金属钴及坡莫合金纳米环的微磁学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于磁性纳米环具有热稳定性好,没有高能的涡旋核,几乎没有杂散场且可以形成稳定的涡旋结构等特点,在高密度磁记录器件及微波传感器件等领域都有潜在的应用价值。因而深刻理解其磁化反转机制及高频特性成了近来研究的热点。而微磁学模拟是研究磁性物质磁化反转过程和高频动态响应的有力工具,因此在本论文中,我们用微磁学模拟软件OOMMF (3D)研究了磁性纳米环的静态及动态磁学特性。具体内容如下:
     对内半径50 nm,外半径100 nm,不同厚度的FCC结构金属Co纳米环,主要研究了在不同方向加外场时,体系的磁化反转过程及对应的反转模式。我们发现形状各向异性强烈的影响着磁体的反转机制,并且外场的方向也影响着磁滞回线的形状及磁矩分布。在环的面内加场时,厚度为10 nm的纳米环有较大的矫顽力与剩磁,剩磁态为onion态月.反转过程为两步反转:onion- vortex-onion。随着厚度的增大,纳米环的矫顽力与剩磁减小至0,反转过程为伴随着畴壁移动的两步反转,零场时形成vortex态。对于零场时形成vortex结构的纳米环,vortex态的成核场随着厚度的增大而增大。在厚度方向加场时,厚度为20 nm的磁体的反转过程为一致反转且剩磁态为vortex态。当厚度从200 nm增大到400 nm时,随着形状各向异性的增大,矫顽力与饱和场逐渐增大。反转过程较复杂,伴随着四个涡旋核的形成与移动。
     对内半径为9 nm,外半径15 nm的环状坡莫体系,研究了不同厚度对应的剩磁态及高频磁特性。当环的厚度从1nm增大至40 nm时,体系最稳定的平衡磁化结构分别为水平态、涡旋态、H态和轴向态。分别研究了沿面内和轴向加微波场时体系的共振峰数量、共振模式、共振频率和磁化率虚部与厚度的关系。对于平衡磁化结构为水平态的体系,在环面内加场时只得到一个共振峰,对应于体共振模式;在轴向加场时,得到两个共振峰且低频共振峰的频率与在面内加场时有同样的值,其高频共振峰对应于形状共振模式。对于平衡磁化结构为涡旋态的体系,在不同方向加场时分别只得到一个峰,对应于体共振模式。对于平衡磁化结构为轴向态的体系,在环面内加激发场时只得到一个共振峰,对应于形状共振模式,共振频率的值与变化趋势均符合基泰尔公式的计算结果。
Magnetic nanorings in flux closure states with negligible stray fields have significant advantage in advanced storage media, spintronic and advanced microwave technologies, as the highly energetic vortex core is removed. The key issue from both fundamental and technological viewpoint is to understand the magnetization reversal mechanisms and the high-frequency response. Micromagnetic simulation is suitable for investigating the magnetic reversal process and dynamic evolution of ferromagnetic materials. In this paper, the static and dynamic magnetic properties of nanorings are studied using 3D object oriented micromagnetic framwork OOMMF.
     The magnetic configrations and magnetization reversal mechanism in FCC-Co nanorings (R0=100 nm, Ri=50 nm) were investigated. It is found that the shape anisotropy has great influence on magnetization reversal mechanism, and the applied field directions have effect on the magnetic hysteresis and remanent states. As the applied field is in the plane of the ring, there are two stable onion states in the thin ring (t=10 nm). At the remanence, the ring is magnetized in the onion state. The simulated hysteresis loop showed a coercivity of 893 Oe and a remanent ratio of 0.833. The magnetic reversal process is a typical two-steps reversal. For the thicker rings (t=200,400 nm), the simulation results indicate that the reversal mechanism is different from that of thin rings, the reversal is via the nucleation and annihilation of vortex structure and a reversed domain wall, when the applied field is 0, the vortex structure is the stable state. The coercivity and remanent ratio reduced to 0 with the increase of thickness. When the applied field is parallel to the normal axis of the ring, the reversal mode of the thin ring (t=20 nm) is the coherent reversal mode. The coercivity and the remanent ratio increase with the augment of the thickness. For thicker rings(t=200,400 nm), the reversal mechanism is via the nucleation and annihilation of four vortex cores.
     For the small Permalloy ring (R0=15 nm, Ri=9 nm), There are four states for rings depending on the thickness:in-plane, vortex, H, and out-of-plane state. The emphasis is placed on the effect of ring thickness on the dynamic susceptibility spectra of each state. For the in-plane state, when a exponentially pulse is applied in the plane of the ring, there is only one resonance peak. When the exponentially pulse is along the normal axis, the system shows two resonance peaks. The main resonance frequencies have the same value. The high resonance peak corresponds to the shape mode. For the vortex state, there is only one resonance peak corresponding to the volume mode. For out-of-plane state, the investigated systems show one major resonance mode (shape mode) corresponding to the resonance frequency. The frequency of the shape mode converges to that of the Kittel prediction.
引文
[1]张立德,牟季美.纳米材料和纳米结构[M].北京科学出版社,2002.
    [2]白春礼.纳米科学与技术[M].云南科技出版社,昆明,1995.
    [3]Y. P. L, G. C. Hadjipanayis, C. M. Sorensen, K. J. Klabunde. Magnetic properties of fine cobalt particles prepared by metal atom reduction [J]. J. Appl. Phys.,1990, 67:4502.
    [4]Y. Wang, W. Mahler. Degenerate four-wave mixing of CdS/polymer composite [J]. Optics Communications,1987,61,3:233.
    [5]L. E. Brus. Electron-electron and electron-hole interactions in small semiconductor crystallites:The size dependence of the lowest excited electronic state [J]. J. Chem. Phys.,1984,80:4403.
    [6]B. Barbara, W. G. Wernsdorfer. Quantum tunneling effect in magnetic particles [J]. Curr. Opin. Solid State Mater. Sci.,1997,2:220-225.
    [7]K. J. Strnat, G. Hoffer, J. Oson, W. Ostertag. A family of cobalt based permanent magnet materials [J]. J. Appl. Phys.,1967,38:1001-1002.
    [8]M. Sagawa, S. Fujimura, N. Togawa, H. Yamamoto, Y. Matsuura. New material for permanent magnets on a base of Nd and Fe [J]. J. Appl. Phys.,1984,55: 2083-2087.
    [9]G. C. Hadjipanayis, R. C. Hazelton, K. R. Lawless. Cobalt-free permanent magnet materials based on iron rare earth alloys [J]. J. Appl. Phys.,1984,55:2073-2077.
    [10]松本光功.磁记录[M].科学出版社,1983.
    [11]C. P. Bean, J. D. Livingston, D. S. Rodbell. The anisotropy of very small cobalt particles [J]. J. Phys.,1959,20:298.
    [12]Y. F. Zheng, J. G. Zhu. Micromagnetics of spin valve memory cells [J]. IEEE. Trans. Magn.,1996,32:4237-4239.
    [13]J. G. Zhu, Y. E. Zheng. The micromagnetics of magnetoresistive random access memory:Spin dynamics in confined magnetic structures [M]. Heidelberg: Springer-Verlag Berlin,2002,83:289-326.
    [14]P. Weiss. Journ. de Phys. et Radium,1907,6:661.
    [15]W. F. Brown. Criterion for Uniform Micromagnetization [J]. J. Phys. Rev.,1957, 105:1479.
    [16]W. F. Brown. Micromagnetics [M]. Inter science Publishers, New York,1963.
    [17]W. F. Brown. Magnetostatic Principles in Ferromagnetism [M]. New York, 1962.
    [18]J. Fidler, T. Schrefl. Micromagnetic modeling-the current state of the art [J]. J. Phys. D:Appl. Phys.,2000,33:135-156.
    [19]E. D. Torre. Problems in physical modeling of magnetic materials [J]. Physica B. 2004,343:1-9.
    [20]
    [21]
    [22]
    [23]
    [24]R. Waster. Nanoelectronics and information Technology [M]. WILEY.VCH. 2003:593-600.
    [25]L. Zhang, H. Z. Wang, J. G. Li. Solution reduction synthesis and characterizations of HCP Co nanoplatelets [J]. Mater. Chem. Phys.,2009,116: 541-518.
    [26]C. Novo, A. M. Funston, I. P. Santos, L. M. L. Marzan, P. Mulvaney. Influence of the medium refractive index on the optical properties of single gold triangular prisms on a substrate [J]. J. Phys. Chem. C,2008,112:3.
    [27]K. Runge, Y. Nozaki, Y. Otani, H. Miyajima, B. Pannetier, T. Matsuda, A. Tonomura. High-resolution observation of magnetization processes in 2 μ(?) μm×0.04 μm permalloy particles [J]. J. Appl. Phys.,1996,79:5075.
    [28]A. J. Yin, J. Li, W. Jian, A. J. Bennett, J. M. Xu. Fabrication of highly ordered metallic nanowire arrays by electrodeposition [J]. Appl. Phys. Lett.,2001,79: 1039.
    [29]J. Gadbois, A. Hurst. The effect of end and edge shape on the Performance of Pseudo-spin valve memories [J]. IEEE. Trans. Magn.,1998,34:1066-1068.
    [30]D. K. Koltsov, R. P. Cowbum, M. E. Welland. Micromagnetics of ferromagnetic equilateral triangular prisms [J]. J. Appl. Phys.,2000,88:5315-5316.
    [31]R. Hertel, J. Kirschner. Magnetization reversal dynamics in nickel nanowires [J]. Phys. B,2004,343:206.
    [32]N. Vukadinovic, J. B. Youssef, M. Labrune. Neel-type domain wall excitation in perpendicular magnetization thin films [J]. Phys. Rev. B,2002,66:132418.
    [33]A. Wachowiak, J. Wiebe, M. Bode, O. Pietzsch, M. Morgenstern, R. Wiesendanger. Direct Observation of Internal Spin Structure of Magnetic Vortex Cores [J]. Science,2002,298:577.
    [34]C. J. Cerjan, A. Fernandez, M. Gibbons, M. A. Wall. Magnetic domain structure and magnetization reversal in submicron-scale Co dots [J]. J. Magn. Magn. Mater.,1998,190:71.
    [35]A. SMani, D. Geerpuram, A. Domanowski, V. Baskaran, V. Metlushko. Magnetic random access memory design using rings with controlled asymmetry [J]. Nanotechnology,2004,15:S645.
    [36]J. G. Zhu, Y. F. Zheng, G. A. Prinz. Ultrahigh density vertical magnetoresistive random access memory [J]. J. Appl. Phys.,2000,87:6668.
    [37]M. H. Park, Y. K. Hong, B. C. Choi, M. J. Donahue, H. Han, S. H. Geel. Vortex head-to-head domain walls and their formation in onion-state ring elements [J]. Phys. Rev. B,2006,73:094424.
    [38]J. Monroe, G. Dataquest. Alchemy and rigorous science:The evolution of hard disk drivers [J]. IDEMA,6:15,2003.
    [39]L. Guo, F. Liang, N. Wang, D. S. Kong, S. M. Wang, L. He, C. Chen, X. M. Meng, Z. Y. Wu. Preparation and characterization of ring-shaped Co nanomaterials [J]. Chem. Mater.,2008,20:5163-5168.
    [40]L. J. Heyderman, M. Kl(?)aui, B. N(?)ohammer, C. A. F. Vaz, J. A. C. Bland, C. David. Fabrication of nanoscale magnetic ring structures and devices [J]. Microelectronic Engineering,2004,73:780-784.
    [41]N. Vukadinovic, J. B. Youssef, M. Labrune. Neel-type domain wall excitation in perpendicular magnetization thin films [J]. Phys. Rev. B,2002,66:132418.
    [42]G. Mohler, A. W. Harter. Micromagnetic investigation of resonance frequencies in ferromagnetic particles [J]. J. Appl. Phys.,2005,2005,97:10E313.
    [43]N. Vukadinovic, F. Boust. Micromagnetic simulations of vortex-state excitations in soft magnetic nanostructures [J]. Phys. Rev. B,2004,70:172408.
    [44]J. B. Wang, B. Zhang, Q. F. Liu, Y. Ren, R. L. Liu. Micromagnetic calculations of dynamic susceptibility in ferromagnetic nanorings [J]. J. Appl. Phys.,2009,105: 083908.
    [1]R. P. Boardman, H. Fangohr, S. J. Cox, A. V. Goncharov, A. A. Zhukov, P. A. J. de Groot. Micromagnetic simulation of ferromagnetic part-spherical particles [J]. J. Appl. Phys.,2004,95:11.
    [2]A. Aharini.铁磁性理论导论[M].2002.
    [3]W. Heisenberg, Z. Physik.1931,69:287.
    [4]姜寿亭,李卫.凝聚态磁性物理[M].2003.
    [5]W. F. Brown. Micromagnetics [M]. Interscience Publishers, New York,1963.
    [6]R. Kikuchi. On the minimum of magnetization reversal time [J]. J. Appl. Phys., 1956,27.
    [7]M. J. Donahue, D. G. Porter. OOMMF User's Guide [M]. Version 1.2a4.
    [8]A. Barman, V. V. Kruglyak, R.J. Hicken, J. Scott, M. Rahman. Dependence of spatial coherence of coherent suppression of magnetization precession upon aspect ratio in Ni81Fe19 microdots [J]. J. Appl. Phys.,2005,97:10A710.
    [9]R. Herte. Micromagnetic simulations of magnetostatically coupled nickel nanowires [J]. J. Appl. Phys.,2001,90:5752.
    [10]R. Antos, Y. Otani. Simulations of the dynamic switching of vortex chirality in magnetic nanodisks by a uniform field pulse [J]. Phys. Rev. B,2009,80:140404.
    [11]A. Barman, V. V. Kruglyak, R. J. Hicken, J. M. Rowe, A. Kundrotaite, J. Scott, M. Rahman. Imaging the dephasing of spin wave modes in a square thin film magnetic element [J]. Phys. Rev. B,2004,69:174426.
    [12]J. G. Zhu, W. Vavra, A. Hurst. The effect of end and edge shape on the performance of pseudo-spin valve memories [J]. IEEE Trans. Magn,1998,34: 1066.
    [13]M. Barthelmess, C. Pels, A. Thieme, G. Meier. Stray fields of domains in permalloy microstructures-Measurements and simulations [J]. J. Appl. Phys, 2004,95:5641.
    [14]Y. Nakatani, Y. Usesake, N. Hayashi. Japan J. Appl. Phys.,1989,28:2485.
    [1]H. Yamada, H. Muraoka, Y. Nakamura. A study of perpendicular magnetic recording characteristics with magneto resistive head [J]. J. Magn. Magn. Mater., 1997,176(1):56-60.
    [2]S. N. Piramanaygam, H. B. Zhao, J. Z. Shi. Palladium-based intermediate layers for CoCrPt-SiO2 perpendicular recording media [J]. Appl. Phys. Lett.,2006,88: 092506.
    [3]孙维平.磁记录技术的新发展[J].信息记录材料,2004,5(1):34-44.
    [4]Y. Nakamura. Perpendicular magnetic recording progress and prospects [J]. J. Magn. Magn. Mater.,1999,200(1-3):634-648.
    [5]Y. Zheng, J. G. Zhu. Switching field variation in patterned submicron magnetic film elements [J]. J. Appl. Phys.,1997,81:5471.
    [6]O. Fruchart, J. P. Nozieres, W. Wernsdorfer, D. Givord, F. Rousseaux, D. Decanini. Enhanced coercivity in submicrometer-sized ultrathin epitaxial dots with in-plane magnetization [J]. Phys. Rev. Lett.,1999,82:1305-1308.
    [7]C. A. F. Vaza, M. Klauia, L. Lopez-Diaza, J. Rothmana, A. Blelocha, Z. Cuib, R. Speaksc, J. A. C. Bland. Mesoscopic FCC Co ring magnets [J] J. Magn. Magn. Mater.,2002,249:208-213.
    [8]J. Bekaert, D. Buntinx, C. Van Haesendonck, V. V. Moshchalkov, J. De Boeck, G. Borghs, V. Metlushko. Noninvasive magnetic imaging and magnetization measurement of isolated mesoscopic Co rings [J]. Appl. Phys. Lett.,2002,81: 3413.
    [9]S. P. Li, D. Peyrade, M. Natali, A. Lebib, Y. Chen, U. Ebels, L. D. Buda, K. Ounadjela. Flux closure structures in cobalt rings [J]. Phys. Rev. Lett.,2001,86: 1102-1105.
    [10]M. H. Park, Y. K. Hong, B. C. Choi, M. J. Donahue, H. Han, S. H. Geel. Vortex head-to-head domain walls and their formation in onion-state ring elements [J]. Phys. Rev. B,2006,73:094424.
    [1]C. L. Platt, M. R. McCartney, F. T. Parker, A. E. Berkowitz. Phys. Rev. B,2000, 61:9633.
    [2]O. Gerardin, H. L Gall, M. J. Donahue, N. Vukadinovic. Micromagnetic calculation of the high frequency dynamics of nano-size rectangular ferromagnetic stripes [J]. J. Appl. Phys.,2001,89:7012.
    [3]N. Dao, M. J. Donahue, I. Dumitru, L. Spinu, S. L. Whittenburg, J. C. Lodder. Dynamic susceptibility of nanopillars [J]. Nanotechnology,2004,15:S634-S638.
    [4]R. D. McMichael, M. D. Stiles. Magnetic normal modes of nanoelements [J]. J. Appl. Phys.,2005,97:10J901.
    [5]B. B. Maranville, R. D. McMichael, S. A. Kim, W. L. Johnson, C. A. Ross, J. Y. Cheng. Characterization of magnetic properties at edges by edge-mode dynamics [J]. J. Appl. Phys.,2006,99:08C703.
    [6]G.. Mohler, A. W. Harter. Micromagnetic investigation of resonance frequencies in ferromagnetic particle [J]. J. Appl. Phys.,2005,97,10E313.
    [7]J. B. Wang, B. Zhang, Q. F. Liu, Y. Ren, R. L. Liu. Micromagnetic calculations of dynamic susceptibility in ferromagnetic nanorings [J]. J. Appl. Phys.,2009,105: 083908.
    [8]秦勇,兰州大学博士学位论文,2004.
    [9]B. Zhang, W. W. Wang, C. P. Mu, Q. F. Liu, J. B. Wang. Calculations of three-dimensional magnetic excitations in permalloy nanostructures with vortex state [J]. J. Magn. Magn. Mater.,2010,322:17.
    [10]V. Novosad, F. Y. Fradin, P. E. Roy, K. S. Buchanan, K. Yu. Guslienko, S. D. Bader. Magnetic vortex resonance in patterned ferromagnetic dots [J]. Phys. Rev. B,2005,72:024455.
    [11]M. Beleggia, J. W. Lau, M. A. Schofield, Y. Zhu, S. Tandon, M. De Graef. Phase diagram for magnetic nano-rings [J]. J. Magn. Magn. Mater.,2006,301: 131-146.
    [12]M. Beleggia, M. De Graef. On the computation of the demagnetization tensor field for an arbitrary particle shape using a Fourier space approach [J]. J. Magn. Magn. Mater.,2003,263:L1.
    [13]F. Boust, N. Vukadinovic. Micromagnetic simulations of vortex-state excitations in soft magnetic nanostructures [J]. Phys. Rev. B.,2004,70:172408.
    [14]N. Benatmane, W. Scholz, T. W. Clinton. Magnetic configurations and phase diagrams of sub-100-nm NiFe nanorings [J]. IEEE Trans. Magn.,2007,43: 2884-2886.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.