Ni_3Si基复合材料的激光原位合成与组织性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Ni_3Si金属间化合物具有优异的抗二氧化硫腐蚀性能以及良好的高温抗氧化性能,是一种潜在的高温结构材料,有望在石油化工、冶金、航空航天等要求耐高温耐腐蚀场合得到应用,也可取代部分正在使用的比强度较差的高温结构材料。本课题利用先进的激光技术,应用合金化、复合化的方法对Ni_3Si金属间化合物进行研究。
     以不同比例的Ni、Si、Ti、Nb、C、Cr合金粉末为原料,采用横流CO_2激光器,在高温合金表面利用激光熔覆技术成功制备Ni_3Si(或Ni_3(Si,Ti))金属间化合物及其复合材料涂层。分别采用XRD、OM、SEM、EPMA和DSC等手段分析了涂层的相组成,显微组织,测试了涂层在室温下的耐磨性能;测试了涂层在硫酸溶液、NaCl溶液中的耐蚀性能;对涂层在1100℃下的高温抗氧化性能进行了评定,探讨了涂层的氧化机理。
     激光熔覆Ni75Si25合金粉末的相组成为Ni_3Si和Ni(Si)固溶体。适量的Cr、Ti、Nb合金元素加入Ni75Si25后,涂层的基本组成相不变,随着合金元素加入量的增加,涂层组织得到明显细化。其中,含Cr熔覆层组织中出现了少量的Ni_5Si_2:含5%Nb熔覆层组织中出现了Nb_3Ni_2Si。激光熔覆Ni78Si13Ti9合金粉末的相组成为Ni_3(Si,Ti)和Ni(Si)固溶体。Ni75Si25、Ni78Sil3Ti9熔覆层和基体GH864的平均显微硬度分别为740HV、470HV和350HV。
     激光熔覆Ni78Si13Ti9+[Ti+C]合金粉末制备了TiC/Ni_3(Si,Ti)基复合涂层。Ti与C优先反应形成TiC,组织结构分析中没有发现剩余的C存在。TiC以球状、棒状或花瓣状等形貌出现。
     激光熔覆Ni78Si13Ti9-WC合金粉末制备了(Ti,W)C/Ni_3(Si,Ti)基复合涂层。原位合成(Ti,W)C复相陶瓷的形成过程为:激光辐照下,部分熔融的WC与液态Ti反应生成TiC,在随后的冷却中,TiC析出长大时W替代Ti。(Ti,W)C保持TiC晶体结构类型。(Ti,W)C的形成与WC溶解于液Ti中的量有关。随WC添加量的提高,涂层中碳化物增多,硬度增加。
     激光熔覆Ni78Si19Nb3+[Nb+C]合金粉末制备了NbC/Ni_3Si基复合涂层。NbC以八面体、树枝晶、花瓣状的形态出现。Nb在涂层中有两方面的作用,一是Nb与C反应NbC;二是Nb固溶于组织中起到细化作用。当[Nb+C]的加入量大于30wt.%,组织中NbC分布不均匀,出现团聚,涂层开裂倾向性大。
     室温磨损试验表明,激光熔覆原位自生TiC(或NbC)陶瓷增强金属间化合物基复合涂层的磨损表现为显微切削、轻微粘着和碳化物局部破碎导致的磨粒磨损等。磨损过程中,陶瓷颗粒相可有效的承担载荷,颗粒相“原位”形成,与基体结合良好,耐磨性随熔覆层中增强相体积分数的增加而增加。
     在1100℃高温条件下,原位自生TiC(或NbC)/金属间化合物基复合涂层具有良好的抗氧化性能。氧化动力学曲线基本遵循抛物线规律。两种涂层在氧化初期的氧化产物均为NiO,但NiO不稳定;随着氧化时间的增加,NiO出现疏松、剥落;循环氧化100小时后TiC/Ni_3(Si,Ti)涂层的氧化物为TiO_2和少量的SiO_2,NbC/Ni_3Si涂层的氧化物SiO_2和极少量的Nb_2O_5。结合氧化产物和氧化层形貌初步提出了TiC(或NbC)/金属间化合物基复合涂层的氧化机理。
Intermetallic compounds based on Ni_3Si have been considered as the basis of high-temperature structural materials and chemical parts because the Ni_3Si displays an increasing strength with temperature increasing and shows excellent oxidation resistance and corrosion resistance in sulfur dioxide environments.In the present wok,Ni_3Si based intermetallic composites were investigated using metheds of alloying and of composite by laser cladding.
     The Ni_3Si based intermetallic composite coating was fabricated by laser cladding using the raw material of Ni,Si,Ti,Nb,C,Cr alloy powder at different ratio.
     The mierostructure of the laser clad intermetallic composite coating was characterized by XRD,OM,SEM,EPMA and DSC.The room temperature wear resistance of the coatings was evaluated under the sliding wear test condition,the high temperature isothermal oxidation resistance was tested at 1100℃in air.The wear and oxidation mechanisms were discussed.
     The laser clad Ni75Si25 coating which the microstructure consists of Ni_3Si/Ni_5Si_2 and Ni(Si).The microhardness of Ni75Si25 coating shows 740HV; while the substrate shows 350HV.With the addition of Cr the microstrueture of the coating is mainly composed of Ni(Si),Ni_3Si/Ni_5Si_2 and the Ni75Si25-5at.%Nb coating consist of Ni_3Si,Ni(Si),Nb_3Ni_2Si and Ni_5Si_2,Ni75Si25-5at.%Ti coating consist of Ni(Si)and Ni_3(Si,Ti).
     With the Cr,Ti and Nb addition,the microhardness of coatings was 700HV, 640HV,and 765HV respectively.
     The Ni78Si13Ti9+(Ti+C)clad layers were mainly composed of the Ni solid solution,Ni_3(Si,Ti)intermetallic compound and TiC carbide,the TiC was in-situ formed.TiC carbide was dispersed with global shape,clubbed shape,and flower-like shape.The crystal structure of TiC,the ratio of Ti/C,and the energy of laser beam play an important role in controlling the growth morphology of carbide. The volume fraction and the size of TiC carbide gradually increased from the bottom to the top of the clad layer.With the 20wt.%[Ti+C]addition,the microhardness of clad layer was 747HV.
     Phases of laser cladding Ni78Si13Ti9+WC were composed of Ni solid solution,Ni_3(Si,Ti)intermetallic compound and(Ti,W)C carbide.With increasing the percentage of WC,content of carbides formed in the coatings increased,the microhardness of clad layers was also enhanced.
     The NbC particle reinforced Ni_3Si composite coating was prepared by in situ contact reaction with preplaced powder mixtures of NioSi-Nb-C.It was found that compound material cladding coating mainly consists of NbC particles,Ni_3Si intermetallic and Ni solid solution.
     The NbC particle was about 2-4μm in size and dispersivly distributed in the coating with different morphologies.The microhardness of the clad layer showed a gradient increased with the increasing of[Nb+C]content.
     The wear mechanism of the particle reinforced Ni_3Si composite coatings were micro-cutting,slight adhesion and abrasive.During the wear process,carbide reinforcement serve as load-carring particles,carbide in-situ formed which have a good bonding with base.The friction coefficient decrease with the increasing of the carbide reinforcement.The carbide reinforced intermetallic matrix coatings exhibit excellent corrosion resistance.
     The coatings have an outstanding isothermal elevated temperature oxidation resistance in the high temperature addition.The oxidation kinetic curves mainly followed line-parabola rate law.
     In the initial course of the oxidation,the oxide scales mainly consisted of NiO,exposures up to 100h,the oxides which foemed in Ni-Si-Ti-C coatings consisted of TiO_2 and SiO_2,while the oxides which foemed in Ni-Si-Nb-C coatings consisted of SiO_2,the formation of SiO_2 under the NiO layer caused the NiO peeled.
引文
[1]N.S.Stoloff,C.C.Koch,C.T.Liu,et al.High-temperature ordered intermetailic alloys Ⅲ[J].Mater.Res.Soc.Symp.Proc.,1989,(133):77.
    [2]仲增墉.我国金属间化合物高温结构材料研究的进展[M].北京:机械工业出版社,1992,2.
    [3]C.T.Liu.Recent advances in ordered intermetallics[J].Materials Chemistry and Physics,1995,(42):77.
    [4]郭建亭,周兰章,李谷松.纳米金属间化合物NiAl的机械合金化合成及性能[J].金属学报,1999,(35):8.
    [5]Gonbran H A,Liic N,Mucklich F.Effects of particle size and pressure on the reactive sintering of RuAl intermetallic compound[J].Intermetallics,2004,12(5):555-562.
    [6]Ishiyama S,Buchkremer H P.The characterization of HIP and RHIP consolidated NiAl intermetallic compounds containing chromium particles[J].Journal of the Japan institute of metals,2004,68(9):831-837.
    [7]Verin A S,Verin M A.Intermetallic Ni_3Al and Fe_3Al with directional structure as future materials[J].Anti-corrosion methods and materials 2001,48(5):298-303.
    [8]刘福田,李兆前,黄传真.金属陶瓷复合涂层技术[J].济南大学学报(自然科学版),2002,16(1):84-91.
    [9]R.Anandkumar,A.Almeida,R.Colaco,et al.Microstructure and wear studies of laser clad Al-Si/SiC(p)composite coatings[J].Surface & Coatings Technology,2007,201:9497-9505.
    [10]薛玉芳,刘永长,宋广生等.激光熔覆技术的研究现状[J].粉末冶金技术,1998,16 3:209-212.
    [11]郑学坊.激光表面熔覆技术进展[J].上海冶金专科学校学报,1996,17(1):3-7.
    [12]A.Kaplan,H.Gedda,J.Powell.Melt-solid interactions in laser cladding and laser casting[J].Metallurgical and materials transactions B,2005,36(5):683-689.
    [13]李养良.TC4合金激光表面熔覆[西北工业大学硕士学位论文].西安:西北工业大学,2003.
    [14]Rappaz M,Hoadley A F A.A thermal model of laser cladding by powder injection[J].Metall.Trans.B,1992,23B(10):631-642.
    [15]胡壮麒,周尧和,乔万奇.凝固技术[M]北京:机械工业出版社,1998.
    [16]刘传云,陈浩,潘春旭等.激光熔覆钴基合金的凝固组织特征及性能研究[J].金属热处理,2001,26(12):10-13.
    [17]张松,李春彦,康煜平等.综述激光熔覆材料的若干问题[J].激光杂志,2002,23(3):5-9.
    [18]C.F.Marsden,Houdley,A.F.A.,Wagnière,J.-D.Process Analysis of Laser Beam Cladding[C].Proc.of ECLAT'90,1990,543.
    [19]E.Lugscheider,Bolender,H.,Hochmuth,K.,et al.Laser beam cladding:A flexible tool for local surface treatment[C].Proc.of ECLAT'94,1994,213-218.
    [20]A.Wissenbach Gasser,K.,Hoffmann,E.,et al.Investigation of phenomena taking place in laser surface alloying[C].Proc.of ECLAT'96,1996,287-299.
    [21]王德英,徐有容,张晓燕.激光熔覆Ni-Cr-Si-B-C系合金层微观组织和性能研究[J].功能材料,1998,29(4):393-396.
    [22]梁二军,晁明举,袁斌等.TiO_2对高硬度镍基合金激光熔覆层组织的影响[J].焊接学报,2003,24(4):28-32.
    [23]张春华,张松,文效忠等.2Cr13钢表面激光熔扭Co基合金组织及其性能[J].稀有金属材料与工程,2001,30(3):220-223.
    [24]郭伟,徐庆鸿,田锡唐.激光扫描速度对激光熔覆宏观质量的影响规律[J].航天工艺,1997,(4):1-4.
    [25]姚建铨,张三川,梁二军.激光熔覆进展与熔覆合金设计[J].激光技术,2002,26(3):205-207.
    [26]王家金.激光加工技术[M].北京:中国计量出版社,1992(11).
    [27]王华明,陈瑶.TiAl合金激光表面合金层中TiC凝固生长形态及机制研究[J].中国有色金属学报,2002,12(5):863-868.
    [28]Rawlings R D,Abboud J H.Functionally graded nickel-aluminide and iron-aluminide coatings produced via laser cladding[J].Journal of Materials Science,1995,(30):5931-5938.
    [29]张春华,张松,文效忠等.原位反应合成金属间化合物激光合金化层的组织及抗磨性能[J].摩擦学学报,2005,25(2):97-100.
    [30]吴国清,李子夫,黄正,等.镍基合金激光熔覆γ-TiAI基合金涂层组织研究[J].焊接技术,2004,33(4):16-17.
    [31]Kojiro F K,Keisuke U.Formation of surface layer based on Al_3Ti on aluminum by laser cladding and its compatibility with ceramics[J].Intermetallics,1999,7(5):553-559.
    [32]何宜柱,程广萍.钢基表面单道激光熔覆Fe_3Al金属间化合物的研究[J].铸造技术,2004,25(8):600-604.
    [33]程广萍,吴惠英,何宜柱.钢基表面激光熔覆Fe_3Al的组织结构[J].热处理,2004,19(3):31-34.
    [34]陈光南,张来启,孙祖庆等.激光熔覆原位合成α-Fe(Al)/Fe_3Al涂层的研究[J].金属热处理学报,2004,29(6):1-4.
    [35]蔡良续,王春敏,王华明.激光熔覆Ni_(31)Si_(12)/FeNi金属硅化物复合材料涂层显微组织与耐蚀性研究[J].应用激光,2002(6),22(3):275-277.
    [36]蔡良续,王春敏,王华明.激光熔覆Ni_2Si/Ni_3Si_2金属硅化物合金涂层显微组织与耐蚀 性[J].稀有金属材料与工程,2003(3),32(3):197-200.
    [37]蔡良续,王春敏,王华明.激光熔覆Ni-Si金属硅化物复合材料涂层显微组织与耐蚀性[J].中国有色金属学报,2002(5),12(1):183-187.
    [38]王华明,吕旭东.激光熔覆Mo_2Ni_3Si/NiSi金属硅化物复合材料涂层组织与耐磨性[J].稀有金属材料与工程,2003,32(10):848-851.
    [39]赵海云,刘元富,张凌云等.激光熔敷Ti_5Si_3/NiTi金属间化合物复合材料涂层组织与高温抗氧化性能研究[J].应用激光,2006,22(3):269-271.
    [40]杨启志,王俊英,林化春.金属基复合材料的进展、问题与前景展望[J].青岛建筑工程学院学报,1999,20(4):90-95.
    [41]严有为,魏伯康,傅正义等.Fe-Ti-C溶体中TiC颗粒的原位合成及长大过程研究[J].金属学报,1999,35(9):909-912.
    [42]张卫方,韩杰才,杜善义.SHS/PHIP制备TiC-Fe金属陶瓷的微观组织研究[J].复合材料学报,2001,(2):65-69.
    [43]Ch ii-Shyang Hwang,Tiew -Jui Liu.Microstructure and Mechanical Properties of NiA l/Al_2O_3 Composites[J].J Mater Res,1999,14(1):75-82.
    [44]Daniel E,Garcia,Silivia S.Synthesis of Novel Niobium Aluminize Based Composites[J].J Am Ceram Soc,1997,80(9):2248-2252.
    [45]曹 阳,李国军.金属间化合物高温结构材料的研究动向[J].材料导报,1994,(4):14-18.
    [46]许伯藩,李安敏.激光熔覆碳化物/金属基复合涂层裂纹的产生与控制[J].材料导报,2002,16(8):27-29.
    [47]涂得銮,王燕华,崔立山.激光制备金属/陶瓷复合层中的陶瓷相及作用机理[J].中国表面工程,1998,(4):29-33.
    [48]Na Chen,Sen Yang,Wenjin Liu,et al.Fabrication of nickel composite coatings reinforced with TiC particles by laser cladding[J].Surface and Coatings Technology,2004,183:254-260.
    [49]He Jinjiang,Zhang Qingmao,Liu Wenjin,et al.Microstructure characteristics of ZrC_2reinforced composite coating produced by laser cladding[J].Surface and Coatings Technology,2003,162(223):140-146.
    [50]何金江,张庆茂,刘文今.激光熔覆制备原位颗粒增强金属基复合表层组织性能的研究[J].应用激光,2002,22(2):109-112.
    [51]Minlin Zhong,Sen Yang,Wenjin Liu.TiC particulate composite coating produced in situ by laser cladding[J].Materials Science and Engineering A,2003,343:57-62.
    [52]李军,张光钧,李文戈.激光表面改性的发展趋势[J].金属热处理,2006,31(11):1-7.
    [53]S.Ozawa,R.Mukai,H.Yagi.Compatibility of NiSi in the self-aligned silicides process for deep submicrometer devices[J].Thin Solid Films,1995,270:567-572.
    [54]Y.Kaneno,K.Ohira,T.Takasugi.Microstructure,mechanical property and oxidation property in Ni_3Si-Ni_3Ti-Ni_3Nb multi-phase intermetallic alloys[J].Materials Science and Engineering A, 2005,399:332-343.
    [55]E.P.George,C.T.Liu,W.C.Oliver.Grain-boundary fracture and boron effect in Ni_3Si alloys [J].Intermetallics,1996,4(1):77-83.
    [56]Y.Kaneno T.Nakamura,H.Inoue,T.Takasugi.The effect of second-phase Ni solid solution on environmental embrittlement of L12-type Ni_3(Si,Ti)ordered alloys[J].Materials Science and Engineering A,2004,383:259-270.
    [57]M.Nagashima,T.Takasugi,O.Izumi.Strengthening and ductilization of Ni_3Si by the addition of Ti elements[J].Acta Metallurgica et Materialia,1990,38(5):747-755.
    [58]T.Takasugi.Microstructure and tensile properties of Ni_3(Si,Ti)alloys containing second phase dispersions[J].Materials Science and Technology,2000,16:73-80.
    [59]Tsau Jang.J.S.C,C.H.Effect of niobium additions on the fracture of Ni-19Si-based alloys [J].Materials Science & Engineering,1992,A153:525-531.
    [60]S.Hanada,T.Takasugi.The effect of Nb addition on environmental embrittlement of a Ni_3(Si,Ti)alloy[J].Intermetallics,May.2000,8(1):47-52.
    [61]Ou.C.J Jang.Jason.S.C,Cheng.C.Y.The evolution of microstructure change and mechanical properties for a nickel silicide based alloy doped with carbon and boron[J].Materials Science and Engineering,2002,A329-331:455-460.
    [62]Takasugi.T Ma.C.L,Hanada.S.Effects of boron and carbon additions on environmental embrittlement of a Ni_3(Si,Ti)alloy at ambient temperature[J].Materials Transactions,1995,36(1):30-35.
    [63]H Kawai T Takasugi,Y Kaneno.Mechanical and chemical properties of Ni_3Si and Ni_3(Si,Ti)alloys multiphased by chromium addition[J].Materials Science and Technology,ProQuest Science Journals,Jun 2001,17(6):671-680.
    [64]T.Takasugi.Microstructural control and mechanical properties of nickel silicides[J].Intermetallics,May.2000,8:575-584.
    [65]S.Rikukawa,T.Takasugi,S.Hanada.The boron effect on the superplastic deformation of Ni_3(Si,Ti)alloys[J].Scripta Metallurgica et Materialia,Apr.1991,25(4):889-894.
    [66]孙国雄,严新炎,张树格.Ti对燃烧合成Ni_3Si基金属间化合物组织结构的影响[J].特种铸造及有色合金,1995,(1):1-4.
    [67]马勤,朱雪斌,季根顺等.金属间化合物Ni_3Si合金的燃烧合成[J].甘肃工业大学学报,2002,28(3):27-29.
    [68]杨根仓,惠增哲,吕衣礼,等.Ni-Ni_3Si系近共晶合金深过冷形核规律[J].金属学报,1998,34(5):511-516.
    [69]H.Kawai,T.Takasugi,Y.Kaneno.The effect of Cr addition on mechanical and chemical properties of Ni_3Si alloys[J].Materials Science and Engineering A,June 2002,329-331:446-454.
    [70]M.Nagashima,T.Takasugi,O.Izumi.Strengthening and ductilization of Ni_3Si by the addition of Ti elements[J].Acta Metallurgica et Materialia,May.1990,38(5):747-755.
    [71]D.Shindo,T.Takasugi,O.lzumi.etc.Metallographic and structural observations in the pseudo-binary section Ni_3Si-Ni_3Ti of the Ni-Si-Ti system[J].Acta Metallurgica et Materialia,May 1990,38(5):739-745.
    [72]E.P.George and W.C.Oliver C.T.Liu.Grain-boundary fracture and boron effect in Ni3Si alloys[J],Intermetallics,1996,4(1):77-83.
    [73]C.Y.Chenga,Jason S.C.Jang a,Szu-Ko Wang.The effect of carbon microalloying on the microstructure and mechanical properties of a nickel silicide-based alloy[J].Materials Chemistry and Physics,August 2001,72(1):66-71.
    [74]S.K.Wong,J.S.C.Jang,P.Y.Lee.The effect of boron on the microstructure and mechanical behavior of an Ni-19Si-3Nb based alloy[J].Materials Science and Engineering A,2000,281:17-22.
    [75]张清军,赵炯,阎勇,等.烟气轮机叶片损伤的原因及对策[J].工业·生产(石化技术),2002,9(1):22-24.
    [76]叶锐曾,孙金贵,吴和元,等.烟气轮机防护涂层的研究及应用[J].石油化工设备技术,1996,17(6):36-41.
    [77]黄海波,徐爱群,王世栋.腐蚀冲蚀联合作用下GH864合金破坏行为的研究[J].材料科学与工艺,1997,5(2):53-56.
    [78]凌志光,曹卫杰.烟气轮机叶材气动冲蚀行为研究[J].上海工程技术大学学报,2002,16(2):83-87.
    [79]何宜柱,王绍辉.激光熔覆碳化物基金属陶瓷技术进展[J].安徽工业大学学报,2002,19(3):177-180.
    [80]B Karlsson,S Niederhauser.Mechanical properties of laser cladded steel[J].Materials Science and Technology,2003,19(17):1611-1616.
    [81]郭建亭,任维丽,周建.NiAl合金化研究进展[J].金属学报,2002,38(6):667.
    [82]Baker I,Padgett R A,Schulson E M.Auger electron spectroscopy study of Ni_3Si[J].Acta Metall,1989,23:1969-1975.
    [83]L.J.Chang,Jason S.C.Jang.Effect of carbon and boron on the precipitate microstructure and mechanical behavior of the Ni-19Si-3Nb based alloy[J].Intermetallics,2002,10:967-977.
    [84]T.Takasugi,M.Nagashima,O Izumi.Strength and ductilization of NiSi by the addition of Ti element[J].Acta Metall Mater,1990,38(5):747.
    [85]H.Kawai,T.Takasugi,Y.Kaneno.The effect of Cr addition on mechanical and chemical properties of Ni_3Si alloys[J].Materials Science and Engineering A,June 2002,329-331:446-454.
    [86]C.Y.Chenga,Jason S.C.Jang,Szu-Ko Wang.The effect of carbon microalloying on the microstructure and mechanical properties of a nickel silicide-based alloy[J].Materials Chemistry and Physics,August 2001,72(1):66-71.
    [87]T.Nakamura,Y.Kaneno,H.Inoue,T.Takasugi.The effect of second-phase Ni solid solution on environmental embrittlement of L12-type Ni_3(Si,Ti)ordered alloys[J].Materials Science and Engineering,2004,383A:259-270.
    [88]M.Wada,T.Takasugi.Microstructural effect on moisture-induced embrittlement of the Ni_3(Si,Ti)-based alloys[J].Materials Science and Engineering,2002,A329-331:523-531.
    [89]H.K.T.Takasugi,Y.Kaneno.,The effect of Cr addition on mechanical and chemical properties of Ni_3Si alloys[J].Materials Science and Engineering A,June 2002,329-331:446-454.
    [90]Ceccone G,Nicholas M.G,Peteves S.D,et al.The Brazing of Si_3N_4 with Ni-Cr-Si Alloys[J].J.Eur Ceram.Soc,1995,15(6):563-572.
    [91]L.Delaey.S.Van Dyck.Microstructureal evolution and its influence on the mechanical properties of a nickel silicide based intermetallic alloy[J],Intermetallics,1997,5:137-145..
    [92]郭立新,孙荣禄,董尚利,等.钛合金表面激光熔覆NiCrBSi+TiC复合涂层的组织研究[J].中国激光,2001,A28(3):275-278.
    [93]胡荣祖,史启祯.热分析动力学[M].北京:科学出版社,2001.
    [94]Starink M J.The determination of activation energy from liner heating rate experiment:a comparison of the accuracy of isoconversion methods[J].The determination of activation energy from liner heating rate experiment:a comparison of the accuracy of isoconversion methods.Thermochimica Acta,2003,404:163-176.
    [95]L.C.Lim,M.Qian,Z.D.Chen,et al.Parametric studies of laser cladding processes[J].Journal of Materials Processing Technology,Jan.1997,63(1-3):590-593.
    [96]J Bannan,Temple.R.I,Jones.R.In situ fabrication of titanium carbide reinforced copper MMC[J].Materials Science and Technology,2003,19(8):1148-1150.
    [97]C.F.Marsden,A.Frenk,J.D.Wagnière,et al.Influence of intermediate layer on the residual stress field in a laser clad[J].Surface and Coatings Technology,1991,45(1-3):435-441.
    [98]董奇志,张晓宇,胡建东,等.激光熔覆Ni基TiC强化复合材料中内生TiC颗粒的生长机理[J].应用激光,2001,21(4):237-239.
    [99]Shangguang D,Ahuja S,Stefanescu D M.An analytical model for the interation between partical and advancing solid/liquid interface[J].Metall Trans A,1992,23A:669-680.
    [100]陈光南,武晓雷.原位TiC/金属基激光熔覆涂层的微结构特征[J].金属热处理学报,1998,19(4):1-8.
    [101]吕维洁,张小农,张荻等.原位合成TiC/Ti基复合材料增强体的生长机制[J].金属学报,1999,35(5):536-540.
    [102]陈襄武.钢铁冶金物理化学[M].北京:冶金工业出版社,1990,89.
    [103]Nukami T,Fleming M C.In situ Synthesis of TiC Particulate Reinforced Aluminum Matrix Composite[J].Metallurgical and Materials Transaction,1995,26A:1877-1884.
    [104]Tong X C,Fang H S.Al-TiC Composites in situ Processed by Ingot Metallurgy and Rapid Solidification Technology:part1[J].Metallurgical and Materials Transaction,1998,29A:875-891.
    [105]傅恒志,刘林,史正兴.凝固参数对定向镍基高温合金中MC碳化物生长特性的影响[J].航空学报,1986,7(2):181-185.
    [106]陈瑶.小平面相凝固理论及TiC增强金属间化合物复合材料涂层组织与耐磨性[北京航空航天大学博士学位论文].北京:北京航空航天大学,2003.09.
    [107]Sen Yang,Wenjiu Liu,Minlin Zhong.Fabrication of in-situ synthesized TiC particles reinforced composite coating by powder feeding laser cladding[J].Journal of materials science,2005,(40):2751-2754.
    [108]钟敏霖,杨 森,刘文今.激光熔覆制备原位自生TiC颗粒强化Ni基合金复合涂层的研究[J].航空材料学报,2002,22(1):26-30.
    [109]郑启光,王忠柯,王涛.激光熔覆多元复合硬质合金覆层的组织结构[J].激光杂志,1999,20(6):52-53.
    [110]胡建华编.无机物热力学数据手册[M].北京:冶金工业出版社,2002.
    [111]Slebodnick P L,Cooper K P,Lucas K E.Microstructural inhomogeneities and sea water corrosion in laser-deposited Ti-6Al-4V alloy matrix/carbide particulate composite surfaces[J].Journal of Materials Science,1998,33:3805-3816.
    [112]Ocelik V,Vreeling J A,Dehosson J T M.Ti-6Al-4V strengthened by laser melt injection of WCp particles[J].Acta Materialia,2002,50:4913-4924.
    [113]Depaco J M,Guilemany J M,Nutting J.Characterization of the W_2C phase formed during the high velocity oxygen fuel spraying of a WC+12PctCo powder[J].Metallurgical and Materials Transactions A,1999,30(8):1913-1922.
    [114]Fuh J Y H LU L,Chen Z D.In situ formation of TiC composite using selective laser melting[J].Materials Research Bulletin,2000,35:1555-1561.
    [115]Barati M,Saidi A.Production of(W,Ti)C reinforced Ni-Ti matrix composites[J].Journal of Materials Processing Technology,2002,124:166-170.
    [116]付锐,樊丁,张建斌,等.激光熔覆原位自生TiC增强Ni_3(Si,Ti)金属间化合物复合涂层研究[J].兰州理工大学学报,2004,30(6):16-18.
    [117]K.Subramanian,J.Senthil Selvan,A.K.Nath,et al.Laser boronising of Ti-6Al-4V as a result of laser alloying with pre-placed BN[J].Materials Science and Engineering A,1999,260:178-187.
    [118]K.Subramanian,J.S.Selvan.High-temperature thermal barrier coating formation by laser alloying of CP-Ti with pre-placed Ni-SiC coating[J].Journal of materials science,2003,38: 4783-4801.
    [119]G.Soundararajan,J.Senthil Selvan,K.Subramanian.Laser alloying of aluminium with electrodepositcd nickel:optimisation of plating thickness and processing parameters[J].Surface and Coatings Technology,2000,124:117-127.
    [120]左铁钏.高强铝合金的激光加工[M].北京:国防工业出版社,2002.
    [121]吴新伟,曾晓雁,陶曾毅,等.激光熔覆铸造WC-Ni基合金中WC颗粒的烧损机理与评估[J].金属学报,1997,33(8):863-868.
    [122]李 强,陈彦斌,雷廷权,等.激光熔覆WCp/Ni-Cr-B-Si-C自熔合金复合涂层的显微结构及干滑动磨损[J].中国激光,1999,26(2):186-192.
    [123]陈康华,包崇玺,刘卫红.金属/陶瓷湿润性(上)[J].材料科学与工程,1997,15(3):6-10.
    [124]R.Vilar,R.Colaco.Laser rapid-alloy prototyping for the development of wear resistant Fe-Cr-C/NbC composite materials[J].Journal of laser applications,2003,15(4):267-272.
    [125]叶大伦.实用无机物热力学数据手册[M].北京:冶金工业出版社,2002.
    [126]Kazumasa Nishio,Tatsuya Tokunaga,Hiroshi Ohtani.Thermodynamic assessment of the Ni-Si system by incorporating ab initio energetic calculations into the CALPHAD approach[J].Computer Coupling of Phase Diagrams and Thermochemistry,2003,27:161-168.
    [127]Subramanian P R,Massalski T B,Okamoto H,et al.Binary-alloy phase diagrams[M].OH:ASM International,Materials park,1990.
    [128]金云学,李庆芬.钛合金中TiC晶体的配位多面体生长基元与生长习性[J].无机材料学报,2004,19(6):1249-1254.
    [129]齐慧滨,何业东.材料腐蚀与防护概论[M].北京:机械工业出版社,2005.
    [130]刘硕,张维平,马玉涛.激光熔覆颗粒增强金属基复合材料涂层强化机制[J].材料热处理学报,2005,26(1):70-73.
    [131]邵荷生,曲敬信.摩擦与磨损[J].北京:煤炭工业出版社,1992.
    [132]温诗铸.摩擦学原理[J].北京:清华大学出版社,1990.
    [133]M.Cruz,M.H.Staia,Narendra.B.Dahotre.Microstructural and tribological characterization of an A-356 aluminum alloy superficially modifiedby laser alloying[J].Thin Solid Films,2000377-378:665-674.
    [134]H.M.Wang,L.Q.Zhang.High-temperature sliding wear resistance of a Cr_3Si/Cr_(13)Ni_5Si_2multiphase intermetallic alloy[J].Materials Letters,2003,57:2710-2715.
    [135]A.D.Starkar.Friction and Wear[M].New York:Academic Press,1980,59-60.
    [136]裴宇韬,欧阳家虎,雷廷权等.TiNp/镍基合金复合耐磨涂层的激光熔覆[J].中国激光,1995,22(2):144-150.
    [137]Ph.Bertrand,A.Yakovlev,I.Smurov.Laser cladding of wear resistant metal matrix composite coatings[J].Thin Solid Films,2004,453-454:133-138.
    [138]刘秀晨,安成强.金属腐蚀学[M],北京:国防工业出版社,2002.
    [139]范少华,朱良俊.关于金属阳极钝化曲线测定实验中的几个问题[J].阜阳师范学院学报,2000,17(3):17-18.
    [140]曹楚南.腐蚀电化学原理[M].北京:化学工业出版社,2004.
    [141]化工部化工机械研究院主编.腐蚀与防护手册-腐蚀理论、实验及检测[M].北京:化学工业出版社,1987.
    [142]曹中秋,薛 荣,郑志国.Cu-60Fe-12Cr合金在含Cl~-介质中的电化学腐蚀行为[J].沈阳师范大学学报,2005,23(1):64-67.
    [143]姚素薇,姚颖悟,宋振兴.电沉积Nj-w合金在NaCl溶液中的腐蚀行为[J].材料工程,2006,9:42-44.
    [144]李晓刚,程学群,杜翠薇.316L不锈钢在含Cl~-高温醋酸溶液中的电化学行为[J].金属学报,2006,42(3):299-304.
    [145]王华明,段 刚.激光熔敷Cr_3Si/Cr_2Ni_3Si金属硅化物涂层耐磨性与耐蚀性研究[J].摩擦学学报,2002,22(4):245-249.
    [146]张传福,邬建辉.高能束流技术及其在腐蚀与防护中的应用[J].腐蚀科学与防护技术,2002,14(2):105-108.
    [147]陈鸿畴主编.金属腐蚀学[M].北京:北京理工大学出版社,1995.
    [148]何业东.材料腐蚀与防护概论[M].冶金工业出版社,2005.
    [149]R.Mitra.Mechanical behaviour and oxidation resistance of silicides[J].International Materials Reviews,2006,5(1):1-63.
    [150]何业东,朱日彰,齐慧滨.高温腐蚀及耐腐蚀高温材料[M].上海科学技术出版社,1995.
    [151]翟金坤.高温腐蚀[M].航空航天大学出版社,1994
    [152]陈磊,王富岗.抗高温氧化合金的研究进展[J].材料导报,2002,16(5):27.
    [153]Wen X Reddy R G,Divaher M.Isothermal oxidation of TiAl alloy[J].Metall.Mater.Trans,2001,32A:2357-2373.
    [154]M.F.Stroosnijder,V.A.C.Haanappel.The effect of iron implantation on the oxidation behaviour of TiAl-based intermetallic alloy at 900[J].Surface and Coatings Technology,1998,105:147-154.
    [155]S.Mrowec,Z.Grzesik,B.Rajchel,et al.The influence of aliovalent impurities on the oxidation kinetics of nickel at high temperatures[J].Journal of Physics and Chemistry of Solids,2005,66(1):115-120.
    [156]P.Nanni,D.L.Douglass,C.De Asmundis.Transition from internal oxidation to continuous-film formation during oxidation of dilute Ni-Si alloys[J].Oxidation of Metals,1987,28(5/6):309-328.
    [157]C.Coddet,A.M.Chaze.Influence of silicon on the oxidation of titanium between 550 and 700 degress [J]. Oxidation of Metal, 1987, 27 (1/2): 1-20.
    
    [158] Zhao Xinqing, Xu Jian, Gong Shengkai. The influence of Nb diffusion on the oxidation behavior of TiNiAlNb alloys with different TiNi ratio[J]. Materials Science and Engineering, 2007,A 458:381-384.
    
    [159] Jian Xu, Xinqing Zhao, Liang Tang, Shengkai Gong. High temperature oxidation behavior of NiTiNb intermetallic alloys[J]. lntermetallics, 2007, 15: 1105-1115.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.