部分农药及肠毒素分子印迹聚合物制备及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
食品安全直接关系到人类的生命健康,影响人类生活质量,是关乎国计民生的重大问题,一直备受关注。我国食品安全问题面临巨大挑战,最突出的就是食品中农、兽药残留以及微生物污染问题。食品安全检测技术方法,作为解决这一复杂问题的基础条件,因此显得尤为重要。目前农药残留检测方法主要有色谱法,免疫法、传感器方法等。其中色谱方法需要大规模昂贵仪器和专业技术人才,并且要对样品进行预处理,萃取方法包括液-液萃取和固相萃取等,去除干扰杂质,富集痕迹量待测目的物质,其原理是利用物质极性差异达到分离的目的,往往萃取富集得率低;免疫学方法需要制备抗体,制备农药抗体需要合成完全抗原并免疫动物,制备周期长,且生物活性受多种因素影响易于失活,难于工业化生产。目前的生物传感器中多利用生物分子如抗体、酶等作为识别元件,生物分子的稳定性、重复检测性较差;化学传感器往往也是利用待测物极性差异进行检测,其检测缺乏特异性。因此,开发对待测组分有特异识别性能的敏感材料,成为研发新的检测方法的关键。随着科学技术的发展,分子印迹技术产生了,分子印迹技术为制备具有特异吸附性材料提供了技术支持。
     分子印迹聚合物(Molecularly imprinted polymers,MIPs),是基于抗原-抗体反应原理而采用化学方法合成的高聚物。作为一种新型的吸附材料,MIPs具有从复杂样品中选择性识别目标分子或与其结构相近的某一类化合物的能力,因而被称为“人工抗体”。由于其化学性能稳定,目前已经广泛应用于样品分离、固相萃取、仿生传感器检测等领域。本文拟以部分农药、毒素为目标物质,制备其分子印迹聚合物,对其吸附性能进行测定并用于样品的富集处理。
     首先对传统沉淀聚合制备微球条件进行摸索,探讨聚合溶剂体积、模板、单体各组分比例,通氮气除氧时间和聚合时间对聚合物微球形貌和产量的影响。得出在乙腈中可以制备出纳米级别的印迹聚合物微球。选取部分农药毒死蜱、西维因及呋喃丹分子为模板物质,采用沉淀聚合方法制备了各自分子印迹聚合物微球,扫描电镜观察产物颗粒均匀,分散性较好;光谱法和计算机模拟方法预测模板农药分子与功能单体甲基丙烯酸的相互作用方式,结果显示毒死蜱、西维因及呋喃丹与功能单体之间分别以1∶1、1∶1、1∶2的方式发生相互作用,这在一定程度上阐明了聚合物对模板分子进行识别的理论基础。而后采用静态吸附试验测定了分子印迹聚合物对模板农药的结合能力,Scatchard分析结果表明毒死蜱分子印迹聚合物对模板最大表观结合量可达53.91μmol/g;并将聚合物用于环境介质中农药的吸附,取得较好的效果。西维因分子印迹聚合物对模板的最大表观结合量可达1.95μmol/g,同时以印迹聚合物为识别元件,固定于石英晶体微天平电极表面构建用于农药检测的分子印迹压电石英晶体传感器;对其检测条件进行优化,农药西维因浓度在10 - 1000ng/mL范围内,传感器响应方程为y = 0.139 x + 2.99,最低检测限为12.5 ng/mL,并且具有较好的选择性和重复性。
     葡萄球菌肠毒素B(SEB)是引起食物中毒的重要因素,本文尝试以此蛋白毒素为模板物质,制备其人工抗体并用于毒素的分离富集。实验首先采用水相悬浮聚合方法合成其分子印迹聚合物凝胶微球,并对其合成工艺进行了优化。平衡吸附试验对制备的SEB印迹凝胶微球的吸附动力学及等温吸附性能进行考察,确定了其对模板毒素SEB的最大吸附量为8.4 mg/g印迹聚合物微球。存在问题是SEB水凝胶微球干燥容易破裂,导致其吸附能力不稳定,再生性能较差。为了克服这一缺点,实验中以聚苯乙烯微球为基质,采用表面印迹法成功制备了SEB分子印迹聚合物微球。首先在聚苯乙烯微球表面共价修饰模板毒素,采用硅烷化试剂(APTMS, OTMS)聚合,而后洗脱模板毒素,从而获得特异的针对模板分子的印迹位点。试验中对聚合过程中的蛋白用量、硅烷化试剂比例、蛋白洗脱条件等参数进行优化,平衡吸附试验考察了聚合物的吸附动力学以及等温吸附性能,结果表明制备的SEB分子印迹聚合物微球对模板毒素有较好的吸附性能,Langmuir方程计算最大表观吸附量Qmax为3.86 mg/g印迹聚合物微球,明显高于非印迹聚合物微球;选用SEA、SEC以及BSA为竞争蛋白对聚合物吸附选择性进行分析,结果合成的SEB印迹聚合物具有较好的吸附特异性。
Food safety has been much concerned for related to human health and quality of life. The most prominent problems for China are the contamination of pesticide, veterinary drug residues and microbiology factors. As a solution to the complex problem, the determination techniques play an important role in regulation the use of pesticide residues. At present, chromatography and immunity methods have been commonly used for an efficient determination of pesticide residue. However, chromatography methods requires expensive equipment, large-scale professional personnel, and the pretreatment of samples, including liquid extraction - liquid extraction and solid-phase extraction, removal of interference of impurities; General drawbacks of immunoassay techniques include the lack of suitable antibodies and their instability, which is difficult to industrial production. Using of biological molecules such as antibodies and enzyme as recognition elements, the biological sensors are limited by the stability and regeneration of biological molecules. So it is necessary to synthesis a kind of materials which can specificly recognize the target molecules with high sensitivity and stability. With the development of science and technology, molecular imprinting has been developed for preparation of the new materials.
     Molecularly imprinted polymers (MIPs) are polymers prepared in presence of a template that serves as a mould for the formation of template-complementary binding sites. Thus, MIPs can be created to recognize a target molecule with affinity and selectivity comparable to natural receptors and were called as“artificial antibody”. And these materials can withstanding much harsher conditions than antibodies, such as high temperature, pressure, extreme pH, and organic solvents. These properties have made them extremely attractive for solving problems in the fields of preparative chemical separations, purification and sensors, or for the removal of specific molecular targets from complex mixtures.
     In this article, traditional precipitation polymerization was investigated in order to obtaine desired uniform microspheres. Several pesticides such as chlorpyrifos, carbaryl and cabofuran were used as templates to synthesize the molecularly imprinted polymers. Computer simulation technology was employed to investigate the interaction between them and MAA for elucidating the recognition mechanism. Results showed that the ratio between them and MAA was 1∶1, 1∶1, 1∶2. The saturation rebinding experiments and Scatchard analysis were carried out to evaluate rebinding performance. maximum number (Qmax)of binding site of MIPs is 53.91μmol/g for chlorpyrifos and 1.95μmol/g for carbaryl. Used as the recognition elements, the polymer particles were fixed on the surface of the electrode to construct the MIPs-QCM sensor. Atomic force microscopy (AFM) was employed to evaluate the obtained MIPs sensitive film coated on the electrode. The sensor developed exhibits a liner relationship between the frequency shift and carbaryl concentration in the range of 10ng/mL up to 1000ng/mL (y= 0.139 x + 2.99), and the detection limit was 12.5 ng/mL.
     The staphylococcus enterotoxin B (SEB) is one major cause of symptoms of food poisoning in humans. So the SEB-imprinted polyacrylamide gel beads were synthesized using suspension polymerization. Adsorption dynamic and isotherms were investigated by equilibrium adsorption experiment, and the maximum adsorption capacity of 3.86mg SEB/g imprinted beads. The problem is that the material has poor mechanical strength. In order to overcome the issue, the SEB-imprinted beads were prepared using microsphere surface-imprinting method. Two kinds of organic silane (APTMS and OTMS) were polymerized on a surface of polystyrene microspheres after the SEB template was covalently immobilized by forming imine bonds. The resulting imprinted beads were selective for SEB. The Langmuir adsorption models were applied to describe the equilibrium isotherms. The results showed that an equal class of adsorption was formed in the MIP with the maximum adsorption capacity of 3.86mg SEB/g imprinted beads. The MIP has much higher adsorption capacity for SEB than the non-imprinted polymer, and the MIP beads have a higher selectivity for the template molecule.
引文
[1] 金征宇,胥传来,谢正军.食品安全导论,化学工业出版社.北京,2005,1-58
    [2] 黄梓平,王建宁.鲁米诺-过氧化氢体系对敌敌畏得检测分析.农药,2002,43(9):19-21
    [3] 潘元海,金军,蒋可.高效液相色谱/大气压化学电离质谱快速分析水中痕量有机磷农药.分析化学,2000,28(6):666-671
    [4] 王加多,胡祥娜,周向阳,张兵.蔬菜农药残留快速检测技术-胆碱酯酶速测卡法.食品科学,2003,24(6):109-113
    [5] Mallat E, Barcelo D, Barzen C, et al. Immonosensors for pesticide determination in natural waters. Trends in analytical chemistry. 2001,20(3):124-131
    [6] 王刚垛.综述,何凤生,荣康泰 审校.单克隆抗体在农药免疫分析中的应用进展.中国劳动卫生与职业病杂志,1998,16(6):368-370
    [7] 李颖娇,张荣全,叶非.生物传感器在农药残留分析中的应用.农药科学与管理,2003,24(8):11-13
    [8] 徐 磊,韩泾鸿,梁卫国,张虹.光寻址电位式传感器在有机磷检测上得应用.传感器技术,2003,22(10):42-44,47
    [9] 袁东星,邓永智,林玉晖.蔬菜中有机磷农药残留的发光菌快速检测.环境化学,1997,16(1):77-81
    [10] 黄先玉,刘沛然.水体污染生物检测的研究进展.环境科学进展,1999,7(4):14-18
    [11] Wulff G, Sarhan A. Use of polymers with enzyme-analogous structures for the resolution of racemates. Angew. Chem. Int. Ed. Eng1., 1972, 11: 34l-344.
    [12] Norrlow O, Glad M, Mosbach K. Acrylic polymer preparation containing recognition sites on obtained by imprinting with substrates. Chromatogr. 1984, 299:29-32.
    [13] Wulff G, Laucer M, Bohnke H. Rapid proton transfer as cause of an unusually large neighboring group effect. Angew. Chem. Int. Ed. Engl. 1984, 23:741-742
    [14] Ikegami T, Mukawa T, Nariai H, et al. Bisphenol A-recognition polymers prepared by covalent molecular imprinting, Anal. Chim. Acta, 2004,504:131-135
    [15] Subat M, Borovik AS, Konig B. Synthetic creatinine receptor: imprinting of aLewis acidic zinc(II) cyclen binding site to shape its molecular recognition selectivity. J Am Chem Soc. 2004,126 (10):3185-90.
    [16] Nicholls I A. Thermodynamic Considerations for the Design of and Ligand Recognition by Molecularly Imprinted Polymers. Chem. Lett., 1995, (11):1035-1036
    [17] Lin J M, Nakagama T, Uchiyama K, et al. Temperature effect on chiral recognition of some amino acids with molecularly imprinted polymer filled capillary electrochromatography. Biomed. Chromatogr., 1997,11(5) :298-302
    [18] Sellergren B, Shea KJ. Origin of peak asymmetry and the effect of temperature on solute retention in enantiomer separations on imprinted chiral stationary phases. J . Chromatogr., 1995, 690 :29-39
    [19] Sajonz P, Kele M, Zhong GM, et al. Study of the Thermodynamics and Mass Transfer Kinetics of Two Enantiomers on a Polymeric Imprinted Stationary Phase. J. Chromatogr. A, 1998, 810 :1-17
    [20] Chen Y, Kele M, Sajonz P, et al. Influence of Thermal Annealing on the Thermodynamic and Mass Transfer Kinetic Properties of D- and L-Phenylalanine Anilide on Imprinted Polymeric Stationary Phases Anal. Chem., 1999, 71: 928-938
    [21] 雷建都,谭天伟.酮洛芬分子印迹拆分及分离过程热力学研究.化学学报, 2002.60(7):1279-1283
    [22] 孙瑞丰,罗晖,隋洪艳,沈忠耀.计量置换模型在分子印迹聚合物色谱分离中的应用.过程工程学报,2003,3(2):165-170
    [23] Tanya PD, Vladimir MM, Mathias V, et al. Impedometric herbicide sensors based-on molecularly imprinted polymers. Anal. Chim. Acta., 2001, 435:157-162
    [24] 董标,钱小红.用分子印迹聚合物通过薄层色谱直接分离肾上腺素能药物的对映体.国外医学医药分册,1999,26(6):376-381
    [25] 付志高,苏海佳,谭天伟.菌丝体表面分子印迹壳聚糖树脂的制备及其吸附性能.化工学报,2004,55(6):958-962
    [26] 苏海佳,贺小进,谭天伟.球形壳聚糖树脂对含重金属离子废水的吸附性能研究.北京化工大学学报,2003,30(2):19-22
    [27] Asanuma H, Kakazu M, Shibata M, et al. Synthesis of molecularly imprinted polymer of cyclodextrin for the efficient recognition of cholesterol. Supramolecular science, 1998, 5: 417-421
    [28] Asanuma H, Akiyama T, Kajiya K, et al. Molecular imprinting of cyclodextrin inwater for the recognition of nanometer-scaled guests, Anal. Chim. Acta, 2001, 435: 25-33
    [29] Zhong N, Byun HS, Bittman R. Hydrophilic cholesterol-binding molecular imprinted polymers. Tetrahedron letters, 2001, 42:1839-1841
    [30] Ling TR, Syu YZ, Tasi YC, et al. Size-selective recognition of catecholamines by molecular imprinting on silica-alumina gel. Biosens Bioelectron. 2005, 21(6): 901-907.
    [31] Yoshikawa M, Kawamura K, Ejima A, et al. Green Polymers from Geobacillus thermodenitrificans DSM465 - Candidates for Molecularly Imprinted Materials. Macromol Biosci. 2006, 6(3): 210-215
    [32] Immer F, Francesa L, Antal T. et al. Selective trace enrichment of chlorotriazine pesticides from natural waters and sediment samples using terbuthylazine molecularly imprinted polymers. Anal. Chem. 2000,72:3934-3941
    [33] Haupt K, Dzgoev A, mosbach K. Assay system for the herbicide 2,4-dichlorophenoxyacetic acid using a molecularly imprinted polymer as an artificial recognition element. Anal. Chem.1998,70:628-631
    [34] Haupt K, Mayes AG, Mosbach K. Herbicide assay using an imprinted polymer-based system analogous to competitive fluoroimmonoassays. Anal. Chem. 1998,70:3936-3939
    [35] 高志刚,周杰,曲金详.植物激素吲哚酸分子模板聚合物的分子识别特性.分析化学,2003,31(10):1173-1177
    [36] Zhu QZ, Haupt K, Knopp D, et al. Molecularly imprinted polymer for metsulfuron-methyl and its binding charaterictics for sulfonylurea herbicides. Anal. Chim. Acta. 2002,468:217-227
    [37] Jenkins AL, Yin R, Jensen JL. Molecularly imprinted polymer sensors for pesticide and insecticide detection in water. Analyst, 2001, 126: 798-802
    [38] Manunza B, Deiana S, Pintore M, et al. A molecular modeling study of the interaction between beta-cyclodextrin and the organophosphorothioate pesticide parathion. Glycoconj. J. 1998, 15(3): 293-296
    [39] 贺小进,谭天伟,戚以政,等.球形壳聚糖树脂制备方法及其吸附性能研究.离子交换和吸附.2000,16 (1) :47-53
    [40] Turner NW, Piletska EV, Karim K, et al. Effect of the solvent on recognition properties of molecularly imprinted polymer specific for ochratoxin A. Biosens. Bioeletron. 2004, 20:1060-1067
    [41] Turiel E, Martin-Esteban A, Fernandoz P. Molecular recognition in a propazine-imprinted polymer and its application to the determination of triazines in environmental samples. Anal. Chem.2001, 73 (21): 5133-5141
    [42] 朱秀芳,侯能邦,汪国松,等.非共价分子印迹体系的快速筛选方法.云南化工,2005,32(1):35-38
    [43] Zhou J, He XW. Study of the nature of recognition in molecularly imprinted polymer selective for 2-arninopyridine.Ana1. Chim. Acta. 1999, 381:85-91
    [44] 郭洪声,何锡文.药物扑热息痛分子模板聚合物的选择性富集与识别特性的研究.高等学校化学学报,2000,21(3):363-367.
    [45] 卢春阳,何海成,何锡文,等.除草剂青莠定分子印迹聚合物的合成及结合性能研究.化学学报,2004,62(8):799-803
    [46] 蒲家锡,汤又文,胡小刚,等.药物利多卡因分子印迹聚合物的制备及识别特性.分析测试学报,2004,23:86-89
    [47] 张铁俐,刘锋,王俊等.对羟基苯甲酸、水杨酸分子印迹聚合物的分子识别性质的研究.化学学报,2001,59:1623-l627.
    [48] 严守雷,高志贤,房彦军.农药久效磷分子印迹聚合物合成及其亲合性评估.高分子学报,2006,1:160-163
    [49] Lai JP, Niessner R, Knopp D. Benzo[a]pyrene imprinted polymers: synthesis, characterization and SPE application in water and coffee samples. Anal. Chim. Acta. 2004, 522: 137-144
    [50] 王邃,王永珍,龚国权,等.罗丹明 B 分子印迹聚合物的分子识别与结合特性的研究.兰州大学学报(自然科学版),2003,39(2):57-60
    [51] 郭洪声,贾裕梅,曹现峰,等.微球形 4-氨基吡啶分子模板聚合物的合成及结合性质研究.高等学校化学学报,2001,22(3):371-375
    [52] Slichenko O, Rachkov A, Miyachi H, et al. Imprinted polymer layer for recognizing double-stranded DNA. Biosens. Bioelectron. 2004, 20:1091-1097
    [53] 董襄朝,孙慧,吕宪禹,等.邻羟基苯甲酸分子印迹聚合物对于异构体的识别及色谱行为研究.化学学报,2002,60(11):2035-2042
    [54] Liu ZS, Xu YL, Yan C, et al. Preparation and characterization of molecularly imprinted monolithic column based on 4-hydroxybenzoic acid for the molecular recognition in capillary electrochromatography. Anal. Chim. Acta. 2004, 523: 243-250
    [55] Takenchi T. Combinatorial Molecular Imprinting:An approach to synthetic polymer receptors. Ana1. Chem. 1999, 71:285-290.
    [56] Takeuchi T, Fukuma D, Matsui J, et al. Combinatorial molecu1ar imprinting for formation of atrazine decomposing polymers. Chem. Lett. 2001, l: 530-531.
    [57] 史瑞雪,郭成海,邹小红,等.运用组合化学筛选分子印迹聚合物敏感材料.化学传感器,2001,21:39-43.
    [58] Lanza F, Sellergren B. Method for synthesis and screening of large groups of molecularly imprinted polymers. Anal. Chem. 1999, 71: 2092-2095
    [59] 史瑞雪,郭成海,邹小红,等.半微量原位聚合快速筛选分子印迹聚合物方法.化学传感器,2002,22(4):45-52
    [60] Subrahmanyam S, Piletsky SA, Piletska EV, et al. "Bite-and-Switch" approach using computationally designed molecularly imprinted polymers for sensing of creatinine. Biosens Bioelectron. 2001, 16(9): 631-637.
    [61] Chianella I, Lotierzo M, Piletsky SA, et al. Rational design of a polymer specific for microcystin-LR using a computational approach. Anal Chem. 2002, 74(6): 1288-1293.
    [62] 李萍,林保平,袁春伟.以混旋邻氯扁桃酸为模板的分子印迹聚合物的制备及拆分性能研究.化学学报,2003,61(11):l885-1889
    [63] 孙宝维,武利庆,李元宗.由不同功能单体合成的对羟基苯甲酸分子印迹聚合物识别特性的实验和理论研究.化学学报,2004,62(6):598-600.
    [64] 李萍,戎非,谢一兵,等.(S)-萘普生分子印迹聚合物结合特性及制备中复合物的性能研究.东南大学学报(自然科学版),2003,33(4):475-478
    [65] Nantasenamat C, Naenna T, Ayudhya CI, et al. Quantitative prediction of imprinting factor of molecularly imprinted polymers by artificial neural network. J. Comput Aided Mol Des. 2005, 19(7): 509-524.
    [66] Lin JM, Nakagama T, Uchiyama K, et al. Temperature effect on chiral recognition of some amino acids with molecularly imprinted polymer filled capillary electrochromatography. Biomed. Chromatogr. 1997, 11(5) : 298-302
    [67] Turner NW, Piletska EV, Karim K, et al. Effect of the solvent on recognition properties of molecularly imprinted polymer specific for ochratoxin A. Biosens. Bioelectron. 2004, 20: 1060-1067.
    [68] 卢春阳,马向霞,何锡文,等.邻香草醛分子印迹聚合物膜的制备及其透过选择性质的研究.化学学报,2005,6:479-483.
    [69] 马淳安.有机电化学合成导论。北京:科学出版社,2002,313-318.
    [70] Fairhurst RE, Chassaing C, Venn RF, et al. A direct comparison of the performance of ground, beaded and silica-grafted MIPs in HPLC and TurbulentFlow Chromatography application, Biosens. Bioelectron. 2004, 20:1098-1105
    [71] Hosoya K, Yoshizako K, Tanaka N, et al. Uniform-size macroporous polymer-based stationary phase for HPLC prepared through molecular imprinting technique. Chem. Lett. 1994: 1437-1445
    [72] Hosoya K, Yoshihako K, Shirasu Y, et al. Molecularly imprinted uniform-size polymer-based stationary phase for high-performance liquid chromatography. Structural contribution of cross-linked polymer network on specific molecular recognition. J. Chromatogr. A 728 (1-2):139-148.
    [73] Matsui J, Kato T, Takeuchi T, et al. Molecular recognition in continuous polymer rods prepared by a molecular imprinting technique. Anal. Chem., 1993, 65: 2223-2228
    [74] Dhal PK, Vidyasankar S, Arnold FH. Surface grafting of functional polymers to macroporous poly (trimethylolpropane trimethacrylate). Chem. Mater., 1995, 7: 154-160
    [75] Karmalkar RN, Kulkarmi MG, Mashelkar RA. Molecularly imprinted hydrogels exhibit chymotrypsin-like activity. Macromolecules, 1996, 29(4): 1366-1368
    [76] 郑细鸣,涂伟萍.分子印迹聚合物微球的粒径尺寸及分布.化工时刊,2004,18(6):12-15
    [77] Wei X, Li X, Husson SM. Surface molecular imprinting by atom transfer radical polymerization. , Biomacromolecules. 2005, 6(2): 1113-1121.
    [78] 包广粮,庄云龙.分子印迹技术进展.化学传感器,2003,23(1):1-10
    [79] Carabias-Martinez R, Rodriguez-Gonzalo E, Herrero-Hernandez E. Determination of triazines and dealkylated and hydroxylated metabolites in rive water using a propazine-imprinted polymer. J. Chromatogr. A 2005, 1085: 199-206
    [80] Oral E, Peppas NA. Dynamic studies of molecular imprinting polymerizations. Polymer, 2004, 45: 6163-6173
    [81] Cacho C, Turiel E, Martin-Esteban A, et al. Clean-up of triazines in vegetable extracts by molecularly imprinted solid-phase extraction using a propazine-imprinted polymer. Anal. Chem., 2003, 376(4): 491-496
    [82] 罗鹏,陈海明,徐伟箭.茶碱印迹聚合物的合成与性能研究.精细化工中间体,2003,33(3):28-30
    [83] Ellwanger A, Berggren C, Bayoudh S, et al. Evaluation of methods aimed at complete removal of template from molecularly imprinted polymers. Analyst,2001, 126 (6) 784-792
    [84] Theodoridis G, Kantifes A, Manesiotis P, et al. Preparation of a molecularly imprinted polymer for the solid- phase extraction of scopolamine with hyoscyamine as a dummy template molecule. J. Chromatogr. A, 2003, 987:103-109.
    [85] Matsui J, Fujiwara K, Takeuchi T. Atrazine-selective polymers prepared by molecular imprinting of trialkylmelamines as dummy template species of atrazine. Anal. Chem., 2000, 72 (8):1810-1813
    [86] Jodlbauer J, Maier NM, Lindner W. Towards ochratoxin A selective molecularly imprinted polymers for solid-phase extraction. J. Chromatogr. A, 2002, 945 (1-2) :45-63
    [87] Cormack PAG, Elorza AZ. Molecularly imprinted polymers: synthesis and characterization. J. Chromatogr. B, 2004, 804: 173-182
    [88] 隋洪艳,李红旗,沈忠耀.聚合物的制备、色谱评价及物理化学表征.精细化工,2003,6:345-348,373
    [89] 左言军,余建华,黄启斌,等.沙林酸印迹聚邻苯二胺纳米膜制备及结构表征.物理化学学报,2003,19(6):528-532
    [90] Ruckert B, Kolb U. Distribution of molecularly imprinted polymer layers on macroporous silica gel particles by STEM and EDX. Micron., 2005, 36: 247-260
    [91] Ebarvia BS, Sevilla IF. Piezoelectric quartz sensor for caffeine based on molecularly imprinted polymethacrylic acid. Sens. Actuators B, 2005, 107: 782-790
    [92] Sergeyeva TA, Piletsky SA, Brrovko AA. et al. Conductometric sensor for atrazine detection based on molecularly imprinted polymer membranes. Analyst, 1999, 124: 331-334
    [93] Schollhom B, Maurice C, Flohic G, et al. Competitive assay of 2,4-dichlorophenoryacetic acid using a polymer imprinted with an electrochemically active tracer closely related to the analyte. Analyst, 2000, 125: 665-667
    [94] Takeuchi T, Fukuma D, Matsui. J. Combinatorial molecular imprinting: An approach to synthetic polymer receptors. Anal. Chem., 1999,71: 285-290
    [95] Svetlana PP, Tatyana B, Andrei B, et al. Selective sensing of triazine herbicides in imprinted membranes using ion-sensitive field-effect transistors and microgravimetric quartz crystal microbalance measurements. Analyst, 2002:1484-1491
    [96] Cacho C, turiel E, Martin EA, et al. Characterization and quality assessment of binding sites on a propazine-imprinted polymer prepared by precipitation polymerization. J.Chromatogr. B, 2004, 802: 347-353
    [97] 史瑞雪,郭成海,邹小红,等.分子印迹聚合物选择性机理的研究.化学传感器,2002,22(3):49-57
    [98] 雷建都,谭天伟.酮洛芬分子印迹拆分及分离过程热力学研究.化学学报,2002,60(7):1279-1283
    [99] Masque N, Marce RM, Borrull F. Molecularly imprinted polymers: new tailor-made materials for selective solid-phase extraction. Trends in analytical chemistry, 2001, 20(9): 477-485
    [100] Bjarnason B, Chimuka L, Ramstrom O. On line solid-phase extraction of triazine herbicides using a molecularly imprinted polymer for selective sample enrichment. Anal.Chem., 1999, 71: 2152-2156
    [101] 游静,劳文剑,黄悯嘉,等.分子烙印聚合物作超临界流体萃取后处理用固体吸附剂.分析化学,2002,30(5):518-521
    [102] Tamayo FG, Casillas JL, Martin-Esteban A. Highly selective fenuron-imprinted polymer with a homogeneous binding site distribution prepared by precipitation polymerization and its application to the clean-up of fenuron in plant samples. Anal. Chim. Acta. 2003,48(2):165-173
    [103] Baggiani C, giovannoli C, Anfossi L, et al. Molecularly imprinted solid-phase extraction sorbent for the clean-up of chlorinated phenoxyacids from aqueous samples. J.Chromatogr. A, 2001, 938: 35-44
    [104] Pap T, Horvath V, Tolokan A, et al. Effects of solvents on the selectivity of terbutylazine imprinted polymer sorbents used in solid-phase extraction. Journal of chromatography A, 2002, 973: 1-12
    [105] Chapuis F, Pichon V, Lanza F, Set al. Optimization of the class-selective extraction of triazines from aqueous samples using a molecularly imprinted polymer by a comprehensive approach of the retention mechanism. J.Chromatogr. A, 2003, 999: 23-33
    [106] Kochkodan V, Weigel W, Ulbricht M. Molecularly imprinted compositew membranes for selective binding of desmetryn from aqueous solutions. Desalination, 2002, 149: 323-328
    [107] Sergeyeva TA, Matuschewski H, Piletsky SA, et al. Molecularly imprintedpolymer membranes for substance-selective solid-phase extraction from water by surface photo-grafting polymerization. J. Chromatogr. A, 2001, 907: 89-99
    [108] Dong XC, Wanf N, Wang SL. et al. Synthesis and application of molecularly imprinted polymer on selective solid-phase extraction for the determination of monosulfuron residue in soil, J. Chromatogr. A, 2004, 1057:13-19
    [109] Liu ZS, Xu YL, Yan C, et al. Preparation and characterization of molecularly imprinted monolithic column based on 4-hydroxybenzoic acid for the molecular recognition in capillary electrochromatography. Anal. Chim. Acta, 2004, 523: 243-250
    [110] Baggiani C, Giraadi G, Giovannoli C, et al. Chromatographic characterization of molecularly imprinted polymers binding the herbicide 2, 4, 5-trichlorophenoxyacetic acid. J. Chromatogr. A, 2000, 883: 119-126
    [111] 赵美萍,李元宗,张新祥,等.双酚 A 分子印迹聚合物的制备和识别性能研究.高等学校化学学报,2003,7:1204-1206
    [112] Nilsson J, Spegel P, Nilsson S. Molecularly imprinted polymer formats for capillary electrochromatography. J. Chromatogr. B, 2004, 804(1): 3-12
    [113] 徐伟箭,罗鹏,张正华.基于分子印迹技术的仿生化学传感器.高分子材料科学与工程,2002,18(6):16-19
    [114] Blanco-Lopez MC, Gutierrez-Fernandez S, Lobo-Castanon MJ, et al. Electrochemical sensing with electrodes modified with molecularly imprinted polymer films. Anal. Bioanal. Chem. 2004, 378(8): 1922-1928.
    [115] Sengeyeva KA, Piletsky SA, Brovko AA, et al. Conductimetric sensor for atrazine detection based on molecularly imprinted polymer membranes. Analyst, 1999, 124: 331-334
    [116] Tanya PD, Vladimir MM, Mathias V, et al. Impedometric herbicide sensors based-on molecularly imprinted polymers. Anal. Chim. Acta. 2001,435:157-162
    [117] Liao HP, Zhang ZH, Li H, et al. Preparation of the molecularly imprinted polymers-based capacitive sensor specific for tegafur and its characterization by electrochemical impedance and piezoelectric quartz crystal microbalance. Electrochimica Acta, 2004, 49: 4101-4107
    [118] Pogorelova SP, Bourenko T, Kharitonov AB, et al. Selective sensing of triazine herbicides in imprinted membranes using ion-sensitive field-effect transistors and microgravimetric quartz crystal microbalance measurements. Analyst. 2002, 127(11):1484-91
    [119] Graham AL, Carlson CA, Edmiston PL. Development and charaterization of molecularly imprinted sol-gel materials for the selective detection of DDT. Anal. Chem., 2002, 74(2): 458-467
    [120] Lavignac N, Allender CJ, Brain KR. 4-(3-Aminopropylene)-7-nitrobenzofurazan: a new polymerisable monomer for use in homogeneous molecularly imprinted sorbent fluoroassays. Tetrahedron Letters, 2004, 45: 3625-3627
    [121] Gao SH, Wang W, Wang BH. Building fluorescent sensors for carbohydrates using template-directed polymerizations. Bioorganic Chemistry, 2001, 29: 308-320
    [122] Lin J, Yamada M. Chemilumineseent reaction of fluorescent organic compounds with KHSO5 using Cohalt (II) as catalyst and its first application to molecular imprinting. Ana1.Chem. 2000, 72 (6): 1148-1155.
    [123] Lin J, Yamada M. Chemiluminescent flow-through sensor for 1,10-phenanthroline based on the combination of molecular imprinting and chemiluminescence. Analyst, 2001, 126 (6):810-815
    [124] Zhou HJ, Zhang ZJ, He DY, et al. Flow chemiluminescence sensor for determination of clenbuterol based on molecularly imprinted polymer. Anal. Chim. Acta, 2004, 523: 237-242
    [125] Zhou HJ, Zhang ZJ, He DY, et al. Flow through chemiluminescence sensor using molecularly imprinted polymer as recognition elements for detection of salbutamol. Sens. Actuators B, 2005, 107: 798-804
    [126] Du J, Shen L, Lv J. Flow injection chemilonaineseence determination of epinephrine using epinephrine-imprinted polymer as recognition materia1. Ana1. Chim. Acta. 2003,489(2): l85-189
    [127] Lin CI, Joseph AK, Chang CK, et al. Molecularly imprinted polymeric film on semiconductor nanoparticles analyte detection by quantum dot photoluminescence. J.Chromatogr. A, 2004, 1027: 259-262
    [128] Jenkins AL, Uy OM, Murray GM. Polymer-based lanthanide luminescent sensor for detection of the hydrolysis product of the nerve agent Soman in water. Anal Chem. 1999, 71(2): 373-378
    [129] Jakusch M, Janotta M, Mizaikoff B. Molecularly imprinted polymers and infrared evanescent wave spectroscopy: A chemical sensors approach. Ana1.Chem. 1999, 71:4786-4791.
    [130] Luo CH, Liu MQ, Mo YC, et al. Thickness-shear mode acoustic sensor foratrazine using molecularly imprinted polymers as recognition element. Anal. Chim. Acta, 2001, 428: 143-148
    [131] 刘展眉,陈睿,江纪修.有机磷农药的压电检测法的研究.华南师范大学学报(自然科学版),1993,3:35-38
    [132] 刘展眉,林近添.敌敌畏的 LB 气敏感膜压电晶体传感器的测定.分析测试学报,1998,17(5):66-68
    [133] Feng L, Liu YJ, Tan YY, et al. Biosensor for the determination of sorbitol based on molecularly imprinted electrosynthesized polymers. Biosens. Bioelectron. 2004, 19:1513-1519
    [134] Ling TR, Syu YZ, Tasi YC, et al. Size-selective recognition of catecholamines by molecular imprinting on silica-alumina gel. Biosens Bioelectron. 2005, 21(6): 901-907.
    [135] Chianella I, Piletsky SA, Chen TB, et al. MIP-based solid phase extraction cartridges combined with MIP-based sensors for the detection of microcystin-LR. Biosens. Bioelectron. 2003, 18: 119-127
    [136] Ebarvia BS, Sevilla F. Piezoelectric quartz sensor for caffeine based on molecularly imprinted polymethacrylic acid. Sens. Actuators B. 2005, 107: 782-790
    [137] Matsui J, Akamatsu K, Hara N, et al. SPR sensor chip for detection of small molecules using molecularly imprinted polymer with embedded gold nanoparticles. Anal. Chem. 2005,77 (13): 4282-4285
    [138] Hillberg AL, Brain KR, Allender CJ. Molecular imprinted polymer sensors: implications for therapeutics. Adv Drug Deliv Rev. 2005, 57(12): 1875-1889.
    [139] 曲琦,邓桂茹,张秋燕.分子印迹聚合物在模拟酶催化中的应用.武警医学院学报,2003,12(3):229-230
    [140] 余建华,黄启斌,马德君,等.新型分子印迹模拟抗体酶对羧酸酯的催化水解.自然科学进展,2001,11(1):101-104
    [141] Yamazaki T, Yilmaz E, Mosbach K, et al. Towards the use of molecularly imprinted polymers containing imidazoles and bivalent metal complexes for the detection and degradation of organosphotriester pesticides. Anal. Chim. Acta. 2001, 435: 209-214
    [142] Cheng Z, Zhang L, Li Y. Synthesis of an enzyme-like imprinted polymer with the substrate as the template, and its catalytic properties under aqueous conditions. Chemistry. 2004, 10(14): 3555-3561.
    [143] Takeuchi T, Ugata S, Masuda S, et al. Atrazine transformation using synthetic enzymes prepared by molecular imprinting. Org Biomol Chem. 2004, 2(18): 2563-2566.
    [144] 董文国,张敏莲,刘铮.分子印迹技术及其在生物化工领域的应用现状与展望.化工进展,2003,22(7):683-688
    [145] Sellergren B, Allender CJ. Molecularly imprinted polymers: a bridge to advanced drug delivery. Adv Drug Deliv Rev. 2005, 57 (12): 1733-1741.
    [146] Bengtsson H, Roos U, Andersson LI. Molecular Imprint Based Radioassay for Direct Determination of S-Propranolol in Human Plasma. Anal. Commun. 1997, 34: 233-235
    [147] Dichert FL, Lieberzeit P, Miarecka SG, et al. Synthetic receptors for chemical sensors-subnano- and micrometer patterning by imprinting techniques. Biosens. Bioelectron. 2004, 20: 1040-1044
    [148] 姜忠义,吴洪. 编著.分子印迹技术,北京:化学工业出版社,2003,114-117
    [149] Liao JL, Wang Y, Hjertin S. A novel support with artificially created recognition for the selective removal of proteins and for affinity chromatography. Chromatographia, 1996, 42 (5/6):259-262
    [150] Glad M, Norrl?w O, Sellergren B, et al. Use of silane monomers for molecular imprinting and enzyme entrapment in polysiloxane-coated porous silica. J. Chromatogr., 1985, 347:11-23.
    [151] Kempe M, Glad M, Mosbach. K. An approach towards surface imprinting using the enzyme Ribonuclease A. J. Mol. Recogn., 1995, 8:35-39.
    [152] Shi H Q, Tsai WB, Garrison MD, et al. Template-imprinted nanostructured surfaces for protein recognition. Nature, 1999, 398 (6728):593-597
    [153] Li Y, Yang HH, You QH, et al. Protein recognition via surface molecularly imprinted polymer nano-wires. Anal. Chem., 2006, 78:317-320
    [154] Guo TY, Xia YQ, Hao G J, et al. Adsorptive separation of hemoglobin by molecularly imprinted chitosan beads. Biomaterials, 2004, 25:5905-5912.
    [155] Guo TY, Xia YQ, Hao GJ, et al. Chemically modified chitosan beads as matrices for adsorptive separation of proteins by molecularly imprinted polymer. Carbohydrate Polymers, 2005, 62:214-221
    [156] Shiomi T, Matsui M, Mizukami F, et al. A method for the molecular imprinting of hemoglobin on silica surfaces using silanes. Biomaterials, 2005, 26: 5564-5571
    [157] Pang XS, Cheng GX, Li RS, et al. Bovine serum albumin-imprintedpolyacrylamide gel beads prepared via inverse-phase seed suspension polymerization. Anal. Chim. Acta, 2005, 550:13-17
    [158] Rachkov A, Minoura N. Towards molecularly imprinted polymers selective to peptides and proteins. The epitope approach. Biochimica et Biophysica Acta, 2001, 1544:255-266
    [159] Rachkov A, Hu MJ, Bulgarevich E, et al. Molecularly imprinted polymers prepared in aqueous solution selective for [Sar(1),Ala(8)]angiotensin II. Anal. Chim. Acta, 2004, 504:191-197
    [160] Tai DF, Lin CY, Wu TZ, et al. Recognition of dengue virus protein using epitope-mediated molecularly imprinted film. Anal. Chem., 2005,77:5140-5143
    [161] Slinchenko O, Rachkov A, Miyachi H, et al. Imprinted polymer layer for recognizing double-stranded DNA. Biosens. Bioelectron., 2004, 20:1091-1097
    [162] Ogiso M, Minoura N, Shinbo T, et al. Detection of a specific DNA sequence by electrophoresis through a molecularly imprinted polymer. Biomaterials, 2006, 27(22): 4177-4182
    [163] Aheme A, Alexander C, Payne M J, et al. Bacterial-mediated lithography of polymer surfaces. J. Am. Chem. Soc., 1996, 118(36):8771-8772
    [164] Dickert FL, Hayden O. Bioimprinting of polymers and sol-gel phases. Selective detection of yeasts with imprinted polymers. Anal. Chem., 2002, 74 (6) : 1302-1306
    [165] Dickert FL, Hayden O. Bindeus R, et al. Bioimprinted QCM sensors for virus detection-screening of plant sap. Anal Bioanal. Chem., 2004, 378 : 1929-1934
    [166] Venton DL, Gudipati E. Influence of protein on polysiloxane polymer formation: Evidence for induction of complementary protein-polymer interactions. Biochim. Biophys. Acta, 1995, 1250 (2):126-136
    [167] Hawkins DM, Stevenson D, Reddy SM. Investigation of protein imprinting in hydrogel-based molecularly imprinted polymers (HydroMIPs). Anal. Chim. Acta, 2005, 542:61-65
    [168] Ou SH, Wu MC, Chou TC, et al. Polyacrylamide gels with electrostatic functional groups for the molecular imprinting of lysozyme. Anal. Chim. Acta, 2004, 504: 163-166
    [169] Zhao Z, Wang CH, Guo MJ, et al. Molecular imprinted polymer with cloned bacterial protein template enriches authentic target in cell extract. FEBS Lett., 2006, 580:2750-2754
    [170] Zhang ZH, Long YM, Nie LH, et al. Molecularly imprinted thin film self-assembled on piezoelectric quartz crystal surface by the sol–gel process for protein recognition. Biosens. Bioelectron., 2006, 21:1244-1251
    [171] 肖超渤,胡运华编著.高分子化学.武汉:武汉大学出版社.1998:196-207
    [172] Pérez-Moral N, Mayes A G. Comparative study of imprinted polymer particles prepared by different polymerization methods. Anal. Chim. Acta, 2004, 504:15-21
    [173] Ye L, Mosbach K. Molecularly imprinted microspheres as antibody binding mimics. React. Funct.Polym., 2001,48:149-157
    [174] 郭洪声,贾裕梅,曹现峰,何锡文.微球形 4-氨基吡啶分子模板聚合物的形成及结合性质研究.高等学校化学学报.2001,22(3):371-375
    [175] 戎非,李萍,袁春伟.沉淀聚合法制备右旋邻氯扁桃酸分子印迹聚合物微球.功能高分子学报.2005,18(4):607-612
    [176] USEPA. Preliminary Cumulative Risk Assessment of the Organophosphorus Pesticides. USEPA, Washington, DC, 2001.
    [177] Reyzer ML, Brodbelt JS. Analysis of fire ant pesticides in water by solid-phase microextraction and gas chromatography/mass spectrometry or high-performance liquid chromatography/mass spectrometry. Anal. Chim. Acta, 2001, 436: 11-20.
    [178] Díaz-Cruz MS, Barceló D. Highly selective sample preparation and gas chromatographic–mass spectrometric analysis of chlorpyrifos, diazinon and their major metabolites in sludge and sludge-fertilized agricultural soils. J. Chromatography A, 2006, 1132: 21-27.
    [179] Ballesteros E, Gallego M, Valcarcel M. Automatic gas chromatographic determination of N-methylcarbamates in milk with electron capture detection. Anal. Chem., 1993, 65:1773-1778.
    [180] Li H, Liu YJ, Zhang ZH, et al. Separation and purification of chlorogenic acid by molecularly imprinted polymer monolithic stationary phase. J.Chromatography A, 2005, 1098: 66-74.
    [181] Yan SL, Fang YJ, Gao ZX. Quartz crystal microbalance for the determination of daminozide using molecularly imprinted polymers as recognition element. Biosens. Bioelectron., 2007, 22: 1087-1091.
    [182] Alexander C, Andersson HS, Andersson LI, et al. Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003. J. Mol. Recognit. 2006, 19: 106-180.
    [183] Mahony JO, Nolan K, Smyth MR, et al. Molecularly imprinted polymers—potential and challenges in analytical chemistry. Anal. Chim. Acta, 2005, 534: 31-39.
    [184] Mayes AG, Whitcombe M J. Synthetic strategies for the generation of molecularly imprinted organic polymers. Adv. Drug Deliv. Rev., 2005, 57: 1742-1778.
    [185] Piletska E, Piletsky S, Karim K, et al. Biotin-specific synthetic receptors prepared using molecular imprinting. Anal.Chim. Acta, 2004, 504: 179-183.
    [186] Zhang LY, Cheng GX, Fu C. Synthesis and characteristics of tyrosine imprinted beads via suspension polymerization. React. Funct. Polym., 2003, 56: 167-173.
    [187] Ye L, Cormack PAG, Mosbach K. Molecular imprinting on microgel spheres. Anal. Chim. Acta, 2001, 435: 187-196.
    [188] Branch R A, Jacqz E. Subacute neurotoxicity following long term exposure to carbaryl. Am J Med, 1986, 80: 741-745.
    [189] Brooks M W, Tessier D, Soderstrom D, et al. Rapid method for the simultaneous analysis of chlorpyrifos, isofenphos, carbaryl, iprodione and triadimenfon in ground water by solid-phase extraction. J Chromatogr Sci, 1990, 28: 487-489.
    [190] Strait J R, Thomwall G C, Ehrich M. Sensitive high performance liquid chromatography analysis for toxicological studies with carbaryl. J Agric Food Chem 1991, 38: 710-713.
    [191] Lin H C, Tsai W C. Piezoelectric crystal immunosensor for the detection of staphylococcal enterotoxin B. Biosens Bioelectron , 2003, 18: 1479-1483.
    [192] Liu Y, Zhang W, Yu X, et al. Quartz crystal biosensor for real-time kinetic analysis of interaction between human TNF-α and monoclonal antibodies. Sens Actuators B, 2004, 99: 416-424.
    [193] Li Y B, Su X L. A self-assembled monolayer-based piezoelectric immunosensor for rapid detection of Escherichia coli O157:H7. Biosens Bioelectron, 2004, 19: 563-574.
    [194] Mannelli I, Minunni M,Tombelli S, et al. Quartz crystal microbalance (QCM) affinity biosensor for genetically modified organisms (GMOs) detection. Biosens Bioeletron, 2003, 18: 129-140
    [195] Slinchenko O, Rachkov A, Miyachi H, et al. Imprinted polymer layer for recognizing double-stranded DNA. Biosens Bioelectron , 2004, 20: 1091-1097
    [196] Kempe M. Antibod-mimicking polymers as chiral stationary phase in HPLC.Anal Chem, 1996, 68 (11): 1948-1953
    [197] Turiel E, Tadeo J L, Cormack P A G, et al. HPLC imprinted-stationary phase prepared by precipitation polymerisation for the determination of thiabendazole in fruit. Analyst, 2005, 130:1601-1607.
    [198] Malitesta C, Lostito I, Zambonin P G. Molecularly imprinted electrosynthesied polymers: New materials for biomimetic sensors. Anal. Chem, 1999, 71(7): 1366-1370
    [199] Yano K, Karube I. Molecularly Imprinted Polymers for Biosensor Applications. Trends Anal. Chem, 1999, 18 (3): 199-204.
    [200] Zhang Z H, Long Y M, Nie LH, et al. Molecularly imprinted thin film self-assembled on piezoelectric quartz crystal surface by the sol-gel process for protein recognition. Biosens. Bioelectron, 2006, 21:1244-1251.
    [201] Piacham T, Josell ?, Arwin H, et al. Molecularly imprinted polymer thin films on quartz crystal microbalance using a surface bound photo-radical initiator. Anal Chim Acta, 2005, 536: 191-196.
    [202] Vlatakis G, Andersson L I, Müller R, et al. Drug assay using antibody mimics made by molecular imprinting. Nature , 1993,361(6413): 645-647
    [203] Zhang H, Ye L, Mosbach K. Non-covalent molecular imprinting with emphasis on its application in separation and drug development. J Mol Recognit, 2006 ,19(4): 248-259
    [204] Ye L, Haupt K. Molecularly imprinted polymers as antibody and receptor mimics for assays, sensors and drug discovery. Anal Bioanal Chem, 2004, 378: 1887-1897.
    [205] Kempe H, Kempe M. Development and evaluation of spherical molecularly imprinted polymer beads. Anal Chem, 2006, 78: 3659-3666.
    [206] García-Calzón J A, Díaz-García M E. Characterization of binding sites in molecularly imprinted polymers. Sens Actuators B , 2007, 123: 1180-1194.
    [207] Pérez-Moral N, Mayes A G. Comparative study of imprinted polymer particles prepared by different polymerisation methods. Anal Chim Acta, 2004, 504: 15-21.
    [208] Sun H, Fung Y S. Piezoelectric quartz crystal sensor for rapid analysis of pirimicarb residues using molecularly imprinted polymers as recognition elements. Anal Chim Acta, 2006, 576: 67-76.
    [209] Wright A, Andrews PR, Titball R.W. Induction of Emetic, Pyrexic, andBehavioral Effects of Staphylococcus aureus Enterotoxin B in the Ferret. Infect. Immun. 2000, 682:386-2389.
    [210] 雷祚荣.葡萄球菌毒素和葡萄球菌毒素病.北京:中国科学技术出版社,1992.
    [211] Mosbach K, Molecular imprinting. Trends Biochem. Sci. 1994, 19:9-14.
    [212] 宁保安. 超抗原SEB抗肿瘤效应.军事医学科学院博士论文
    [213] Pang XS, Cheng GX, Zhang YH, et al. Soft-wet polyacrylamide gel beads with the imprinting of bovine serum albumin. React. Funct. Polym., 2006, 66: 1182-1188
    [214] 周艳梅,徐文国,童爱军.硅胶表面牛血清白蛋白分子印迹聚合物制备及分子识别性能.分析化学,2006,11:1551-1554
    [215] Bonini F, Piletsky S, Turner APF, et al. Surface imprinted beads for the recognition of human serum albumin. Biosens. Bioelectron., 2007, 22: 2322-2328.
    [216] Li F, Li J, Zhang SS, Molecularly imprinted polymer grafted on polysaccharide microsphere surface by the sol–gel process for protein recognition. Talanta, 2007, 74: 1247-1255
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.