-I in discoidal and spherical recombinant high-density lipoprotein particles. J. Biol. Chem. 1992; 267:25839-25847.
    10. Tall AR. et al. Conformational and thermodynamic properties of apo A-I of human plasma high-density lipoproteins. J. Biol. Chem.1976; 251:3749-3755.
    11. Privalov PL. et al. A thermodynamic approach to the problem of stabilization of globular protein structure: a calorimetric study. J. Mol. Biol. 1974; 86:665-684.
    12. Pace CN. et al. Determining globular protein stability: guanidine hydrochloride denaturation of myoglobin. Biochemistry. 1979; 18:288-292.
    13. Gursky O. et al. Thermal unfolding of human high-density apolipoprotein A-I: implications for a lipid-free molten globular state. Proc. Natl. Acad. Sci. USA. 1996; 93:2991-2995.
    14. Borhani DW. et al. Crystallization of truncated human apolipoprotein AI in a novel conformation. Acta.Crystallogr.D.Biol.Crystallogr. 1999; 55 (Pt9): 1578-83.
    15. Borhani DW. et al.Crystal structure of truncated human apolipoprotein A-I suggests a lipid-bound conformation. Proc.Natl.Acad.Sci.USA. 1997; 94(23): 12291-6.
    16. Frank PG et al. Apolipoprotein A-I: structure-function relationships.J.Lipid.Res. 2000; 41:853-72.
    17. Marcel YL. et al. Structure-function relationships of apolipoprotein A-I: a flexible protein with dynamic lipid associations. Curr.Opin.Lipidol. 2003; 14(2): 151-7.
    18. Palgunachari MN. et al. Only the two end helixes of eight-tandem amphipathic helical domains of human apo A-I have significant lipid affinity-implications for HDL assembly. Arterioscler. Thromb. Vasc. Biol.1996; 16: 328-338.
    19. Mishra VK. et al. Studies of synthetic peptides of human apolipoprotein A-I containing tandem amphipathic alpha-helixes. Biochemistry. 1998; 37:10313-10324.
    20. Gillotte KL. et al. Apolipoprotein-mediated plasma membrane microsolubilization: role of lipid affinity and membrane penetration in the efflux of cellular cholesterol and phospholipid. J. Biol. Chem.1999; 274: 2021-2028.
    21. Deeb SS. et al. A splice-junction mutation responsible for familial apolipoprotein AII deficiency. Am. J. Hum. Genet. 1990; 46:822-827.
    22. Barbaras R. et al. Cholesterol efflux from cultured adipose cells is mediated by LpAI particles but not by LpAI:AII particles. Biochem. Biophys. Res. Commun. 1987; 142: 63-69.
    23. Zhong S. et al. et al. 1994. Human AII inhibits hydrolysis of HDL triglyceride and the decrease of HDL size induced by hypertriglyceridemia and CETP in transgenic mice. J. Clin. Invest. 1994; 94:2457-2467.
    24. Utermann G. et al. Apolipoprotein A-IV: a protein occurring in human mesenteric lymph chylomicrons and free in plasma: isolation and quantification. Eur. J. Biochem. 1979; 99: 333-343.
    25. Lefevre M. et al. Metabolism of apolipoprotein A-IV. J. Lipid Res. 1984; 25: 1603-1610.
    26. Steiametz A. et al. Activation of lecithin cholesterol acyltransferase by human apolipoprotein A-IV. J. Biol. Chem. 1985; 260: 2258-2264.
    27. Goldberg IJ. et al. Lipoprotein apo C-II activation of lipoprotein lipase: Modulation by apolipoprotein A-IV. J. Biol. Chem. 1990; 265: 4266-4272.
    28. Pennacchio LA, et al.: An apolipoprotein influencing triglycerides in humans and mice revealed by comparative sequencing. Science.2001; 294: 169-173.
    29. Vliet HN, et al. Apolipoprotein A-V: a novel apolipoprotein associated with an early phase of liver regeneration. J.Biol.Chem. 2001; 276: 44512-44520.
    30. Brien PJ, et al. The Novel Apolipoprotein A5 Is Present in Human Serum, Is Associated with VLDL, HDL, and Chylomicrons, and Circulates at Very Low Concentrations Compared with Other Apolipoproteins. Clin.Chem. 2005; 51: 351-359.
    31. Ishihara, M. et al. A sandwich enzyme-linked immunosorbent assay for human plasma apolipoprotein A-V concentration. J.Lipid.Res. 2005; 46: 2015-2022.
    32. Weinberg RB, et al. Structure and interfacial properties of human apolipoprotein A-V. J.Biol.Chem. 2003; 278: 34438-34444.
    33. Beckstead JA, et al. Structure-function studies of human apolipoprotein AV: a regulator of plasma lipid homeostasis. Biochemistry. 2003; 42: 9416-23.
    34. Elovaon J. et al. Molecular weights of apoprotein B obtained from human low-density lipoprotein (apoprotein B-PI) and from rat very low-density lipoprotein (apoprotein BPIII). Biochemistry. 1985; 24:1569-1578.
    35. Dunning AM. et al. Genetic evidence that the putative binding domain of apolipoprotein B (residues 3130-3630) is not the only region of the protein involved in interaction with the low density lipoprotein receptor. Biochim.Biophys.Acta. 1991; 1096: 231-237.
    36. Olsson U. et al. Possible functional interactions of apolipoprotein B-100 segments that associate with cell proteoglycans and the apoB/E receptor. Arterioscler.Thromb.Vasc.Biol. 1997; 17:149-155.
    37. Schumaker VN. et al. Apolipoprotein B and low-density lipoprotein structure: implications for biosynthesis of triglyceride-rich lipoproteins. In: Advances in Protein Chemistry. Anfinsen CB. et al. (eds), Calif. Academic Press, San Diego, 1994, pp 205-248.
    38. Rall SC. et al. Human apolipoprotein E: The complete amino acid sequence. J.Biol.Chem. 1981; 257: 4171-4178.
    39. Brown MS, Goldstein JL: A receptor mediated pathway for cholesterol homeostasis. Science. 1986; 232: 34-47.
    40. Vrabl i k M. et al. Major apolipoprotein B-100 mutations in lipoprotein metabolism and atherosclerosis.Physiol. Res.2001; 50: 337-343.
    41. Jong MC. et al. Role of apoCs in lipoprotein metabolism: functional differences between apoC1, apoC2, and apoC3.Arter.Thromb.Vas. Biol. 1999; 19: 472-484.
    42. Kowal RC. et al. Opposing effects of apolipoprotein E and C on lipoprotein binding to the low density lipoprotein receptor-related protein. J.Biol.Chem. 1990; 265: 10771 - 10779.
    43. Weisgraber KH. et al. Apolipoprotein C-I modulates the interaction of apolipoprotein E with β -migrating very low density lipoproteins (β -VLDL) and inhibits binding of β -VLDL to low density lipoprotein receptor-related protein. J.Biol.Chem. 1990; 265: 22453 - 22459.
    44. Swaney JB. et al. Effect of apolipoprotein C-I peptides on the apolipoprotein E content and receptor-binding properties of β -migrating very low density lipoproteins. J.Lipid.Res. 1994; 35:134 - 142.
    45. Sehayek E. et al. Mechanisms of inhibition by apolipoprotein C of apolipoprotein E-dependent cellular metabolism of human triglyceride-rich lipoproteins through the low-density lipoprotein receptor pathway. J.Biol.Chem. 1991; 266:18259-18267.
    46. Knott TJ. et al. Characterization of mRNAs encoding the precursor for human apolipoprotein CI. Nucleic.Acids.Res. 1984; 12: 3909-3915.
    47. Jackson RL. et al. The primary structure of apolipoprotein-serine. J.Biol.Chem. 1974; 249:5308-5313.
    48. Shulmann RS. et al. The complete amino acid sequence of C-I (apoLP-Ser), an apolipoprotein from human very low-density lipoproteins. J.Biol.Chem. 1975; 250:182-190.
    49. Rozek A. et al. Conformation of two peptides corresponding to human apolipoprotein C-I residues 7-24 and 35-53 in the presence of sodium dodecyl sulfate by CD and NMR spectroscopy. Biochemistry. 1995; 34:7401-7408.
    50. Curry MD. et al. Quantitative determination of apolipoproteins C-I and C-II in human plasma by separate electroimmunoassays. Clin.Chem. 1981; 27:543-548.
    51. Soutar AK. et al. Effect of the human plasma apolipoproteins and phosphatidylcholine acyl donor on the activity of lecithinxholesterol acyltransferase. Biochemistry. 1975; 14:3057 - 3064.
    52. Soutar AK. et al. Lecithinxholesterol acyltransferase activation and lipid binding by synthetic fragments of apolipoprotein C-I. Scand.J.Clin.Lab.Invest. 1978; 38(suppl 150): 53 - 58.
    53. Steyrer E. et al. Activation of lecithin-cholesterol acyltransferase by apolipoprotein E: comparison of proteoliposomes containing apolipoprotein D, A-I or C-I. Biochim.Biophys.Acta. 1988; 958:484 - 491.
    54. Das HK. et al. The human apolipoprotein C-II gene sequence contains a novel chromosome 19-specific minisatellite in its third intron. J.Biol.Chem. 1987; 262:4787-4793.
    55. Zdunek J. et al. Global structure and dynamics of human apolipoprotein CII in complex with micelles: evidence for increased mobility of the helix involved in the activation of lipoprotein lipase. Biochemistry. 2003; 42(7): 1872-89.
    56. Sparrow JT. Et al. Phospholipid binding studies with synthetic apolipoprotein fragments. Ann. N. Y. Acad. Sci. 1980; 348:187-208.
    57. Vainio P. et al. Action of lipoprotein lipase on mixed triacylglycerol/phosphatidylcholine monolayers: activation by apolipoprotein C-II. J. Biol. Chem. 1983; 258: 5477-5482.
    58. MacPhee CE. et al.Mass spectrometry to characterize the binding of a peptide to a lipid surface. Anal. Biochem. 1999; 275: 22-29.
    59. Voyta JC. et al. Interaction of synthetic N-5-dimethylaminonaphthalene-1-sulfonyl-apolipoprotein C-II peptides with lipoprotein lipase. J. Biol. Chem. 1983; 258: 2934-2939.
    60. Nestel PJ. et al. Apoprotein C metabolism in man. Adv.Lipid.Res. 1982; 19:55-83.
    61. Segrest JP. et al. A molecular theory of lipid-protein interactions in the plasmalipoproteins. FEBS.Lett. 1974; 38:247-258.
    62. Li WH. et al. The apolipoprotein multigene family: biosynthesis, structure, structure-function relationships, and evolution. J.Lipid.Res. 1988; 29:245-271.
    63. Brasseur R. et al. Molecular modeling of the amphipathic helices of the plasma apolipoproteins. Proteins. 1992; 13: 246-257.
    64. Trieu VN. et al. APOC-III-β-Galactosidase hybrid distinguishes between VLDL and LDL phospholipids. Biochem.Biophys.Res.Commun. 1995; 211:754-760.
    65. Lambert DA. et al. Effect of the apolipoprotein C-II/C-III1 ratio on the capacity of purified milk lipoprotein lipase to hydrolyse triglycerides in monolayer vesicles. Atherosclerosis. 1996; 127: 205-212.
    66. McConathy WJ. et al. Inhibition of lipoprotein lipase activity by synthetic peptides of apolipoprotein C-III. J.Lipid.Res. 1992; 33: 995-1003.
    67. Mahley R. Apolipoprotein E: Cholesterol transport protein with expanding role in cell biology. Science. 1988; 240: 622-640
    68. Wilson C. et al. Three-dimensional structure of the LDL receptor binding domain of human apolipoprotein E. Science. 1991; 252: 1817-1822.
    1. Langner CA, et al. The fatty liver dystrophy (fld) mutation: a new mutant mouse with a developmental abnormality in triglyceride metabolism and associated tissue-specific defects in lipoprotein lipase and hepatic lipase activities. J. Biol. Chem. 1989; 264:7994-8003
    2. Langner CA, et al. Characterization of the peripheral neuropathy in neonatal and adult mice that are homozygous for the fatty liver dystrophy (fld) mutation. J. Biol. Chem. 1991; 266:11955-11964
    3. Reue K, et al. The fatty liver dystrophy (fld) mutation: a development abnormality in fatty acid oxidation. Circulation. 1994; 90:Ⅰ-80
    4. Reue K, et al. Naturally occurring mutations in mice affecting lipid transport and metabolism. J. Lipid Res. 1996; 37:1387-1405
    5. Rehnmark S, et al. The fatty liver dystrophy mutant mouse: microvesicular steatosis associated with altered expression levels of peroxisome proliferator-regulated proteins. J. Lipid Res. 1998; 39:2209-2217
    6. Klingensport M, et al. Altered gene expression patter in the fatty liver dystrophy mouse reveals impaired insulin-mediated cytoskeleton dynamics. J. Biol. Chem. 1999; 274:23078-23084
    7. Peterfy M, et al. Genetic, physical, and transcript map of the fld region on mouse chomosome 12. Genomics. 1999; 62:436-444
    8. Reue K, et al. Adipose tissue deficiency, glucose intolerance, and increased atherosclerosis result from mutation in the mouse fatty liver dystrophy (fld) gene. J. Lipid Res. 2000; 41:1067-1076
    9. Peterfy M, et al. Lipodystrophy in the fld mouse results from a new gene encoding a nuclear protein, lipin. Nat. Genet. 2001; 27:121-124
    10. Huffman TA, et al. Insulin-stimulated phosphorylation of lipin mediated by the mammalian target of rapamycin. Proc. Natl. Acda. Sci. USA. 2001; 99:1047-1052
    11. Cao H, et al. Identification of single-nucleotide polymorphisms in the human LPIN1 gene. J. Hum. Genet. 2002; 47:370-372
    12. Phan J, et al. Lipin expression preceding PPARgamma is critical for adipogenesis in vivo and in vitro. J.Biol.Chem. 2004; 279: 29558-29564.
    13. Phan J, et al. Biphasic expression of lipin suggests dual roles in adipocyte development. Drug News Perspect. 2005; 18(1): 5-11.
    14. Phan J, et al. Lipin, a lipodystrophy and obesity gene. Cell Metab. 2005; 1(1): 73-83.
    15. Reitman ML. The fat and thin of lipin. Cell Metab. 2005 Jan; 1(1): 5-6.
    16. Peterfy M, et al. Alternatively spliced lipin isoforms exhibit distinct expression pattern, subcellular localization and role in adipogenesis. J Biol Chem. 2005 Jul 27; [Epub ahead of print]
    17. Tange Y. et al. An evolutionarily conserved fission yeast protein, Neil, implicated in normal nuclear morphology and chromosome stability, interacts Dis3, Pim1/RCC1 and an essential nucleoporin. J. cell. Sci. 2002; 115 (22): 4375-4387.
    18. Santos-Rosa H, et al. The yeast lipin Smp2 couples phospholipid biosynthesis to nuclear membrane growth. EMBO J. 2005; 24(11): 1931-41.
    19. Lecker SH, et al. Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB.J. 2004; 18(1): 39-51.
    20. Brachat A, et al. A microarray-based, integrated approach to identify novel regulators of cancer drug response and apoptosis. Oncogene 2002; 21:8361-71.
    21. Verheijen MH, et al. Local regulation of fat metabolism in peripheral nerves. Genes Dev. 2003; 17(19): 2450-64.
    22. Kane JF. Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. Curr Opin Biotechnol. 1995; 6(5): 494-500.
    23. Rosenberg AH. Effects of consecutive AGG codons on translation in Escherichia coli, demonstrated with a versatile codon test system. J Bacteriol. 1993; 175(3): 716-22.
    24. Kallstrom H, et al. Cdc25A localisation and shuttling: characterisation of sequences mediating nuclear export and import. Exp Cell Res. 2005;303(1):89-100.
    25. Maekawa M,et al. Regulation of subcellular localization of the antiproliferative protein Tob by its nuclear export signal and bipartite nuclear localization signal sequences.Exp Cell Res. 2004;295(1):59-65.
    26. Sharp PA. RNA interference—2001. Genes Dev 2001; 15: 485 - 490.
    27. Zamore PD, et al. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 2000,101: 25 - 33.
    28. Horton JD, et al. Overexpression of sterol regulatory element-binding protein-1a in mouse adipose tissue produces adipocyte hypertrophy, increased fatty acid secretion, and fatty liver.J Biol Chem. 2003;278(38):36652-60.
    29. Ericsson J, et al. Identification of glycerol-3-phosphate acyltransfemse as an adipocyte determination factor 1- and sterol regulatory element-binding proteinresponsive gene. J. Biol. Chem. 1997; 272: 7298-7305.
    30. Kim JB, et al. ADD1/SREBP1 activates PPARg through the production of endogenous ligand. Proc. Natl. Acad. Sci. U.S.A.1999; 95: 4333-4337.
    1. Lier, J. S. (1998) Clinical review 94: what's in a name? In search of leptin's physiologic role. J. Clin. Endocrinol. Metab. 83: 1407-1413.
    2. Moiler, D. E. & Flier, J. S. (1991) Insulin resistance: mechanisms,syndromes, and implication. N. Engl. J. Med. 325: 938-948.
    3. Spiegelman, B. M., Choy, L., Hotamisligil, G. S., Graves, R. A. & Tontonoz, P. (1993) Regulation of adipocyte gene expression in differentiation and syndromes of obesity/diabetes. J. Biol. Chem. 268: 6823-6826.
    4. Gregoire, F. M., Smas, C. M. & Sul, H. S. (1998) Understanding adipocyte differentiation. Physiol. Rev. 78: 783-809.
    5. Cornelius, P., MacDougald, O. A. & Lane, M. D. (1994) Regulation of adipocyte development. Annu. Rev. Nutr. 14: 99-129.
    6. Burdi, A. R., Poissonnet, C. M., Gain, S. M., Lavelle, M., Sabet, M. D. & Bridges, P. (1985) Adipose tissue growth patterns during human gestation: a histometric comparison of buccal and gluteal fat depots. Int. J. Obes. 9: 247-256.
    7. MacDougald, O. A. & Lane, M. D. (1995) Transcriptional regulation of gene expression during adipocyte differentiation. Annu. Rev. Biochem. 64: 345-373.
    8. Ailhaud, G., Grimaldi, P. & Negrel, R. (1992) Cellular and molecular aspects of adipose tissue development. Annu. Rev. Nutr. 12: 207-233.
    9. Ge' loen, A., Roy, P. E. & Bukowecki, L. J. (1989) Regression of white adipose tissue in diabetic rats. Am. J. Physiol. 257: E547-E553.
    10. Reznikoff, C. A., Brankow, D. W. & Heidelberger, C. (1973) Establishment and characterization of a cloned line of C3H mouse embryo cells sensitive to post-confluence inhibition of division. Cancer Res. 33: 3231-3238.
    11. Taylor, S. M. & Jones, P. A. (1979) Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-azacytidine. Cell 17: 771-779.
    12. Edmondson, D. G. & Olson, E. N. (1993) Helix-loop-helix proteins as regulators of muscle-specific transcription. J. Biol. Chem. 268: 755-758.
    13. Green, H. & Kehinde, O. (1974) An established pre-adipose cell line and its differentiation in culture. Cell 1: 113-116.
    14. Chapman, A. B., Knight, D. M., Dieckmann, B. S. & Ringold, G. M. (1984) Analysis of gene expression during differentiation of adipogenic cells in culture and hormonal control of the developmental program. J. Biol. Chem. 259: 15548-15555
    15. Konieczny, S. F. & Emerson, C. P. (1984) 5-Azacytidine induction of stable mesodermal stem cell lineages from 10T1/2 cells: evidence for regulatory genes controlling determination. Cell 38: 791-800.
    16. Negrel, R., Grimaldi, P. & Ailhaud, G. (1978) Establishment of preadipocyte clonal line from epididymal fat pad of ob/ob mouse that responds to insulin and to lipolytic hormones. Proc. Natl. Acad. Sci. U.S.A. 75: 6054-6058.
    17. Serrero, G., Lepak, N. M. & Goodrich, S. P. (1992) Paracrine regulation of adipose differentiation by arachidonate metabolites: prostaglandin F2 alpha inhibits early and late markers of differentiation in the adipogenic cell line 1246. Endocrinology 131: 2545-2551.
    18. Smas, C. M. & Sul, H. S. (1995) Control of adipocyte differentiation. Biochem. J. 309: 697-710.
    19. Green, H. & Kehinde, O. (1979) Formation of normally differentiated subcutaneous fat pads by an established preadipose cell line. J. Cell Physiol. 101: 169-172.
    20. Novikoff, A. B., Novikoff, P. M., Rosen, O. M. & Rubin, C. S. (1980) Organelle relationships in cultured 3T3-L1 preadipocytes. J. Cell Biol. 87: 180-196.
    21. Student, A. K., Hsu, R. Y. & Lane, M. D. (1980) Induction of fatty acid synthetase synthesis in differentiating 3T3-L1 preadipocytes. J. Biol. Chem. 255: 4745-4750.
    22. Smith, P. J., Wise, L. S., Berkowitz, R., Wan, C. & Rubin, C. S. (1988) Insulin-like growth factor-I is an essential regulator of the differentiation of 3T3-L1 adipocytes. J. Biol. Chem. 263: 9402-9408.
    23. Bernlohr, D. A., Bolanowski, M. A., Kelly, T. J., Jr. & Lane, M. D. (1985) Evidence for an increase in transcription of specific mRNAs during differentiation of 3T3-L1 preadipocytes. J. Biol. Chem. 260: 5563-5567.
    24. Scott, R. E., Florine, D. L., Wille, J. J. & Yun, K. (1982) Coupling of growth arrest and differentiation at a distinct state in the G1 phase of the cell cycle: GD. Proc. Natl. Acad. Sci. U.S.A. 79: 845-849.
    25. Cornelius, P., Enerback, S., Bjursell, G., Olivercrona, T. & Pekala, P. H. (1988) Regulation of lipoprotein lipase mRNA content in 3T3-L1 cells by tumor necrosis factor. Biochem. J. 249: 765-769.
    26. Dani, C, Amri, E.-Z., Bertrand, B., Enerback, S. & Bjursell, G. (1990) Expression and regulation of pOb24 and lipoprotein lipase genes during adipose conversion. J. Cell. Biochem. 43: 103-110
    27. Freytag, S. O. (1988) Enforced expression of the c-myc oncogene inhibits cell differentiation by precluding entry into a distinct predifferentiation state in G0/G1. Mol. Cell. Biol. 8: 1614-1624.
    28. Clarke S. L., Robinson, C. E. & Gimble, J. M. (1997) CAAT/enhancer binding proteins directly modulate transcription from the peroxisome proliferatoractivated receptor gamma 2 promoter. Biochem. Biophys. Res. Commun. 240: 99-103.
    29. Wu, Z., Xie Y., Bucher, N.L.R & Farmer, S. R. (1995) Conditional ectopic expression of C/EBPb in NIH3T3 cells induces PPARg and stimulates adipogenesis. Genes Dev. 9: 2350-2363.
    30. Christy, R. J., Kaestner, K. H., Geiman, D. E. & Lane, M. D. (1991) CCAAT/ enhancer binding protein gene promoter: binding of nuclear factors during differentiation of 3T3-L1 preadipocytes. Proc. Natl. Acad. Sci. U.S.A. 88: 2593-2597.
    31. Lin, F. T. & Lane, M. D. (1994) CCAAT/enhancer binding protein alpha is sufficient to initiate the 3T3-L1 adipocyte differentiation program. Proc. Natl. Acad. Sci. U.S.A. 91: 8757-8761.
    32. Shao D. & Lazar, M. A. (1997) Peroxisome proliferator activated receptor gamma, CCAAT/enhancer-binding protein alpha, and cell cycle status regulate the commitment to adipocyte differentiation. J. Biol. Chem. 272: 21473-21478.
    33. Brun, R. P., Tontonoz, P., Forman, B. M., Ellis, R., Chen, J., Evans, R. M. & Spiegelman, B. M. (1996) Differential activation of adipogenesis by multiple PPAR isoforms. Genes Dev. 10: 974-984.
    34. Hu, E., Tontonoz, P. & Spiegelman, B. M. (1995) Transdifferentiation of myoblasts by the adipogenic transcription factors PPAR gamma and C/EBP alpha. Proc. Natl. Acad. Sci. U.S.A. 92: 9856-9860.
    35. Tontonoz, P., Hu, E. & Spiegelman, B. M. (1994) Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell 79:1147-1156.
    36. Umek, R. M., Friedman, A. D. & McKnight, S. L. (1991) CCAAT-enhancer binding protein: a component of a differentiation switch. Science (Washington, DC) 251: 288-292.
    37. Ericsson, J., Jackson, S. M., Kim, J. B., Spiegelman, B. M. & Edwards, P. A. (1997) Identification of glycerol-3-phosphate acyltransferase as an adipocyte determination factor 1- and sterol regulatory element-binding proteinresponsive gene. J. Biol. Chem. 272: 7298-7305.
    38. Kim, J. B., Wright, H. M., Wright, M. & Spiegelman, B. M. (1999) ADD1/ SREBPl activates PPARg through the production of endogenous ligand. Proc. Natl. Acad. Sci. U.S.A. 95: 4333-4337.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.