纵坑切梢小蠹聚集信息素的合成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
信息素自从蚕蛾醇的发现到现在,已经有五十余年的发展了,并且有些已经成功地应用到综合治理中,还有些正在直接或间接地在昆虫管理中发挥作用。信息素的应用具有化学杀虫农药不可比拟的优势,对于环境没有污染,对于人类没有害处,对于害虫不会产生抗药性,具有专一的针对性,所以是一种可以持续发展的一种防治害虫的手段。
     本论文主要研究的是纵坑切梢小蠹的聚集信息素,主要以α-蒎烯为起始原料,合成了其聚集信息素的主要成分(-)-马鞭草烯酮、(+)-马鞭草烯酮、(-)-顺式马鞭草烯醇、(+)-顺式马鞭草烯醇、(-)-反式马鞭草烯醇、(+)-反式马鞭草烯醇。
     本文实验从(-)α-蒎烯和(+)α-蒎烯出发,以三氧化铬为氧化剂,N-羟基邻苯二甲酰亚胺为催化剂,催化氧化α-蒎烯,分别合成了两种构型的马鞭草烯酮,收率在57%左右。
     以上述合成出的马鞭草烯酮为原料,硼氢化钠为还原剂,在硝酸铈的催化下对马鞭草烯酮还原,进一步提纯后,得到相应的顺式马鞭草烯醇,产率在85%左右。
     从两种构型的α-蒎烯为原料,四醋酸铅作为氧化剂,与α-蒎烯的烯丙基位发生反应,合成相对应的反式马鞭草烯醇乙酸酯,产率在26%-35%,然后进一步对反式马鞭草烯醇乙酸酯进行低温碱性条件水解,可以得到顺式马鞭草烯醇,最终马鞭草烯醇的收率在19%-25%。
     通过本论文的实验工作达到了之前设计的预想,为以后的信息素研究提供了一些参考。自然界的多样性导致了信息素是一个庞大的系统,因此还有更多未知的东西有待于去发现,还有更多的信息素的合成方法和路径等待着人们去探索。
The pheromone has a history of more than 50 years since the identification of bombykol in 1959 made by Butenandt. Many of them have been practically and successfully used in the IPM (integrated pest management) systems as direct and indirect means for pest control. and yet the application is expected to spread wider worldwide in recent years. Pheromones come in a quite vast variety of chemical forms; therefore, their application has a rather large coverage. Compared with the traditional pesticide, pheromones act as an overwhelmingly superior role. Control of insects using pheromones can guarantee the public environmentally sound and chemical residue-free agricultural products, for pheromones are target-specific and not harmful to the livings.
     This dissertation mainly focuses on the synthesis of the major components of the aggregation pheromones of bark beetles Tomicus piniperda L. It contains two chapters.
     The first one describes the general historical development and the future of pheromones. The far-reaching significance is conveyed in this chapter as well.
     The second one, also the last chapter, is primarily about the design and operation of the synthetic work, which is summarized as below:
     1. (-)-verbenone and (+)-verbenone were synthesized with yield of from 40% to 57% by oxidation of (-)-a-pinene and (+)-a-pinene respectively. Chromium trioxide acts as the oxidant and N-Hydroxyphthalimied as the catalyst.
     2. (-)-verbenol and (+)-verbenol were synthesized with yield of from 80% to 90% by respective reduction of (-)-verbenone and (+)-verbenone using sodium borohydride as the reductant and cerium(III) trinitrate as the catalyst.
     3. (-)-cis-verbenyl and (+)-cis-verbenyl acetate were prepared with yield of from 26% to 35% using lead(IV) tetraacetate.
     4. (-)-trans-verbenol and(+)-trans-verbenol were prepared with yield of from 19% to 25% by saponification of (-)-cis-verbenyl and (+)-cis-verbenylacetate in the solution of potassium hydroxide and methanol at 0℃.
     The idea of using target-specific and environment-friendly chemicals for the management of insects has been a great driving motivation. And pheromones are just found and considered as this kind of chemicals. The challenge we are facing today is the production in large scale of the pheromone components and the development of appropriate dispenser system. which would cut the cost of the blends and facilitate their use for the sustainable insect management worldwide.
引文
1. Beth. A. Naturwise.,1932.20.177.
    2. Karlson. P.; Luscher. M. "Pheromones":a new term for a class of biologically active substances. Nature 1959.183:55-56.
    3. Butenandt. A.; Beckmann. R.;Stamm. D.; Hecker, E. Uber den Sexuallockstoff des Seidenspinners Bombyx mori:Reindarstellung und Konstitution. Z. Naturforsch Teil B 1959.14:283-284.
    4. Chapman, R. F. Entomology in the twentieth century. Annu. Rev. Entomol.2000. 45:261-285.
    5. Butler. C.G.:and R.K. Callow. Pheromones of the honey bee (Apis mellifera L.): the "inhibitory scent"of the queen. Proc. Roy. Entomol. Soc. London Ser.B.1968. 43:62-65.
    6. Francke, W.; Toth. M.; Szocs. G:Krieg, W.; Ernst, H.:Buschmann, E.; Z. Naturforsch.1988,43C,787.
    7. Zarbin. P. H. G.; Princival, J. L.:Lima. E. R.; Santos, A. A.; Ambrogi. B. G.; Oliveira. A. R. M.:Tetrahedron Lett.2004,45.239.
    8. Millar. J. G.; Midland. S. L,; Mcelfresh, J. S.. Daane. K. M. (2.3.4,4-Tetramethylcyclopentyl)methyl acetate, a sex pheromone from the obscure mealybug:First example of a new structural class of monoterpenes. J. Chem. Ecol.. 2005,31,2999-3005
    9. Millar. J.G.; Midland, S.L. Synthesis of the new pheromone of the sex pheromone of the obscure mealybug, the first example of a new structural class of monoterpenoids. Tetrahedron Lett.,2007,48,6377-6379
    10. Kunesch. G.; Zagatti. P.:Lallemand, J.Y.; Debal, A., Vigneron.J.P.Structure and Synthesis of the Wing Gland Pheromone of the Male African Sugar-Cane Borer-Eldana-Saccharina(Wlk)(Lepidoptera,Pyralidae). Tetrahedron lett..1981,22.5271-5274
    11. Kong. L.; Zhuang. Z.:Chen, Q.; Deng.H.;Tang. Z.; Jia. X.; Li. Y.. Zhai. H. A facile asymmetric synthesis of (+)-eldanolide. Tetrahedron Asymmetry. 2007,18,451-454
    12. Bowers WS, Noult LR et al.. Science,1972,177 (1121-2)
    13. Mimura T.. Kimura Y.. Nakai T. Synthetic utility of allylic thiocarbamates. Stereoselective synthesis of simple natural products including optical activity manicone and β-sinensal[J]. Chem.Lett.,1979.2:1361-1364
    14. Fales.H.M.; Crewe.R.M.:Blum.M.S.. Brand.J.M. Alarm Pheromones in Genus Manica Derived from Mandibular Gland. J. Insect. Physiol.,1979.18.1077-1088.
    15. Bestmann. H.J.:Attygalle. A. B.:Glasbrenner. J.; Riemer, R.. Vostrowsky, O. Pheromones.61.the Absolute-Configuration of the Ant Alam Pheromone Manicone. Angew.Chem. Int.Ed.Engl.,1987,26,784-785
    16. Das, B.; Banerjee, J.; Chowdhury, N.; Majhi, A.. Mahender, G. Synthetic applications of the Baylis-Hillman reaction:Simple and convenient synthesis of five important insect pheromones. Helv. Chim.Acta.2006,89.876-883
    17. Shimizu. N; Mori. N.;Kuwahara. Y. Biosci. Biotechnol. Biochem.,2003.67.1732
    18. Suzuki, T. A Facile Synthesis of 4,8-Dimethyldecanal, aggregation pheromone of flour beetles, and its analogs. Agric. Biol. Chem.,1981,45.2641-2643.
    19. Suzuki. T. Identification of the Aggregation Pheromone of Flour Beetles Tribolium-Castaneum and Tribolium-Confusum(Coleoptera. Tenebrionidae). Agric. Biol. Chem.,1981,45,1357-1363
    20. Mori, K.; Kuwahara. S.; Ueda, H. Pheromone synthesis-synthesis of all of the 4 possible stereoisomers of 4.8-Dimethyldecanal, the aggregation pheromone of the flour beetles. Tetrahedron,1983.39,2439-2444.
    21. Santangelo. E. M.; Correa. A. G.; Zarbin, P. H. G. Synthesis of (4R.8R)-and (4S,8R)-4,8-dimethyldecanal:the common aggregation pheromone of flour beetles. Tetrahedron Lett.,2006.47.5135-5137.
    22. Mori. K. Synthetic Microbial Chemistry.3. Revision of the Absolute-Configuration of a-Factor-the Inducer of Streptomycin Biosynthesis. Basing on the Reconfirmed (R)-Configuration of (+)-Paraconic Acid. Tetrahedron. 1983,39.3107-3109.
    23. Santangelo. E. M.:Zarbin. P. H. G.:Cass. Q. B.:Ferreira. J. T. B.:Correa. A.G. Synthesis of the four possible stereoisomers of N-2-methylbutyl-2-methylbutylamide. the sex pheromone of the longhorn beetle Migdoulus fryanus westwood. Synth. Commun.,2001.31.3685-3698
    24. Kinzer. G. W.:Fentiman. A. F.; Page. T. F.; Foltz, R. L.; Vite. J. P..Pitman. G. B. Bark Beetle Attractants-Identification Synthesis and Field Bioassay of a New Compound Isolated from Dendroctonus. Nature.1969.221,477-478.
    25. Mori. K. Synthesis pf Optically-Active Forms of Frontalin-Pheromone of Dendroctonus Bark Beetles. Tetrahedron,1975,31.1381-1384.
    26. Wood. D. L.; Browne. L.E.:Ewing. B,; Lindahl, K.:Bedard. W. D.:Tilden. P. E.; Mori. K.; Pitman. G. B.. Hughes. P. R. Western Pine Beetle-Specificity among Enantiomers of Male and Female Components of an Attractant Pheromone. Science.1976,192.896-898
    27. Prasad, K. R.:Chandrakumar. A., Anbarasan. P. Asymmetric synthesis of both enantiomers of alpha-methyl-alpha-methoxyphenylacetic acid from L-(+)-tartaric acid:formal enantioselective synthesis of insect pheromone (-)-frontalin. Tetrahedron Asymmetry.2006.17,1979-1984
    28. Hallett. R. H.; Perez. A. L.; Gries. G.; Gries. R.:Pierce. H. D.; Yue. J.; Oehlschlager, A. C.:Gonzales. L. M., Borden. J. H. Aggregation Pheromone of Coconut Rhinoceros Beetles, Oryctes-Rhinoceros(L)(Coleoptera, Scarabaeidae). J. Chem. Ecol..1995.21,1549-1570
    29. Morin. J. P.; Rochat. D.; Malosse. C.; Lettere. M.:deChenon. R. D.; Wibwo. H., Descoins. C. Ethyl 4-methyloctanoate, major component of Oryctes rhinoceros (L) (Coleoptera. Dynastidae) male pheromone. Comptes Rendus Acad. Sci. Ser. Ⅲ-Sci. Vie-Life Sci.,1996.319,595-602.
    30. Rochat. D.; Mohammadpoor, K.; Malosse. C.; Avand-Faghih, A.; Lettere, M.: Beauhaire, J.; Morin, J. P.; Pezier, A.:Renou, M., Abdollahi. G. A. Male aggregation pheromone of date palm fruit stalk borer Oryctes elegans.J.Chem. Ecol.,2004,30.387-407.
    31. Ragoussis, V.:Giannikopoulos. A.;Skoka. E., Grivas. P. Efficient synthesis of (+/-)-4-methyloctanoic acid, aggregation pheromone of rhinoceros beetles of the genus Oryctes (Coleoptera:Dynastidae, Scarabaeidae). J. Agric. Food Chem., 2007.55.5050-5052.
    32. Ikan. R.; Gottlieb. R.; Bergmann, E. D., Ishay. J. Pheromone of Queen of Oriental Hornet, Vespa Orientalis, J. Insect. Physiol.,1969.15,1709-1712.
    33. Sabitha. G.; Reddy, E. V.:Yadagiri. K.. Yadav, J. S. Total synthesis of insect pheromone (R)-4-dodecanolide and (S)-5-hexadecanolide. Synthesis,2006. 3270-3274.
    34. Sabitha. G.; Fatima, N.;Swapna, R., Yadav. J. S. Asymmetric total syntheses of (R)-(-)-argentilactone and (S)-5-hexadecanolide. Synthesis,2006,2879-2884.
    35. Pereira. A. R.. Cabezas, J. A. A new method for the preparation of 1,5-diynes. Synthesis of (4E,6Z,10Z)-4,6,10-hexadecatrien-l-ol. the pheromone component of the cocoa pod borer moth Conopomorpha cramerella. J. Org. Chem.,2005.70.2594-2597.
    36.蒋济隆,陈家威,黄锦霞应用聚合物Wittig试剂合成欧洲五米螟性信息素[J].化学学报,1988.46.372-374
    37. Tillman. J. A.; Holbrook. G. L.:Dallara, P. L.:Schal. C., Wood. D. L.:Blomquist. G. J.; Seybold, S. J., Endocrine regulation of de novo aggregation pheromone biosynthesis in the pine engraver. Ips pini(Say)(Coleoptera:Scolytidae) Insect Biochem. Molec. Biol.,1998.28,705-715.
    38. Rohmer. M.; Knani. M; Simonin. P.:Sutter. B.:Sahm. H. Isoprenoid biosynthesis in becteria, a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem. J..1993.295.517-524
    39. Rohmer. M.; Seeman, M.; Horbach, S.; Bringer-Meyer. S.; Sahm. H. Glyceraldehyde 3-phosphate and pyruvate as precursors of isoprenic units in an alternative non-mevalonate pathway for terpenoid biosynthesis. J. Am. Chem. Soc..1996.118.2564-2566.
    40. Schwender. J.; Seemann. M.:Lichtenthaler. H.K.; Rohmer. M. Biosynthesis of isoprenoids (carotenoids. sterols. prenyl side-chains of chlorophylls and plastoquinone) via a novel pyruvate/glyceraldehydes 3-phosphate non-mevalonate pathway in the green alga Scenedesmus obliquus. Biochem. J. 1996.316.73-80.
    41. Schwender. J.:Zeidler. J.; Groner. R.; Muller, C.:Focke. M.; Braun. S.; Lichtenthaler. F. W.; Lichtenthaler. H.K. Incorporation of 1-deoxy-D-xylulose into isoprene and phytol by higher plants and algae. FEBS Letters,1997,414, 129-134.
    42. Lichtenthaler. H. K.. Rohmer. M., Schwender. J. Two independent biochemical pathways for isopentenyl diphosphate and isoprenoid biosynthesis in higher plants. Physiologia Plantarum.1997,101.643-652.
    43. Lichtenthaler. H. K.. Schwender. J., Disch. A.. Rohmer. M. Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonate independent pathway. FEBS Letters,1997,400,271-274.
    44. Zeidler, J. G., Lichtenthaler, H. K., May, H. U., Lichtenthaler, F. W. Is isoprene emitted by plants synthesized via the novel isopentenyl pyrophosphate pathway? Z Naturforsch.,1997,52,15-23.
    45. Zarbin. P. H. G., Jose A. F. P.Villar. Correa. A. G. Insect Pheromone Synthesis in Brazil:an Overview. J. Braz. Chem. Soc.,2007,18.1100-1124.
    46. Boo. K. S., Park K. C. Insect semiochemical research in Korea:Overview and Prospects. Appl. Entomol. Zool.,2005.40(1):13-29
    47. Lee, S. W., Choi. K. H., Lee. D. H., Boo. K. S. Monitoring and control of two major fruit moth species with sex pheromone in Korean apple orchards. Korea-UK Bilateral Workshop on Chemical Ecology,2002.23-26.
    48. O'Dowd. D. J.. Green. P. T.. Lake. P. S. Invasional "melt-down" on an oceanic island. Ecol. Lett.,2003.6:812-817.
    49. Abbott. K. L. Alien ant invasion on Christmas Island. Indian Ocean:the role of ant-scale mutualisms in the dynamics of supercolonies of the yellow crazy ant. Anoplolepis gracilipes. Ph.D. Thesis.2004. Biological Sciences. Monash University, Melbourne. Australia.
    50. Sorensen. P. W.. Vrieze, L. A. The chemical ecology and potential application of the sea lamprey migratory pheromone. J. Great Lakes Res..2003.29(Supplement 1):66-84.
    51. Sorensen. P. W.. Stacey N. E. Brief review of fish pheromones and discussion of their possible uses in the control of non-indigenous teleost fishes. N.Z. J. Mar. Freshwater Res.,2004.38:399-417.
    52. Sorensen, P. W., Fine. J. M. Dvornikovs. V.. Jeffer. C. S., Shao. F., Wang. J., Vrieze. L. A.. Anderson. K. R.. Hoye. T. R. Mixture of new sulfated functions as a migratory pheromone in the sea lamprey. Nature Chemical Biology,2005.1. 324-328.
    53. Wagner, M. C., Jones, L. M. Twohey. M. B., Sorensen. P. W. A field test that verifies that pheromones can be useful for sea lamprey (Petromyzon marinus) control in the great lakes. Canadian Journal of Fisheries and Aquatic Science. 2006.63.476-479.
    1. Tilden. P. E.:Bedard, W. D. Effect of verbenone on response of Dendroctonus brevicomis to exo-brevicomin, frontalin, and myrcene. [J]. J. Chem. Ecol.1988. 14(1):113-122.
    2. Rudinsky. J. K.; Multiple function of the southern pine beetle pheromone verbenone. Eviron. Entomol.1993.2(4).511-514
    3. Paine, T. D.; Hanlon. C. C. Response of Dendroctonus brevicoins and IPS paraconfusus(Coleoptera:Scolytidate) to combinations of synthetic pheromone attractants and inhibitors verbenone and ipsdienol. J. Chem, Ecol.1991,17(11), 2163-2176.
    4. Wender, P. A.; Floreancig. P. E.; Glass. T. E. Natchus. M.G.; Shuker. A. J.; Sutton. J. M. Toward the synthesis of toxol and its analogs:Incorporation of non-aromatic C-rings in the pinene pathway. Tetrahedron Lett.1995,36, 4939-4942
    5. Illa. O.; Larena. A. A.; Baceiredo, A.; Branchadell. V.; Ortuno. R. M. Highly stereoselective and easy synthesis of enantiopure phosphoranyl oxiranes. Tetrahedron:Asymmetry 2007,18,2617-2620.
    6. Aguilera, J.; Moglioni, A. G.; Moltrasio. G. Y.; Ortuno, R. M. Stereodivergent synthesis of the first bis(cyclobutane) y-dipeptides and mixed y-oligomers. Tetrahedron:Asvmmetry 2008.19,302-308.
    7. Aguado, G. P.; Moglioni, A. G.; Brousse, B. N.; Ortuno, R. M. Synthesis and diastereoselective catalytic hydrogenation of optically active cyclobutyl α,β-dehydro-a-dipeptides. Tetrahedron:Asymmetry 2003.14,2445-2451.
    8. Aguado, G. P.;Moglioni. A. G.; Ortuno, R. M. Enantiodivergent synthesis of cyclobutyl-(Z)-α,β-dehydro-a-amino acid derivatives from (-)-cis-pinononic acid. Tetrahedron:Asymmetry 2003,14,217-223.
    9. Chapuis. C.;Jacoby. D. Catalysis in the preparation of fragrances and flavours. Applied Catalysis A:General 2001.221.93-117.
    10. Barton. D. H. R.:Wang. T. L. Novel allylic oxidation reagents. Tetrahedron Lett. 1994.35(29).5149-5152.
    11. Lajunen, M. K.; Koskinen. A. M. P. Co(Ⅱ)-catalyzed allylic oxidation of a-pinene by molecular oxygen:Synthesis of verbenone. Tetrahedron Lett.1994,35(25). 4461-4464.
    12. Lajunen. M. K.:Maunula. T.; Koskinen. A. M. P. Co(II) Catalyzed Oxidation of a-Pinene by Molecular Oxygen. Part 2. Tetrahedron 2000,56,8167-8171.
    13. Lajunen. M. K. Co(II) catalyzed oxidation of a-pinene by molecular oxygen Part III. J.Mol.Catal, A:Chem.2001.169,33-40.
    14. Lajunen. M. K.; Myllykoski. M.; Asikkala. J. Co(Ⅱ)-catalyzed oxidation of a-pinene by molecular oxygen Part IV. J. Mol. Catal. A:Chem.2003.198, 223-229
    15. Kuznetsova, L. I.; Kuznetsova,N. I.; Lisitsyn, A. S.; Beck. I. E.; Likholobov, V.A.; Ancel, J. E. Liquid-phase oxidation of a-pinene with oxygen catalyzed by carbon-supported platinum metals. Kinet. Catal.2007.48.38-44
    16. Robles-Dutenhefner. P. A.;da Silva. M. J.:Sales, L. S.:Sousa. E. M. B.: Gusevskaya. E. V. Solvent-free liquid-phase qutoxidation of monoterpenes catalyzed by sol-gel Co/SiO2. J. Mol. Catal. A:Chem.2004,217.139-144.
    17. McMorn, P.; Roberts. G..; Hutchings. G. J. Oxidation of a-pinene to verbenone using silica-titania Co-gel catalyst. Catal. Lett.2000.67.203-206
    18. Maksimchuk. N. V.:Melgunov, M. S.:Mrowiec-Bialon, J.; Jarzebski. A. B. Kholdeeva. O. A. H2O2-based allylic oxidation of a-pinene over different single site catalysts.J. Catal.2005,235,175-183.
    19. Casuscelli. S. G.; Eimer, G. A.; Canepa, A.; Heredia. A. C.; Poncio. C. E.; Crivello. M. E.; Perez. C. F.; Aguilar. A.; Herrero. E. R. Ti-MCM-41 as catalyst for a-pinene oxidation:Study of the effect of Ti content and H2O2 addition on activity and selectivity. Catalysis Today 2008.133-135.678-683.
    20. Allal. B. A.; Firdoussi. L. E.; Allaoud. S.; Karim, A.:Castanet. Y.; Mortreux. A. Catalytic oxidation of a-pinene by transition metals using t-butyl hydroperoide and hydrogen peroxide. J. Mol. Catal. A:Chem.2003,200.177-184.
    21. Shing. T. K. M.; Yeung. Y. Y.:Su. P. L.:Mild Manganses(III) Acetate Catalyzed Allylic Oxidation:Application to Simple and Complex Alkenes. Org. Lett.2006, 8(14),3149-3151.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.