柴达木盆地北缘新生代构造特征与构造演化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柴达木盆地位于古亚洲构造域与特提斯-喜马拉雅构造域结合部位,是西域板块的组成部分,在前人对柴达木盆地的研究中,地震剖面在分析柴达木盆地北缘构造变形方面的应用较少。结合前人资料,本文在分析柴达木盆地北缘具有代表性的地震剖面的基础上,对柴达木盆地北缘新生代构造特征与构造演化提出了如下认识:柴达木盆地北缘新生代主要形成北西西走向逆断层及其控制的断层传播褶皱、断层转折褶皱等断层相关褶皱,这些构造由祁连山山前向盆地内部,形成的时间逐渐变新。柴达木盆地新生代的挤压作用随时间不断向南西方向扩展:古新世-始新世,挤压作用主要发生在柴达木盆地北缘祁连山山前的北东背斜带中;渐新世,挤压作用的前锋开始进入中部背斜带,挤压作用集中区也向南西方向移动;中新世,挤压作用的前锋继续向南西方向移动并接近中部背斜带的南西边界,挤压集中区也进入中部背斜带;上新世-现在,挤压作用的前锋越过中部背斜带的南西边界。
Qaidam Basin is in the joint part of the ancient Asia tectonic domain and the Tethyan-Himalayan tectonic domain, it is a component of the Xiyu Plate. The basin is a NWW trending Mesozoic-Cenozoic fault-depression Basin with a stripe shape. A series of large faults separated it from adjacent tectonic units. The northeast boundary with South Qilian fold system is Saishiteng Mountain-Zongwulong Mountain fault; the northwest boundary with Tarim Basin is the Altyn Tagh strike-slip fault; in the southeast and southwest, E’la Mountain Fault and North Kunlun Mountain Fault separate it from West Qinling Mountain Orogenic Belt and East Kunlun Mountain Orogenic Belt. The structural features and structural evolution of the Qaidam Basin is always the concern of structural geologists. However, in the predecessors’study of the basin, seismic profiles are mostly used in the oil and gas exploration, while the usage of seismic profiles in the analysis of structural deformation is limited.
     Based on the interpretation of seismic profiles, this paper aimed at the determination of the Cenozoic structural features of the north margin of Qaidam Basin, and by integrating the reconstructed structural evolution of representative cross-section and predecessors’research, the paper discussed the process of structural deformation of Qaidam Basin in Cenozoic Era.
     In order to accomplish the objects above, this paper contains the following components: First, analyze 2-d cross sections comprehensively; then, according to the theory of growth fault related folds, plus drilling cores, logging data and core data, the author completed the comprehensive geological interpretation of seismic sections in order to study the Cenozoic structural features of the north margin of Qaidam Basin. On the basis of displacement-length theory and the study of growth-strata, the author analyzed the evolution of major fault-related folds, and then selected representative section for the reconstruction of structural evolution history, according to the reconstructed evolution history, the paper discussed the process of structural evolution of Qaidam Basin in Cenozoic Era.
     This paper selected 3 representative main survey lines and 1 contact survey line from the 2-D sections to fine geological interpretation, then, combined with the latest achievement of basin structure, the theory of growth fault related folds and the technique of equilibrium section recovery both home and abroad, the paper analyzed the main structural styles and structure combination in the north margin of Qaidam Basin, established the geometric and kinematical model of faults. By the reconstruction of structural evolution history of representative cross-sections, the paper summarized the process of structural evolution of the north margin of Qaidam Basin in Cenozoic Era, and got the following understanding:
     The Cenozoic structures in the north margin of Qaidam Basin are mainly NW trending, indicating the study area was mainly affected by the Cenozoic NE-SW trending compression.
     In the north margin of Qaidam Basin, the structures developed in Cenozoic are mostly fault-propagation folds and fault-bend folds, from northeast to southwest, that is, from the piedmont of Qilian Mountain to the inner basin, the formation time of these fault related folds are gradually later, indicating the compression in Cenozoic expanded to the southwest over time.
     Based on the combination the reconstructed structural evolution history of representative cross-section and other related data, the process of structural evolution of north margin of Qaidam Basin during Cenozoic Era is as following: from Paleocene to Eocene, compression mainly occurred in northeast anticline zone in the piedmont of Qilian Mountain in the northern margin of the Qaidam Basin; in Oligocene, the front of compression entered the central anticline zone, and the compression cluster also moved toward southwest; in Miocene, the front of compression continued to move toward Southwest, closing to the southwest border of the central anticline zone, and the compression cluster also entered the central anticline zone; from Pliocene to present, the front of compression exceeded the southwest border of the central anticline zone.
引文
[1] Christopher A. Hedlund. Fault-propagation, ductile strain, and displacement-distance relationships [J]. Journal of Structural Geology, 1997, 19, (3-4): 249-256.
    [2] David A. McConnell, Simon A. Kattenhorn and Lisa M. Benner. Distribution of fault slip in outcrop-scale fault-related folds, appalachian mountains [J]. Journal of Structural Geology, 1997, 19, (3-4): 257-267.
    [3] F. Storti, F. Salvini and K. McClay. Fault-related folding in sandbox analogue models of thrust wedges [J]. Journal of Structural Geology, 1997, 19, (3-4): 583-602.
    [4] Gautam Mitra and Aviva J. Sussman. Structural evolution of connecting splay duplexes and their implications for critical taper: an example based on geometry and kinematics of the Canyon Range culmination, Sevier Belt, Central Utah [J]. M.L. Cooke and D.D. Pollard. Bedding-plane slip in initial stages of fault-related folding [J]. Journal of Structural Geology, 1997, 19, (3-4): 503-521.
    [5] Francesco Salvini, Fabrizio Storti. The distribution of deformation in parallel fault-related folds with migrating axial surfaces: comparison between fault-propagation and fault-bend folding [J]. Journal of Structural Geology, 2001(23):25–32.
    [6] John Suppe. Geomrty and kinematics of fault bend folding [J]. American Journal of Science. 1983, 283: 684-721.
    [7] John Suppe, George T. Chou and Stephen C.Hook. Rates of folding and faulting determined from growth strata [M]. McClay K R.Thrust tectonics. London: Chapman & Hall, 1992: 105-121.
    [8] Juan Contreras and Max Suter. A kinematic model for the formation of duplex systems with a perfectly planar roof thrust [J]. Journal of Structural Geology, 1997, 19, (3-4): 269-278.
    [9] Karl Mueller and Peter Talling. Geomorphic evidence for tear faults accommodating lateral propagation of an active fault-bend fold, Wheeler Ridge, California [J]. Journal of Structural Geology, 1997, 19, (3-4): 397-411.
    [10] Marcelo Garcia, Gérard Hérail. Fault-related folding, drainage network evolution and valley incision during the Neogene in the Andean Precordillera of Northern Chile [J]. Geomorphology, 2005, 65: 279– 300.
    [11] M.L. Cooke and D.D. Pollard. Bedding-plane slip in initial stages of fault-related folding [J]. Journal of Structural Geology. 1997, 19, (3-4): 567-581.
    [12] Thomas X. Homza and Wesley K. Wallace. Detachment folds with fixed hinges and variable detachment depth, northeastern Brooks Range, Alaska [J]. Journal of Structural Geology, 1997, 19(3-4): 337-354.
    [13]何登发, John Suppe,贾承造.断层相关褶皱理论与应用研究新进展[J].地学前缘, 2005, 12(4): 353-364.
    [14]管树巍,李本亮,何登发,汪新, John Suppe.复杂构造解析中的几何学方法与应用[J].地质科学, 2007, 42(4):722-739.
    [15]陈剑,卢华复,于景宗,王胜利.断层相关褶皱的几何学模型及其应用[J].地球学报, 2005, 26(1): 89-92.
    [16]周建勋,徐凤银,胡勇.柴达木盆地北缘中、新生代构造变形及其对油气成藏的控制[J].石油学报, 2003, 24 (1) : 19 - 24.
    [17]曾春林,姜波,张敏,尹成明王超勇.柴北缘构造活动及其磷灰石裂变径迹记录[J].石油天然气学报. 2009.31(2): 20-24.
    [18]高先志,陈发景,马达德,汪立群,刘震.中、新生代柴达木北缘的盆地类型与构造演化[J].西北地质, 2003, 36(4): 16-24.
    [19]李相博,袁剑英,陈启林,王琪,李斌,孟自芳.柴达木盆地新生代成盆动力学模式[J].石油学报, 2006, 27(3): 6-10.
    [20]尹安,党玉琪,陈宣华,汪立群,蒋武明,蒋荣宝,王小凤,周苏平,刘明德,马立协.柴达木盆地新生代演化及其构造重建—基于地震剖面的解释[J].地质力学学报, 2007, 13(3): 193-211.
    [21]沈亚,陈元忠,孙维军,李艳明,管俊亚,覃素华.柴达木盆地地震地质研究新进展[J].石油地球物理勘探, 2008, 43(增刊1): 146-150.
    [22]狄恒恕,王松贵.柴达木盆地北缘中、新生代构造演化探讨[J].地球科学, 1991, 16(5): 533-539.
    [23]汤良杰,金之钧,张明利,张兵山,由福报,骆静.柴达木震旦纪-三叠纪盆地演化研究[J].地质科学, 1999, 34(3): 289-300.
    [24]刘志宏,杨建国,万传彪,刘振文,张立国.柴达木盆地北缘地区中生代盆地性质探讨[J].石油与天然气地质, 2004, 25(6): 125-129.
    [25]刘志宏,万传彪,杨建国,刘振文,高军义.柴达木盆地北缘地区新生代构造特征及变形规律[J].地球科学, 2005, 40(3): 404-414.
    [26]罗群.柴达木盆地成因类型探讨[J].石油实验地质, 2008, 30(2): 115-120.
    [27]夏文臣,袁小平.柴达木侏罗系的构造层序及前陆盆地演化[J].石油与天然气地质, 1998, 19 (3) :173-180
    [28]金之钧,李京昌.柴达木盆地新生代波动过程及与油气关系[J].地质学报, 2006, 80 (3) : 359-365
    [29]任收麦,葛肖虹,刘永江,乔德武,尹成明, Franz NEUBAUER, Johann GENSER.柴达木盆地北缘晚中生代—新生代构造应力场—来自构造节理分析的证据[J].地质通报, 2009, 28(7): 877-887.
    [30]王胜利,李维锋,魏东涛,谭彦虎,卢华复.柴达木盆地中新世中期以来构造的运动学模型[J].南京大学学报(自然科学), 2008, 44(1): 25-41.
    [31]汪劲草,胡勇,刘云田.多世代旋转正断层对断陷盆地沉积迁移的控制—柴达木早、中侏罗世盆地性质[J].地质学报, 2008, 80(8): 1141-1148.
    [32]卢华复,贾东,陈楚铭,等.库车新生代构造性质何变形时间[J].地学前缘, 1999, 6(4): 215-221.
    [33]肖安成,李启明,董大忠.中国西北含油气盆地周缘滑脱逆冲褶皱带忠的油气聚集[J].矿物岩石, 1998, 18(1): 60-65.
    [34]刘栋梁,方小敏,王亚东,张伟林,高军平.平衡剖面方法恢复柴达木盆地新生代地层缩短及其意义[J].地质科学, 2008, 43 (4): 637-647.
    [35]陈世悦,徐凤银,彭德华.柴达木盆地基底构造特征及其控油意义[J].新疆石油地质, 2000, 21(3): 175-179.
    [36]戴俊生,曹代勇.柴达木盆地构造样式的类型和展布[J].西北地质科学, 2000, 21 (2): 57-63.
    [37]刘志宏,王芃,刘永江,赵呈祥,高军义,万传彪.柴达木盆地南翼山—尖顶山地区构造特征及变形时间的确定[J].吉林大学学报(地球科学版), 2009, 39(5): 796-802.
    [38]戴俊生.柴达木盆地构造样式控油作用分析[J].石油实验地质, 2000, 22(2): 121-124.
    [39]曹国强,陈世悦,徐凤银,彭德华,袁文芳.柴达木盆地西部中-新生代沉积构造演化[J].中国地质, 2005, 32(1): 33-40.
    [40]徐凤银,尹成明,巩庆林,沈亚.柴达木盆地中、新生代构造演化及其对油气的控制[J].石油地质, 2006, 6: 9-16, 37-38.
    [41]何登发,杨庚,管树巍,石昕,张朝军,王桂宏,王晓波.前陆盆地构造建模的原理与基本方法[J].石油勘探与开发, 2005, 32(3): 7-14.
    [42]翟光明,徐凤银,李建青.重新认识柴达木盆地力争油气勘探获得新突破[J].石油学报, 1997, 18(2):1-7.
    [43]曹运江,陆廷清,牟中海,黄继祥,胡受权。柴达木盆地北缘构造型式及油气勘探前景[J].西南石油学院学报, 2000, 22(3):9-12.
    [44]中华人民共和国区域地质调查报告大柴旦幅、达布逊湖幅[R].西宁:青海省地质局第一区调队, 1980.
    [45]中华人民共和国区域地质调查报告大怀头他拉幅[R].西宁:青海省地质局第一区调队, 1980.
    [46]柳行军.海拉尔盆地乌尔逊凹陷构造特征、变形序列及其与沉积作用的关系[D].长春:吉林大学地球科学学院,2007.
    [47]李晓海.内蒙古拉布达林盆地构造特征与变形演化序列[D].长春:吉林大学地球科学学院,2008.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.