棉铃虫中肠Cry1A结合蛋白分离、鉴定及其与抗性的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
转基因棉花的大规模种植对控制棉花害虫的危害发挥了重要作用,但害虫长期处于转基因作物Bt毒蛋白的高压选择下,害虫对Bt作物抗性问题将不容忽视。昆虫对Bt毒素的抗性机制是复杂和多样的,但中肠结合位点的改变是最主要的一种机制。棉铃虫中已知的受体有氨肽酶N和钙粘蛋白。保存在本实验室的高抗Cry1A蛋白的棉铃虫品系经前人研究未发现该品系存在钙粘蛋白基因的缺失、失活,比较抗、感品系棉铃虫的钙粘蛋白、APN序列,只发现少量氨基酸的变异,因此该棉铃虫品系对Cry1A产生抗性很可能与受体蛋白表达水平变化相关或存在其它的受体蛋白。
     本文首先比较了两种双向电泳系统以及几种BBMV提取方法对双向电泳的影响,建立了棉铃虫中肠Bt结合蛋白蛋白质组学的研究方法,利用蛋白质组学的方法分离和分析了棉铃虫中肠Cry1A毒素的结合蛋白,比较了抗、感品系棉铃虫中Cry1Ac结合蛋白的变化,探讨该棉铃虫品系对Bt毒蛋白产生抗性的可能机制。并比较了抗、感品系棉铃虫中与不同Bt毒蛋白作用的结合蛋白的差异。在国内首次开展了利用蛋白质组学研究棉铃虫的中肠Bt结合蛋白及其与抗性的关系。主要结果如下:
     1、方法的建立:比较ISO-DALT和IPG-DALT两种双向电泳系统,发现这两种系统都可以用于棉铃虫Cry1Ac结合蛋白的分离,ISO-DALT对结合蛋白的分离效果虽比IPG-DALT更好,尤其对高分子量蛋白的分离明显优于IPG-DALT法,但由于上样量少,因此对后续的质谱分析非常不利;IPG-DALT虽较昂贵但有利于进行后续试验,因此本文选用IPG-DALT系统进行双向电泳。比较已报道的这三种BBMV提取方法:Wolfersberger法、English-Readdy法、Abdul-Rauf法,结果显示这三种方法对分离Cry1Ac结合蛋白的种类没有影响,但这三种方法获得的蛋白量不一样结果。总结三种方法的优点,建立了一种新的综合BBMV提取方法,获得了高量的蛋白,通过双向电泳和结合试验证明该方法适合双向电泳Cry1A结合蛋白研究。
     2、利用双向电泳结合Western杂交以及生物质谱的方法,研究了棉铃虫中肠Cry1Ac结合蛋白,首次鉴定得到棉铃虫中肠四种新的Cry1Ac结合蛋白:V-ATPase亚基B、热激蛋白、肌动蛋白以及一种未知的新蛋白。肌动蛋白和V-ATPase亚基A已报道为烟芽夜蛾中Cry1Ac结合蛋白,热激蛋白和未知新蛋白为首次报道的昆虫中肠Cry1Ac结合蛋白。
     3、用蛋白质组学的方法比较了抗、感棉铃虫中肠结合蛋白的数量和表达量,结果发现结合蛋白种类无差异,但其中一种新的结合蛋白在抗性品系中表达量至少下降了6.49倍。前人的研究说明,碘标记结合试验证明结合位点或受体数目减少是该抗性品系对Cry1A毒蛋白产生抗性的主要原因。结合前人研究和本文结果,本文新结合蛋白表达量严重降低可能是该抗性品系产生抗性的原因之一。
     4、初步比较Cry1Ac、Cry1Ab和Cry1Ah作用于敏感品系和抗性品系的结合蛋白。结果发现无论是抗性品系和敏感品系Cry1Ab的结合都是最少的,在敏感品系中,Cry1Ab未结合肌动蛋白和V-ATPase,而Cry1Ac和Cry1Ah对肌动蛋白和V-ATPase结合强,说明新蛋白和热激蛋白对毒素的作用过程来说可能是必需的,肌动蛋白和V-ATPase可能与毒力相关。前人研究Cry1Ab和Cry1Ah对Cry1Ac毒蛋白抗性品系存在一定的交互抗性,各个Bt蛋白在Cry1Ac抗性品系和敏感品系中结合蛋白的差异还是存在于新蛋白的表达量上,新蛋白表达量下降可能与交互抗性产生有关,也可能存在其他的原因。
The wide spread plant of Bt cotton has played an important role in cotton pest control, pests are selected under the pressure of high-dose Bt toxin produced by Bt cotton for a long time, therefore the resistance evolution of pest to Bt cotton should not be ignored. The resistance mechaniam of Bt toxin to insects is complex and variable, but the change of the binding proteins in the midgut is the main one. The known receptors in cotton bollworm (Helicoverpa armigera (Hübner), CBW) are Aminoopeptidase N (APN) and Cadherin-like proteins. According to the test results of predecessors, no disruption and inactivation of cadherin gene but only a few change of amino acids had been found in APN and Cadherin-like proteins of the Cry1Ac-resistant CBW strain preserving in this lab, probably its Cry1Ac-resistant relates to the change of expressional level of receptor protein or there may have some other related receptors proteins.
     Firstly we compared two systems of two-dimension electrophresis (2-DE) and three prepared methods of BBMV, then build the proteomic analysis approach for CBW midgut proteins. Secondly we separated and identified Cry1Ac binding protein in CBW midgut by using proteomic approach. Thirdly the binding proteins in susceptible and resistant strain of CBW were compared, so as to find the possible resistant mechanism of Bt toxin. And finally the binding proteins of different Bt in susceptible and resistant CBW strains were also compared. The results were as follows:
     1. Methods: The ISO-DALT and IPG-DALT 2-DE system were compared, results showed that these two system could be used to separate the Cry1Ac binding proteins, though the separation results of ISO-DALT were better than IPG-DALT, especially for the larger protein separation, because of the limit protein loading quantity, this system was adverse for the mass spectrum. The IPG-DALT was more expensive, but it was good for the following mass spectrum work, so we chose IPG-DALT for 2-DE. The three different BBMV preparation protocols (ER, ARE and W) did not affect the number or types of CBW Cry1Ac binding proteins detected, However, different methods yielded different protein quantities. We consolidated a BBMV isolation protocol according to advantage of these reported protocols, this protocol could get high protein quantities and also suitable for 2-DE.
     2. Bacillus thuringiensis Cry1Ac binding proteins in CBW BBMV were investigated using proteomic analysis, we identified four other Cry1Ac binding proteins in CBW BBMV for the first time: vacuolar ATP synthase subunit B, actin, a heat shock cognate protein (HSP) and a novel protein. Actin and vacuolar ATP synthase subunit A had been reported as Cry1Ac binding proteins in Heliothis virescens. Heat shock cognate and this novel protein was the first report as Cy1Ac binding protein in insect.
     3. The types and expression quantities of Cry1Ac binding proteins of susceptible- and resistant-CBW were compared, it showed that the types of binding proteins were the same between susceptible- and resistant-strain, but the novel protein in the resistant-strain were 6.49-fold lower expression than the susceptible-strain. Studies before said that less binding of Bt in the midgut or less number of receptors were the main resistant mechanism for this resistant strain. Combined studies before and this paper, much lower expression of the novel protein might be one of the resistant reasons.
     4. Binding proteins of Cry1Ah, Cry1Ab and Cry1Ac in susceptible- and resistant-CBW were compared, the binding of Cry1Ab to binding proteins was weak than the other two toxins whether in susceptible- or resistant-strain. In susceptible-strain, Cry1Ab bound to novel protein and HSP, did not bind to actin and V-ATPase, but Cry1Ac and Cry1Ah bound to these four binding proteins, maybe novel protein and HSP are essential for the toxin action, actin and V-ATPase may be related to toxicity. Predecessors results showed that Cy1Ab and Cry1Ah have cross resistance to Cry1Ac-resistant CBW, the difference of different Bt binding proteins between susceptible- and resistant-CBW were lower expression of novel protein, maybe this was reason for cross resistance or other reasons need further study.
引文
1. 白素芬, 陈学新, 程家安, 符文俊, 何俊华. 菜蛾盘绒茧蜂寄生对寄主小菜蛾脂肪体细胞变态的影响.河南农业大学学报, 2006, 40(6): 630~635.
    2. 冯德芹. 革兰氏阳性中度嗜盐菌响应渗透胁迫的差异蛋白质组学研究 [博士学位论文]. 北京: 中国农业大学, 2005.
    3. 郭予元. 棉铃虫的研究. 北京:中国农业出版社, 1998.
    4. 候勇, 官建, 赵萍, 刘鸿丽, 邹勇, 夏庆友. 家蚕中肠组织蛋白组组学研究. 蚕业科学, 2007, 33(2): 216~222.
    5. 黄大昉, 林敏. 农业微生物基因工程. 北京: 科学出版社, 2001.
    6. 靳远祥, 徐孟奎, 陈玉银, 姜永煌. 家蚕雌性附腺及其 Ng 突变体的蛋白质组差异研究. 生物化学与生物物理进展, 2004, 31(7): 622~627.
    7. 靳远祥, 徐孟奎, 姜永煌, 陈玉银. 家蚕茧色限性品种雌雄绢丝腺组织蛋白质组双向凝胶电泳分析. 农业生物技术学报, 2004, 12(4): 431~435.
    8. 梁革梅, 徐广, 王桂荣, 吴孔明, 郭予元. 棉铃虫中肠 Bt 毒素受体蛋白(APN)的分离与纯化. 农业生物技术学报, 2005, 13(1): 102~107.
    9. 梁革梅, 谭维嘉, 郭予元. 棉铃虫对 Bt 的抗性筛选及交互抗性研究. 中国农业科学, 2000, 33(4): 46~53.
    10. 梁革梅, 谭维嘉, 郭予元. 人工饲养棉铃虫技术的改进. 植物保护, 1999, 25(2): 15~17.
    11. 梁革梅. 棉铃虫 Bt 毒素受体蛋白生化特性、基因克隆及其与抗性的关系 [博士学位论文]. 北京: 中国农业科学院, 2002.
    12. 刘鸿丽, 夏庆友, 候勇, 赵萍, 邹勇, 官建. 家蚕丝腺蛋白质组学研究方法的建立. 生物工程学报, 2007, 23(1): 112~114.
    13. 刘凯于, 黄薇, 郭建军, 彭建新, 洪华珠. 对 Bt 毒素敏感与抗性的昆虫细胞的差异蛋白质肽质指纹分析. 华中师范大学学报:自然科学版, 2007, 41(3): 420~424.
    14. 鲁华云, 叶键, 李建营, 钟伯雄. 家蚕不同品种后部丝腺蛋白质双向电泳图谱比较. 蚕业科学, 2006, 32(1):114~117.
    15. 罗术东. Bt-Cry1Ac 棉花抗性棉铃虫对 Cry2Ab 的抗性风险研究 [博士学位论文]. 北京: 中国农业科学院, 2007.
    16. 统飞英, 钟伯雄, 楼程富, 苏松坤, 徐海圣, 颜新培, 姚国华, 陆云翀. 家蚕五龄幼虫中部丝腺细胞的蛋白质组成比较. 中国农业科学, 2005, 38(5): 1052~1058.
    17. 王桂荣, 梁革梅, 吴孔明, 郭予元. 棉铃虫中肠氨基氨肽酶N基因的克隆和序列分析. 中国农业科学, 2003, 36: 1293~1300.
    18. 王桂荣, 吴孔明, 梁革梅, 郭予元. 棉铃虫中肠钙粘蛋白基因的克隆、表达及 Cry1A 结合区定位. 中国科学 C 辑:生命科学, 2004, 34(6): 1~10.
    19. 吴孔明. 我国 Bt 棉花商业化的环境影响与风险管理策略. 农业生物技术学报, 2007, 15(1): 1~4.
    20. 吴卫成, 叶键, 鲁华云, 李建营, 陈金娥, 孟智启, 倪春霄, 钟伯雄. 家蚕五龄第1天与第
    4 天后部丝腺蛋白质双向电泳图谱比较. 中国农业科学, 2006, 39(7): 1495~1500.
    21. 肖玥惠. 黑腹果蝇种组蛋白质二维凝胶电泳技术和图谱比较 [硕士学位论文]. 武汉: 湖北大学, 2005.
    22. 颜新培, 钟伯雄, 徐孟奎, 梁建设, 沈飞英. 家蚕催青前期胚胎蛋白质双向电泳图谱分析. 昆虫学报, 2005, 48(2): 295~300.
    23. 颜新培, 钟伯雄, 徐孟奎, 姚国华, 陈齐龙, 童小芬. 家蚕卵黄蛋白组成及其胚胎时期的变化. 农业生物技术学报, 2004, 12(5): 556~563.
    24. 于宏坤. 二化螟 Bt 毒素受体蛋白-氨肽酶 N 和钙粘蛋白基因的克隆及在昆虫细胞系的表达 [硕士学位论文]. 北京: 中国农业科学院, 2007.
    25. 钟伯雄. 家蚕胚胎发育时期的蛋白质变化及构造分析. 遗传学报, 1999, 26(6): 627~633.
    26. 钟伯雄. 五龄家蚕若干组织器官蛋白质数据库构建. 遗传学报, 2001, 28(3): 217~224.
    27. Bravo A., Gómez I., Conde J., Mu?oz -Garay C., Sánchez J., Miranda R., Zhuang M., Gill S.S., Soberón M.. Oligomerization triggers binding of a Bacillus thuringiensis Cry1Ab pore-forming toxin to aminopeptidase N receptor leading to insertion into membrane microdomains. Biochim. Biophys. Acta, 2004, 1667: 38~46.
    28. Abdul-Rauf M., Ellar D.J.. Isolation and Characterization of Brush Border Membrane Vesichles from Whole Aedes aegypti larvae. J. Invertebr. Pathol., 1999, 73: 45~51.
    29. Akhurst R.J., James W., Bird L.J., Beard C.. Resistance to the Cry1Ac delta-endotoxin of Bacillus thuringiensis in the cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). J. Econ. Entomol., 2003, 96(4):1290~1299.
    30. Alban A., David S.O., Bjorkesten L., Andersson C., Sloge E., Lewis S., Currie I.. A novel experimental design for comparative two-dimensional gel analysis: two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics, 2003, 3(1): 36~44.
    31. Alonso J., Rodriguez J.M., Baena-López L.A., Santarén J.F.. Characterization of the Drosophila melanogaster mitochondrial proteome. J. Proteome Res, 2005, 4(5): 1636~1645.
    32. Asea A.. Hsp 72 release: Mechanism and methodologies. Methods, 2007, 43: 194~198.
    33. Xue J., Liang G., Crickmore N., Li H., He K., Song F., Feng X., Huang D., Zhang J.. Cloning and characterization of a novel Cry1A toxin from Bacillus thuringiensis with high toxicity to the Asian corn borer and other lepidopteran insects. FEMS Microbiol. Lett., 2008, 280(1): 95~101.
    34. Baggerman G., Boonen K., Verleyen P., De Loof A., Schoofs L.. Peptidomic analysis of the larval Drosophila melanogaster central nervous system by two-dimensional capillary liquid chromatography quadrupole time-of-flight mass spectrometry. J. Mass Spectrom, 2005, 40(2): 250~260.
    35. Baggerman G., Cerstiaens A., De Loof A., Schoofs L.. Peptidomics of the larval Drosphila melanogaster central nervous systerm. J. Biol. Chem, 2002, 277: 40368~40374.
    36. Banks D.J., Jurat-fuentes J.L., Dean D.H., Adang M.J.. Bacillus thuringiensis Cry1Ac and Cry1Faδ-endotoxin binding to a novel 110KDa aminopeptidase in Heliothis virescens is not N-acetylgalactosamine mediated. Insect Bioch. Mol. Biol., 2001, 31: 909~918.
    37. Bauer L.S., Resistance: a threat to the insecticidal crystal proteins of Bacillus thuringiensis. Fla. Entomol., 1995, 78: 414~443.
    38. Beller M., Riedel D., J?nsch L., Dieterich G., Wehland J., J?ckle H., Kühnlein R.P.. Characterization of the Drosophila lipid droplet subproteome. Mol. Cell Proteomics, 2006, 5(6): 1082~1094.
    39. Biron D.G., Marché L., Ponton F., Loxdale H.D., Galéotti N., Renault L., Joly C., Thomas F.. Behavioural manipulation in a grasshopper harbouring hairworm: a proteomics approach. Proc. Biol. Sci., 2005, 272(1577): 2117~2126.
    40. Biron D.G., Ponton F., Marché L., Galeotti N., Renault L., Demey-Thomas E., Poncet J., Brown S.P., Jouin P., Thomas F..‘Suicide' of crickets harbouring hairworms: a proteomics investigation. Insect Mol. Biol, 2006, 15(6): 731~742.
    41. Bolin P.C., Hutchison W.D., Andow D.A.. Long-term selection for resistance to Bacillus thuringiensis Cry1Ac endotoxin in a Minnesota population of European corn borer (Lepidoptera: Crambidae). J.Econ.Entomol., 1999, 92: 1021~1030.
    42. Bradford M.M.. A rapid and sensitive method for the quantitation of microgram quantities of protein unitizing the principle of protein dye binding. Anal. Biochem., 1976, 72: 248~254.
    43. Brunner E., Ahrens C.H., Mohanty S., Baetschmann H., Loevenich S., Potthast F., Deutsch E.W., Panse C., de Lichtenberg U., Rinner O., Lee H., Pedrioli P.G., Malmstrom J., Koehler K., Schrimpf S., Krijgsveld J., Kregenow F., Heck A.J., Hafen E., Schlapbach R., Aebersold R.. A high-quality catalog of the Drosophila melanogaster proteome. Nat. Biotechnol., 2007, 25(5): 576~583.
    44. Candas M., Loseva O., Oppert B., Kosaraju P., Bulla Jr L.A.. Insect Resistance to Bacillus thuringiensis: alterations in the Indianmeal Moth Larval Gut Proteome. Mol. Cell Proteomics, 2003, 2: 19~28.
    45. Chan Q.W., Howes C.G., Foster L.J.. Quantitative comparison of caste differences in honeybee hemolymph. Mol. Cell Proteomics, 2006, 5(12): 2252~2262.
    46. Choumet V., Carmi-Leroy A., Laurent C., Lenormand P., Rousselle J.C., Namane A., Roth C., Brey P.T.. The salivary glands and saliva of Anopheles gambiae as an essential step in the Plasmodium life cycle: a global proteomic study. Proteomics , 2007, 7(18): 3384~3394.
    47. Chun J., McMaster J., Han Y., Schwartz A., Paskewitz S.M.. Two-dimensional gel analysis of haemolymph proteins from Plasmodium-melanizing and -non-melanizing strains of Anopheles gambiae. Insect Mol. Biol., 2000, 9(1): 39~45.
    48. Clynen E., Baggerman G., Huybrechts J., Vanden Bosch L., De Loof A., Schoofs L.. Peptidomics of the locust corpora allata: identification of novel pyrokinins (-FXPRLamides). Peptides, 2003, 24(10): 1493~1500.
    49. Collins A.M., Caperna T.J., Williams V., Garrett W.M., Evans J.D.. Proteomic analyses of male contributions to honey bee sperm storage and mating. Insect Mol. Biol., 2006, 15(5): 541~549.
    50. de Morais Guedes S., Vitorino R., Domingues R., Tomer K., Correia A.J., Amado F., Domingues P.. Proteomics of immune-challenged Drosophila melanogaster larvae hemolymph. Biochem. Biophys. Res. Commun., 2005, 328(1): 106~115.
    51. English L., Readdy T.L.. Delta endotoxin inhibits a phosphatase in midgut epithelial membranes of Heliothis virescens. Insect Biochem., 1989, 19: 145~152.
    52. Federici B.A., Bauer L.S.. Cyt1A protein of Bacillus thuringiensis is toxin to the cottonwood leaf beetle, Chrysomela scripta, and suppresses high levels of resistance to Cry3Aa. Appl. Environ. Microbiol., 1998, 64:4368~4371.
    53. Fernandez L.E., Aimanova K.G., Gill S.S., Bravo A., Soberón M.. A GPI-anchored alkaline phosphatase is a functional midgut receptor of Cry11Aa toxin in Aedes aegypti larvae. Biochem. J., 2006, 394: 77~84.
    54. Ferré J., Real M.D., Van Rie J., Jansens S., Peferoen M.. Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in a midgut membrane receptor. Proc. Natl. Acad. Sci. U S A, 1991, 88(12): 5119~5123.
    55. Ferre J., Van Rie J.. Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annu. Rev. Entomol., 2002, 47: 501~533.
    56. Fitt G.P.. An Australian approach to IPM in cotton: integrating new technologies to minimize insecticide dependence. Crop Prot., 2000, 19: 793~800.
    57. Forcada, C., Alcacer, E., Garcera, M.D., Martinez, R.. Differences in the midgut proteolytic activity of two Heliothis virescens strains, one susceptible and one resistant to Bacillus thuringiensis. Arch. Insect Biochem. Physiol., 1996, 31(3)257~272.
    58. Forcada C., Alcacer E., Garcera M.D., Tato A., Martinez R.. Resistance to Bacillus thuringiensis Cry1Ac toxin in three strains of Heliothis virescens: proteolytic and SEM study of the larval midgut. Arch. Insect Biochem. Physiol., 1999, 42(1): 51~63.
    59. Forgac M.. Structure, function and regulation of the vacuolar (H+)-ATPases. FEBS Lett., 1998, 440: 258~263.
    60. Francis B.R., Bulla L.A.. Further characterization of BT-R1, the cadherin-like receptor for Cry1Ab toxin in tobacco hornworm (Manduca sexta) midguts. Insect Biochem. Mol. Biol, 1997, 27: 541~550.
    61. Francis F., Gerkens P., Harmel N., Mazzucchelli G., De Pauw E., Haubruge E.. Proteomics in Myzus persicae: effect of aphid host plant switch. Insect Biochem. Mol. Biol., 2006, 36(3): 219~227.
    62. Gahan L.J., Gould F., Heckel D.G.. Identification of a gene associated with Bt resistance in Heliothis virescens. Science, 2001, 293: 857~860.
    63. Garczynski S.F., Crim J.W., Adang M.J.. Identification of putative insect brush bordermembrane-binding molecules specific to Bacillus thuringiensis δ-endotoxin by protein blot analysis. Appl. Environ. Microbiol., 1991, 57: 2816~2820.
    64. Gill S.S., Cowles E.A., Francis V.. Identification, isolation, and cloning of a Bacillus thuuringiensis CryIAc toxin binding protein from the midgut of the lepidopteran insect Heliothis virescens. J. Biol. Chem., 1995, 270: 27277~27282.
    65. Gómez I., Pardo-López L., Mu?oz-Garay C., Fernandez L.E., Pérez C., Sánchez J., Soberón M., Bravo A.. Role of receptor interaction in the mode of action of insecticidal Cry and Cyt toxins produced by Bacillus thuringiensis. Peptides, 2007, 28: 169~173.
    66. Gómez I., Sánchez J., Miranda R., Bravo A., Soberón M.. Cadherin-like receptor binding facilitates proteolytic cleavage of helix a-1 in domain I and oligomer pre-pore formation of Bacillus thuringiensis Cry1Ab toxin. FEBS Lett., 2002, 513: 242~246.
    67. G?rg A., Weiss W., Dunn M.J.. Current two-dimensional electrophoresis technology for proteomics. Proteomics, 2004, 4: 3665~3685.
    68. Gould F., Anderson A., Reynolds A., Bumgarner L., Moar W.. Selection and genetic analysis of a Heliothis virescens (Lepidoptera: Noctuidae) strain with high levels of resistance to Bacillus thuringiensis toxins. J. Econ. Entomol., 1995, 88(6): 1545~1559.
    69. Gould, F., Martínez-Ramírez A., Anderson A., Ferré J., Silva F.J., Moar W.J.. Broad-spectrum resistance to Bacillus thuringiensis toxins in Heliothis virenscens. Proc. Natl. Acad. Sci. USA, 1992, 89: 7986~7990.
    70. Griffitts J.S., Haslam S.M., Yang T., Garczynski S.F., Mulloy B., Morris H., Cremer P.S., Dell A., Adang M.J., Aroian R.V.. Glycolipids as receptors for Bacillus thuringiensis crystal toxin. Science, 2005, 307: 922~925
    71. Gunning R.V., Dang H.T., Kemp F.C., Nicholson I.C., Moores G.D.. New resistance mechanism in Helicoverpa armigera threatens transgenic crops expressing Bacillus thuringiensis Cry1Ac toxin. Appl. Environ. Microbiol., 2005, 71: 2558~2563.
    72. Gygi S.P.,Rist B.,Gerber S.A.,Turecek F., Gelb M.H., Aebersold R.. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol., 1999, 17: 994~999.
    73. He N., Botelho J.M., McNall R.J., Belozerov V., Dunn W.A., Mize T., Orlando R., Willis J.H.. Proteomic analysis of cast cuticles from Anopheles gambiae by tandem mass spectrometry. Insect Biochem. Mol. Biol., 2007, 37(2): 135~146.
    74. Heckel D.G., Gahan L.J., Baxter S.W., Zhao J.Z., Shelton A.M., Gould F., Tabashnik B.E.. The diversity of Bt resistance genes in species of Lepitoptera. J. Invertebr. Pathol., 2007, 95: 192~197.
    75. Heckel D.G., Gahan L.C., Gould F., Anderson A.. Identification of a linkage group with a major effect on resistance to Bacillus thuringiensis Cry1Ac endotoxin in the tobacco budworm (Lepidoptera: Noctuidae). J. Econ. Entomol., 1997, 90: 75~86.
    76. Herrero S., Oppert B., Ferré J.. Different mechanisms of resistance to Bacillus thuringiensistoxins in the Indianmeal moth. Appl. Environ. Microbiol, 2001, 67: 1085~89.
    77. H?fte H., Whiteley H.R.. Insecticidal crystal proteins of Bacillus thuringiensis. Microboil. Rev., 1989, 53: 242~255.
    78. Hou Y., Xia Q., Zhao P., Zou Y., Liu H., Guan J., Gong J., Xiang Z.. Studies on middle and posterior silk glands of silkworm (Bombyx mori) using two-dimensional electrophoresis and mass spectrometry. Insect Biochem. Mol. Biol., 2007, 37(5): 486~496.
    79. Huang F., Higgins R.A., Buschman L.L.. Baseline susceptibility and changes in susceptibility to Bacillus thuringiensis subsp. kurstaki under selection pressure in European core border (Lepidoptera: Pyralidea). J. Econ. Entomol., 1997, 90: 1137~1143.
    80. Hummon A.B., Richmond T.A., Verleyen P., Baggerman G., Huybrechts J., Ewing M.A., Vierstraete E., Rodriguez-Zas S.L., Schoofs L., Robinson G.E., Sweedler J.V.. From the genome to the proteome: uncovering peptides in the Apis brain. Science, 2006, 314(5799): 647~649.
    81. Gómez I., Pardo-López L., Mu?oz-Garay C., Fernandez L.E., Pérez C., Sánchez J., Soberón M., Bravo A.. Role of receptor interaction in the mode of action of insecticidal Cry and Cyt toxins produced by Bacillus thuringiensis. Peptides, 2007, 28: 169~173.
    82. Inoue T., Wang Y., Jefferies K., Qi J., Hinton A., Forgac M.. Structure and Regulation of the V-ATPases. J Bioenerg. Biomembr., 2005, 37: 393~398.
    83. Janmaat A.F., Meyers J.. Rapid evolution and the cost of resistance to Bacillus thuringiensis in greenhouse populations of cabbage loopers Trichoplusia ni. Proc. R. Soc. Lond. B Biol. Sci., 2003, 270: 2263~2270.
    84. Romeis J., Meissle M., Bigler F.. Transgenic crops expressing Bacillus thuringiensis toxins and biological control. Nat. Biotechnol., 2006, 24: 63~71.
    85. Jurat-Fuentes J.L., Gould F.L., Adang M.J.. Altered Glycosylation of 63- and 68-kilodalton microvillar proteins in Heliothis virescens correlates with reduced Cry1 toxin binding, decreased pore formation, and increased resistance to Cry1 toxins. Appl. Environ. Microbiol., 2002, 68: 5711~5717.
    86. Jurat-Fuentes J.L., Gould F.L., Adang M.J.. Dual resistance to Bacillus thuringiensis Cry1Ac and Cry2Aa toxins in Heliothis virescens suggests multiple mechanisms of resistance. Appl. Environ. Microbiol., 2003, 69: 5898~5906.
    87. Jurat-Fuentes J.L., Adang M.J.. Characterization of a Cry1Ac receptor alkaline phosphatase in susceptible and resistant Heliothis virescens larvae. Eur. J. Biochem., 2004a, 271: 3127~3135.
    88. Jurat-Fuentes, J.L., Gahan, L.J., Gould, F.L., Heckel, D.G., Adang, M.J.. The HevCaLP protein mediates binding specificity of the Cry1A class of Bacillus thuringiensis toxins in Heliothis virescens. Biochemistry, 2004b, 43: 14299~14305.
    89. Jurat-Fuentes J.L., Adang M.J.. Cry toxin mode of action in susceptible and resistant Heliothis virescens larvae. J. Invertebr. Pathol., 2006, 92(3): 166~171.
    90. Jurat-Fuentes J.L., Adang M.J.. A proteomic approach to study Cry1Ac binding proteins andtheir alterations in resistant Heliothis virescens larvae. J. Invertebr. Pathol., 2007, 95(3): 187~191.
    91. Kalume D.E., Okulate M., Zhong J., Reddy R., Suresh S., Deshpande N., Kumar N., Pandey A.. A proteomic analysis of salivary glands of female Anopheles gambiae mosquito. Proteomics, 2005, 5(14): 3765~3777.
    92. Karlsson C., Korayem A.M., Scherfer C., Loseva O., Dushay M.S., Theopold U.. Proteomic analysis of the Drosophila larval hemolymph clot. J. Biol. Chem., 2004, 279(50): 52033~52041.
    93. Karr T.L.. Fruit flies and the sperm proteome. Hum. Mol. Genet., 2007, 2: 124~133.
    94. Knight P.J, Knowles B.H., Ellar D.J.. The receptor for Bacillus thuringiensis CrylA(c) delta-endotoxin in the brush border membrane of the lepidopteran Manduca sexta is aminopeptidase N. Mol. Microbiol., 1994, 11: 429~436.
    95. Knight, P.J., Knowles, B.H., Ellar, D.J., 1995. Molecular cloning of an insect aminopeptidase N that serves as a receptor for Bacillus thuringiensis Cry1Ac toxin. J. Biol. Chem. 270, 17765~17770.
    96. Knowles B.H., Ellar D.J.. Colloid-osmotic lysis is a general feature of the mechanism of action of Bacillus thuringiensis δ-endotoxins with different insect specificity. Biochim. Biophys. Acta, 1987, 924: 507~518
    97. Krishnamoorthy M., Jurat-Fuentes J.L., McNall R.J., Andacht T., Adang M.J.. Identification of novel Cry1Ac binding proteins in midgut membranes from Heliothis virescens using proteomic analyses. Insect Biochem. Mol. Biol., 2007, 37(3): 189~201.
    98. Lambert B., Buysse L., Decock C., Jansens S., Piens C., Saey B., Seurinck J., Van Audenhove K., Van Rie J., Van Vliet A., Peferoen M.. A Bacillus thuringiensis insecticidal crystal protein with a high activity against members of the family Noctuidae. Appl. Environ. Microbiol., 1996, 62: 80~86.
    99. Lee M.K., You T., Young B., Cotrill J., Valaitis A., Dean D.. Aminopeptidase-N purified from gyspy moth brush border membrane vesicles is a specific receptor for Bacillus thuringiensis CryIAc toxin. Appl. Environ. Microbiol., 1996, 62: 2845~2849.
    100.Lee M.K., Rajamohan F., Gould F., Dean D.H.. Resistance to Bacillus thuringiensis Cry1A δ-endotoxins in a laboratory-selected Heliothis virescens strain is related to receptor alteration. Appl. Environ. Microbiol., 1995, 61: 3836~3842.
    101.Lefevre T., Thomas F., Schwartz A., Levashina E., Blandin S., Brizard J.P., Le Bourligu L., Demettre E., Renaud F., Biron D.G.. Malaria Plasmodium agent induces alteration in the head proteome of their Anopheles mosquito host. Proteomics. 2007. 7(11): 1908~1915.
    102.Levy F., Bulet P., Ehret-Sabatier L.. Proteomic analysis of the systemic immune response of Drosphila. Mol. Cell Proteomics, 2004, 3: 156~166.
    103.Li X.H., Wu X.F., Yue W.F., Liu J.M., Li G.L., Miao Y.G.. Proteomic analysis of the silkworm (Bombyx mori L.) hemolymph during developmental stage. J. Proteome Res., 2006,5(10): 2809~2814.
    104.Li H., Oppert B., Higgins R.A., Huang F., Zhu K.Y., Buschman L.L.. Comparative analysis of proteinase activities of Bacillus thuringiensis-resistant and -susceptible Ostrinia nubilalis (Lepidoptera: Crambidae). Insect Biochem. Mol. Biol., 2004, 34: 753~762.
    105.Liang G.M., Wang G.R., Xu G., Wu K.M., Guo Y.Y.. Purification of aminopeptidase N protein and differents in cDNAs encoding APN1 between susceptible and resistant Helicoverpa armigera strains to Bacillus thuringiensis toxins. Agricultul. Sciences in China. 2004, 3(6): 456~467.
    106.Liang G.M., Wu K.M., Yu H.K., Li K.K., Feng X., Guo Y.Y.. Changes of inheritance mode and fitness in Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) along with its resistance evolution to Cry1Ac toxin. J. Invertebr. Pathol., 2008, 97(2): 142~149.
    107.Liao C.Y., Trowell S.C., Akhurst R.. Purification and Characterization of Cry1Ac Toxin Binding Proteins from the Brush Border Membrane of Helicoverpa amigera Midgut. Curr. Microbiol., 2005, 51:367~371.
    108.Lindquist S., Craig E.A.. The heat-shock proteins. Annu. Rev. Genet., 1988, 22: 631~677.
    109.Lorence A., Darszon A., Bravo A.. Aminopeptidase dependent pore formation of Bacillus thuringiensis Cry1Ac toxin on Trichoplusia ni membranes. FEBS Lett., 1997, 414: 303~ 307.
    110.Loseva O., Ibrahim M., Candas M., Koller N., Bauer L., Bulla Jr L.A.. Changes in protease activity and Cry3Aa toxin binding in the Colorado potato beetle: implications for insect resistance to Bacillus thuringiensis toxins. Insect Biochem. Mol. Biol., 2002, 32: 567~577.
    111.Masson L., Mazza A., Brousseau R., Tabashnik B.. Kinetics of Bacillus thuringiensis Toxin Binding with Brush Border Membrane Vesicles from Susceptible and Resistant Larvae of Plutella xylostella. J. Biol. Chem., 1995, 270: 11887~11896.
    112.Luo K., Sangadala S., Masson L., Mazza A., Brousseau R., Adang M.J.. The Heliothis virescens 170 kDa aminopeptidase functions as ‘‘receptor A’’ by mediating specific Bacillus thuringiensis Cry1A delta-endotoxin binding and pore formation. Insect Biochem. Mol. Biol., 1997, 27: 735~743.
    113.Luo K., Tabashnik B.E., Adang M.J.. Binding of Bacillus thuringiensis Cry1Ac toxin to aminopeptidase in susceptible and resistant diamondback moths (Plutella xylostella). Appl. Environ. Microbiol., 1997, 63: 1024~1027.
    114.Ma G., Roberts H., Sarjan M., Featherstone N., Lahnstein J., Akhurst R., Schmidt O.. Is the mature endotoxin Cry1Ac from Bacillus thuringiensis inactivated by a coagulation reaction in the gut lumen of resistant Helicoverpa armigera larvae? Insect Biochem. Mol. Biol., 2005, 35: 729~739.
    115.MacIntosh S.C., Stone T.B., Jokerst R.S., Fuchs R.L.. Binding of Bacillus thuringiensis proteins to a laboratory-selected line of Heliothis virescens. Proc. Natl. Acad. Sci. USA, 1991, 88: 8930~8933.
    116.Mahon R.J., Olsen K.M., Garsia K.A., Young S.R.. Resistance to Bacillus thuringiensis toxinCry2Ab in a strain of Helicoverpa armigera (Lepidoptera: Noctuidae) in Australia. J. Econ. Entomol., 2007, 100(3): 894~902.
    117.Martin D.N., Balgley B., Dutta S., Chen J., Rudnick P., Cranford J., Kantartzis S., DeVoe D.L., Lee C., Baehrecke E.H.. Proteomic analysis of steroid-triggered autophagic programmed cell death during Drosophila development. Cell Death Differ, 2007, 14(5): 916~923.
    118.Martínez-Ramírez A.C., Gould F., Ferré J.. Histopathological effects and growth reduction in a susceptible and a resistant strain of Heliothis virescens (Lepidoptera: Noctuidae) caused by sublethal doses of pure Cry1A crystal proteins from Bacillus thuringiensis. Biocontrol Sci. Technol., 1999, 9: 239~246.
    119.McGaughey W.H., Beeman R.W.. Resistance to Bacillus thuringiensis in colonies of Indianmeal moth and almond moth (Lepidoptea:Pyralidae). J. Econ. Entomol., 1988, 81: 28~33.
    120.McGaughey W.H., Johnson D.E.. Toxicity of different serotypes and toxins of Bacillus thuringiensis to resistant and susceptible Indianmeal moth (Lepidoptea:Pyralidae). J. Econ. Entomol., 1987, 80: 1122~1126.
    121.McGaughey W.H., Johnson D.E.. Indianmeal moth (Lepidoptea:Pyralidae) resistance to different strains and mixtures of Bacillus thuringiensis. J. Econ. Entomol., 1992, 85: 1594~1600.
    122.McGaughey W.H., Johnson D.E.. Influence of crystal protein composition of Bacillus thuringiensis strains on cross resistance in Indianmeal moth (Lepidoptea:Pyralidae). J. Econ. Entomol., 1994, 87: 535~540.
    123.McGaughey W.H.. Insect Resistance to the Biological Insecticide Bacillus thuringiensis. Science, 1985, 229(4709): 193~195.
    124.McNall R.J., Adang M.J., Identification of novel Bacillus thuringiensis Cry1Ac binding proteins in Manduca Sexta midgut through proteomic analysis. Insect Biochem. Mol. Biol, 2003, 33: 999~1010.
    125.Meng F., Shen J., Zhou W., Cen H.. Long-term selection for resistance to transgenic cotton expressing Bacillus thuringiensis toxin in Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Pest Manag. Sci., 2003, 60: 167~172.
    126.Moar W.J., Pusztai-Carey M., van Faassen H., Bosch D., Frutos R., Rang C., Luo K., Adang M.J.. Development of Bacillus thuringiensis Cry1C resistance by Spodiptera exigua (Hübner) (Lepidoptera: Noctuidae). Appl. Environ. Microbiol., 1995, 61(6): 2086~2092.
    127.Morin S., Biggs R.W., Sisterson M.S., Shriver L., Ellers-Kirk C., Higginson D., Holley D., Gahan L.J., Heckel D.G., Carriere Y., Dennehy T.J., Brown J.K., Tabashnik B.E.. Three cadherin alleles associated with resistance to Bacillus thuringiensis in pink bollworm. Proc. Natl. Acad. Sci. USA. 2003, 100(9): 5004~5009.
    128.Müller-Cohn J., Chaufaux J., Buisson C., Gilois N., Sanchis V., Lereclus D.. Spodopteralittoralis (Lepidoptera:Noctuidae) resistance to Cry1C and cross resistance to other Bacillus thuringiensis crystal toxins. J. Econ. Entomol., 1996, 89: 791~797.
    129.Nagamatsu Y., Toda S., Yamaguchi F., Ogo M., Kogure M., Nakamura M., Shibata Y., Katsumoto T.. Identification of Bombyx mori midgut receptor for Bacillus thuringiensis insecticidal CryIA(a) toxin. Biosci. Biotech. Bioch., 1998, 62: 718~726.
    130.Nagamatsu Y., Koike T., Sasaki K., Yoshimoto A., Furukawa Y.. The cadherin-like protein is essential to specificity determination and cytotoxic action of the Bacillus thuringiensis insecticidal CryIAa toxin. FEBS Lett., 1999, 460: 385~390.
    131.Oppert B., Kramer K.J., Beeman R.W., Johnston D., and McGaughey W.H.. Proteinase-mediated insect resistance to Bacillus thuringiensis toxins. J. Biol. Chem., 1997, 272: 23473~23476.
    132.Oppert B., Kramer K.J., Johnson D.E., MacIntosh S.C., McGaughey W.H.. Altered protoxin activation by midgut enzymes from a Bacillus thuringiensis resistant strain of Plodia interpunctella. Biochem. Biophys. Res. Commun., 1994, 198: 940~947.
    133.Oppert B., Kramer K.J., Johnson D.E., Upton S.J., McGaughey W.H.. Luminal proteinases from Plodia interpunctella and the hydrolysis of Bacillus thuringiensis Cry1Ac protoxin. Insect Biochem. Mol. Biol., 1996, 26: 571~583.
    134.Paskewitz S.M., Shi L.. The hemolymph proteome of Anopheles gambiae. Insect Biochem. Mol. Biol., 2005, 35: 815~824.
    135.Pigott C.R., Ellar D.J.. Role of receptor in Bacillus thuringiensis Crystal toxin activity. Microbiol. Mol. Biol. Rev., 2007, 71: 255~281.
    136.Predel R., Wegener C., Russell W.K., Tichy S.E., Russell D.H., Nachman R.J.. Peptidomics of CNS-associated neurohemal systems of adult Drosphila melanogaster: a mass spectrometric survey of peptides from individual flies. J. Comp. Neurol., 2004, 474: 379~392.
    137.Rahardja U., Whalon M.E.. Inheritance of resistance to Bacillus thuringiensis subsp.tenebrionis CryⅢ A δ-endotoxin in Colorado potato beetle (Coleoptera: Chrysomelidae). J. Econ. Entomol., 1995, 88: 21~26.
    138.Rahman M.M., Roberts H.L.S., Sarjan M., Asgari S., Schmidt O.. Induction and transmission of Bacillus thuringiensis tolerance in the flour moth Ephestia kuehniella. Proc. Natl. Acad. Sci. USA, 2004, 101: 2696~2699.
    139.Rajagopal R., Agrawal N., Selvapandiyan A., Sivakumar S., Ahmad S., Bhatnagar R.K.. Recombinantly expressed isozymic aminopeptidases from Helicoverpa armigera midgut display differential interaction with closely related Cry proteins. Biochem. J., 2003, 370: 971~978.
    140.Romeis J., Meissle M., Bigler F.. Transgenic crops expressing Bacillus thuringiensis toxins and biological control. Nat. Biotechnol., 2006, 24: 63~71.
    141.Roush R.T.. Bt-transgenic crops: just another pretty insecticide or a chance for a new start in resistance management? Pestic. Sci., 1997, 51: 328~334.
    142.Sambrook J., Fritsch E.F., Maniatis T.. Molecular Cloning : A laboratory manual (2nd edn). Beijing: Science Press, 1989.
    143.Sanders M.M.. Identification of histone H2b as a heat-shock protein in Drosophila. J. Cell Biol., 1981, 91: 579~83.
    144.Sangadala S., Walters F.S., English L.H., Adang M.J.. A mixture of Manduca sexta aminopeptidase and phosphatase enhances Bacillus thuringiensis Insecticidal CryIA(c) toxin binding and (Rb+-K+)-Rb-86 efflux in vitro. J. Biol. Chem., 1994, 269: 10088~10092.
    145.Bates S.L., Zhao J.Z., Roush R.T., Shelton A.M.. Insect resistance management in GM crops: past, present and future, Nat. Biotechnol., 2005, 23: 57~62.
    146.Savard J., Tautz D., Richards S., Weinstock G.M., Gibbs R.A., Werren J.H., Tettelin H., Lercher M.J.. Phylogenomic analysis reveals bees and wasps (Hymenoptera) at the base of the radiation of Holometabolous insects. Genome Res., 2006, 16(11): 1334~1338.
    147.Scharlaken B., De Graaf D.C., Memmi S., Devreese B., Van Beeumen J., Jacobs F.J.. Differential protein expression in the honey bee head after a bacterial challenge. Arch. Insect Biochem. Physiol., 2007, 65(4): 223~237.
    148.Schilder R.J., Marden J.H.. Parasites, proteomics and performance: effects of gregarine gut parasites on dragonfly flight muscle composition and function. J. Exp. Biol., 2007, 210(24): 4298~4306.
    149.Schnepf E., Crickmore N., Van Rie J., Lereclus D., Baum J., Feitelson J., Zeigler D.R., Dean D.H.. Bacillus thuringiensis and Its Pesticidal Crystal Proteins. Microbiol. Mol. Biol. Rev., 1998, 62: 775~806.
    150.Sharma R., Komatsu S., Noda H.. Proteomic analysis of brown planthopper: application to the study of carbamate toxicity. Insect Biochem. Mol. Biol., 2004, 34(5): 425~432.
    151.Shelton A.M., Roberson J.L., Tang J.D., Perez C., Eigenbrode S.D., Preisler H.K., Wilsey W.K., Cooley R.J.. Resistance of diamondback moth (Lepidoptera: Plutellidae) to Bacillus thuringiensis subspecies in the field. J. Econ. Entomol., 1993, 86: 697~705.
    152.Shevchenko A., de Sousa M.M., Waridel P., Bittencourt S.T., de Sousa M.V., Shevchenko A., Sequence similarity-based proteomics in insects: characterization of the larvae venom of the Brazilian moth Cerodirphia speciosa. J. Proteome Res., 2005, 4(3): 862~869.
    153.Shitomi Y., Hayakawa T., Hossain D.M., Higuchi M., Miyamoto K., Nakanishi K., Sato R., Hori H.. A novel 96-kDa aminopeptidase localized on epithelial cell membranes of Bombyx mori midgut, which binds to Cry1Ac toxin of Bacillus thuringiensis. J. Biochem., 2006, 139(2): 223~323.
    154.Soberón M., Pardo-López L., López I., Gómez I., Tabashnik B.E., Bravo A.. Engineering modified Bt toxins to counter insect resistance. Science, 2007a, 318(5856):1640~1642.
    155.Soberón M., Fernández L.E., Pérez C., Gill S.S., Bravo A.. Mode of action of mosquitocidal Bacillus thuringiensis toxins. Toxicon. 2007b, 49(5):597~600.
    156.Tabashnik B.E., Carrière Y., Dennehy T.J., Morin S., Sisterson M.S., Roush R.T., SheltonA.M., Zhao J.Z.. Insect resistance to transgenic Bt crops: lessons from the laboratory and field. J Econ Entomol., 2003, 96(4): 1031~1038.
    157.Tabashnik B.E., Gassmann A.J., Crowder D.W., Carrière Y.. Insect resistance to Bt crops: evidence versus theory. Nat. biotechnol., 2008, 26(2): 199~202.
    158.Tabashnik B.E., Cushing N.L., Finson N., Johnson M.W.. Field development of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). J. Econ. Entomol., 1990, 83:1671~1676.
    159.Tabashnik B.E., Finson N., Johnson M.W, Hechel D.G.. Cross-resistance to toxins from Bacillus thuringiensis toxin Cry1F in the diamondback moth (Lepidoptera: Plutellidae). Appl. Environ. Microbiol., 1994a, 60: 4627~4629.
    160.Tabashnik B.E., Finson N., Groeters F.R., Moar W.J., Johnson M.W., Luo K., Adang M.J.. Reversal of resistance to Bacillus thuringiensis in Plutella xylostella. Proc. Natl. Acad. Sci. USA, 1994b, 91: 4120~4124.
    161.Tabashnik B.E.. Evolution of resistance to Bacillus thuringiensis. Annu. Rev. Entomol. 1994c, 84: 49~55.
    162.Tabashnik B.E., Finson N., Johnson M.W., Moar W.J.. Resistance to toxins from Bacillus thuringiensis subsp. Kurstaki causes minimal cross-resistance to Bacillus thuringiensis subsp. aizawai in diamondback moth (Lepidoptera: Plutellidae). Appl. Environ. Microbiol., 1993, 59: 1332~1335.
    163.Tabashnik B.E., Finson N., Johnson M.W.. Manegement resistance to Bacillus thuringiensis: lessons from the diamondback moth (Lepidoptera: Plutellidae). J. Econ. Entomol., 1991, 84: 49~55.
    164.Tabashnik B.E., Liu Y.B., de Maagd R.A., Dennehy T.J.. Cross-resistance of pink bollworm (Pectinophora: gossypiella) to Bacillus thuringiensis toxins. Appl. Environ. Microbiol., 2000, 66: 4582~4584.
    165.Tabashnik B.E., Malvar T., Liu Y.B., Finson N., Borthakur D., Heckel D.G., Masson L., Ballester V., Granero F., Ménsua J.L., Ferré J.. Cross-resistance of diamondback moth indicates altered interactions with domine Ⅱ of Bacillus thuringiensis toxins. Appl. Environ. Microbiol., 1996, 62: 2839~2844.
    166.Tang J.D., Shelton A.M., Van Rie J., De Roeck S., Moar W.J., Roush R.T., Peferoen M.. Toxicity of Bacillus thuringiensis spore and crystal protein to resistant diamondback moth (Plutella xylostella). Appl. Environ. Microbiol.,1996, 62:564~569.
    167.Uno Y., Fujiyuki T., Morioka M., Takeuchi H., Kubo T.. Identification of proteins whose expression is up- or down-regulated in the mushroom bodies in the honeybee brain using proteomics. FEBS Lett., 2006, 581(1): 97~101.
    168.Untalan P.M., Guerrero F.D., Haines L.R., Pearson T.W.. Proteome analysis of abundantly expressed proteins from unfed larvae of the cattle tick, Boophilus microplus. Insect Biochem Mol Biol., 2005, 35(2): 141~151.
    169.Vadlamudi R., Weber E., Ji I., Ji T., Bulla L.. Cloning and expression of a receptor for an insecticidal toxin of Bacillus thuringiensis. J. Biol. Chem., 1995, 270: 5490~5494.
    170.Valaitis A.P., Jenkins J.L., Lee M.K., Dean D.H., Garner K.J.. Isolation and partial characterization of gypsy moth BTR-270, an anionic brush border membrane glycoconjugate that binds Bacillus thuringiensis Cry1A toxins with high affinity. Arch. Insect Biochem. Physiol., 2001, 46: 186~200.
    171.Valaitis A.P., Lee M.K., Rajamihan F., Dean D.H.. Brush border membrane aminopeptidase-N in the midgut of the Gypsy Moth serves as the receptor for the CryⅠ A(c) δ-Endotoxin of Bacillus thuringiensis. Insect Biochem. Mol. Biol., 1995, 25: 1143~1151.
    172.Van Rie J., McGaughey W.H., Johnson D.E., Barnett B.D., Van Mellaert H., Mechanism of insect resistance to the microbial insecticide Bacillus thuringiensis. Science, 1990, 247: 72~74.
    173.Vierstraete E., Cerstiaens A., Baggerman G., Van den Bergh G., De Loof A., Schoofs L., Proteomics in Drosophila melanogaster: first 2D database of larval hemolymph proteins. Biochem. Biophys. Res. Commun., 2003, 304(4): 831~~838.
    174.Wang G.R., Liang G.M., Wu K.M., Guo Y.Y.. Gene cloning and sequencing of aminopeptidase N3, a putative receptor for Bacillus thuringiensis insecticidal Cry1Ac toxin in Helicoverpa amigera (Lepidoptera: Noctuidae). Eur. J. Entomol., 2005a, 102: 13~19.
    175.Wang G.R., Wu K.M., Liang G.M. Guo Y.Y.. Gene cloning and expression of cadherin in midgut of Helicoverpa armigera and its Cry1A binding region. Science in China. Ser. C. Life Sciences, 2005b, 48: 346~356.
    176.Washburn M.P., Woltem D., Yates J.R.. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol., 2001, 19(3): 242~247.
    177.Whalon M.E., Miller D.L., Hollingworth R.M., Grafius E.J., Miller J.R.. Selection of a Colorado potato beetle (Coleoptera: Chrysomelidae) strain resistant to Bacillus thuringiensis. J. Econ. Entomol., 1993, 86: 226~233.
    178.Wiese M.D., Chataway T.K., Davies N.W., Milne R.W., Brown S.G., Gai W.P., Heddle R.J., Proteomic analysis of Myrmecia pilosula (jack jumper) ant venom. Toxicon, 2006, 47(2): 208~217.
    179.Wilkens S., Zhang Z., Zheng Y.. A structural model of the vacuolar ATPase from transmission electron microscopy. Micron, 2005, 36: 109~126.
    180.Wilkins M.R., Sanchez J.C., Gooley A.A., Appel R.D., Humphery-Smith I., Hochstrasser D.F., Williams K.L.. Progress with proteome projects:why all proteins expressed by a genome should be identified and how to do it. Biotechnol. Genet. Eng. Rev., 1996, 13: 19~50.
    181.Wirth M.C., Georghiou G.P., Federici B.A..Cyt1A enables CryⅣ endotoxins of Bacillus thuringiensis to overcome high levels of CryⅣ resistance in the mosquito, Culex quinquefasciatus. Proc. Natl. Acad. Sci. USA, 1997, 94: 10536~10540.
    182.Wolfersberger M.G., Luthy P., Maurer A., Parenti P., Sacchi V.F., Giordana B., HanozetG.M.. Preparation and partial characterization of amino acid transporting brush border membrane vesicles from the larval midgut of the cabbage butterfly (Pieris brassicae). Comp. Biochem. Physiol., 1987, 86A: 301~308.
    183.Wolschin F., Amdam G.V., Comparative proteomics reveal characteristics of life-history transitions in a social insect. Proteome Sci., 2007, 5: 10.
    184.Wu K., Guo Y., Head G.J.. Resistance monitoring of Helicoverpa armigera (Lepidoptera: Noctuidae) to Bt insecticidal protein during 2001-2004 in China. Econ. Entomol., 2006, 99(3): 893~898.
    185.Wu KM, Guo YY.The evolution of cotton pest management practices in China. Annu Rev Entomol. 2005;50:31~52.
    186.Xu X., Yu L., Wu Y.. Disruption of a Cadherin Gene Associated with Resistance to Cry1Ac δ-Endotoxin of Bacillus thuringiensis in Helicoverpa armigera. Appl. Environ. Microbiol., 2005, 71(2): 948~954.
    187.Xu X., Wu Y.. Disruption of Ha_BtR alters binding of Bacillus thuringiensis delta-endotoxin Cry1Ac to midgut BBMVs of Helicoverpa armigera. J. Invertebr. Pathol., 2008, 97(1):27-32.
    188.Yan J.X., Wait R., Berkelman T., Harry R.A., Westbrook J.A., Wheeler C.H., Dunn M.J.. A modified silver staining protocol for visualization of proteins compatible with matrix-assisted laser desorption/ionization and electrospray ionization-mass spectrometry. Electrophoresis, 2000, 21: 3666~3672.
    189.Yan J.X., Devenish A.T., Walt R., Stone T., Lewis S., Fowler S.. Fluorescence two-dimensional difference gel electrophoresis and mass spectrometry based proteomic analysis of Escherichia coli. Proteomics, 2002, 2(12): 1682~1698.
    190.Yang Y., Chen H., Wu Y., Yang Y., Wu S.. Mutated cadherin alleles from a field population of Helicoverpa armigera confer resistance to Bacillus thuringiensis toxin Cry1Ac. Appl. Environ. Microbiol., 2007, 73(21):6939~6944.
    191.Zhang P., Aso Y., Yamamoto K., Banno Y., Wang Y., Tsuchida K., Kawaguchi Y., Fujii H.. Proteome analysis of silk gland proteins from the silkworm, Bombyx mori. Proteomics, 2006, 6(8): 2586~2599.
    192.Zhang P., Aso Y., Jikuya H., Kusakabe T., Lee J.M., Kawaguchi Y., Yamamoto K., Banno Y., Fujii H.. Proteomic profiling of the silkworm skeletal muscle proteins during larval-pupal metamorphosis. J. Proteome Res., 2007, 6(6): 2295~2303.
    193.Zhang X., Candas M., Griko N.B., Rose-Young L., Bulla Jr L.A.. Cytotoxicity of Bacillus thuringiensis Cry1Ab toxin depends on specific binding of the toxin to the cadherin receptor BT-R1 expressed in insect cells. Cell Death Differ, 2005, 12: 1407~1416.
    194.Zhang X, Candas M, Griko NB, Taussig R, Bulla Jr LA.. A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis. Proc. Natl. Acad. Sci. USA, 2006, 103: 9897~9902.
    195.Zhao X.F., He H.J., Dong D.J., Wang J.X.. Identification of differentially expressed proteinsduring larval molting of Helicoverpa armigera. J. Proteome Res., 2006, 5(1): 164~169.
    196.Zhao J.Z., Collins H.L., Tang J.D., Cao J., Earle E.D., Roush R.T., Herrero S., Escariche B., Ferre J., Shelton A.M.. Development and characterization of diamondback moth resistance to transgenic broccoli expressing high levels of Cry1C. Appl. Environ. Microbiol., 2000, 66(9): 3784~3789.
    197.Zhu Y.C., Kramer K.J., Oppert, B., Dowdy A.K.. cDNAs of aminopeptidase-like protein genes from Plodia interpunctella strains with different susceptibilities to Bacillus thuringiensis toxins. Insect Biochem. Mol. Biol., 2000, 30: 215~224.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.