太阳电池材料CuInS_2薄膜及其纳米棒阵列研究
摘要
太阳能是一种可再生清洁能源,其储量巨大,取之不尽,用之不竭,对环境无污染,对它的应用研究已成为今后人类能源发展的主要方向之一。利用光伏效应实现并网发电是太阳能利用的重要形式,而太阳电池是光伏系统的核心,其产量也得到快速发展,过去10年,每年以超过30%的速度增加。但是,与火力发电和水力发电相比,存在发电成本高的问题,要解决这个问题,关键是要降低太阳电池的生产成本和提高电池的光电转换效率。
     CuInS2(CIS)是一种重要的Ⅰ-Ⅲ-Ⅵ2族半导体化合物材料,由于具有与太阳光谱非常匹配的禁带宽度(1.55 eV),光吸收系数高(>105cm-1),化学稳定性好,低毒性等优点,使其成为非常有潜力的一种太阳电池吸收层材料。从降低薄膜的制备成本方面考虑,近年来,电沉积、喷雾热解、涂覆技术、丝网印刷等非真空、低成本技术得到一定的应用发展。其中,涂覆法和丝网印刷技术都需以黄铜矿相CIS粉末为前驱体,并且单源蒸发和近空间升华法中也使用CIS粉末来制备高质量的CIS薄膜。为此,论文使用真空烧结法,系统地研究了CIS粉末的烧结合成。
     在CIS薄膜太阳电池的光电转换效率方面,以其为吸收层的太阳电池的理论效率高达27%-32%,而文献报道的光电转化效率却只有12.2%,电池的效率存在很大的提升空间。电池吸收层的纳米化有利于增加吸收层对光的吸收,并且能促进光生载流子的分离和传输,是提高电池效率的有效途径。
     对于CIS薄膜太阳电池结构,越来越多的研究者使用Mo薄膜作为CIS基薄膜太阳电池的背电极材料,这主要是由于Mo薄膜具有良好的热稳定性、低电阻率以及其在制备过程中易与上层CIS薄膜形成良好的欧姆接触。作为薄膜电池结构中的背电极材料,Mo薄膜性能的好坏直接影响吸收层CIS薄膜的结晶取向、表面形貌及界面性能,进而对电池性能产生重要影响。目前文献报道的转换效率最高的电池也是以Mo薄膜作为底电极的。
     基于以上所述,论文主要在直流磁控溅射法制备Mo薄膜、真空烧结法合成CIS粉末、单源热蒸发法制备CIS薄膜、固态硫化法制备CIS薄膜和固态硫化法制备新型CIS纳米棒阵列等方面开展研究工作,并取得了一些研究成果。
     1.改装了一套直流磁控溅射装置,并运用该装置系统地研究了溅射工艺对Mo薄膜的沉积速率、结构、形貌及电学性能的影响。溅射过程中,当基片温度为150℃时,薄膜获得(211)晶面择优取向,而在其它温度条件下,样品则为(110)晶面择优取向。
     2.以Cu、In、S粉和CuS、In2S3粉为原料,真空烧结合成CIS粉末。球磨Cu In、S粉的混合物为前驱体,在10-1Pa的真空环境下,350℃低温烧结合成黄铜矿相CIS粉末,粉末的颗粒尺寸大约为250nm,适用于涂覆法及单源蒸发法制备CIS薄膜。
     3.以合成的CIS粉末为原料,采用单源热蒸发技术在钠钙玻璃基片上沉积薄膜,样晶经250℃-450℃退火处理后,获得了高(112)晶面择优取向的CIS薄膜。电学和光学性能测试显示:薄膜的导电类型为N型,禁带宽度为1.50eV。
     4.以钠钙玻璃为基底,蒸镀Cu/In薄膜,DSC分析显示薄膜合金化时经历两个相变过程,两相变点温度分别为153℃和314℃,进一步的XRD测试表明第一次相变时生成单斜晶系的Cu11In9,第二次相变则生成三斜晶系的Cu7In3。然后分别硫化Cu11In9和Cu7In3前驱膜均能获得P型CIS薄膜,薄膜的禁带宽度分别为1.34eV和1.39eV。其中硫化Cu7In3前驱膜获得的薄膜中还含有少量CuxS二元杂相。另外,以玻璃/Mo为基底比以Mo箔片为基底制备CIS薄膜的结晶性能更优良。
     5.将固态硫化法应用于新型CIS纳米棒阵列的制备。该结构中纳米棒阵列垂直生长于薄膜之上,组份测试表明薄膜接近CIS的标准化学剂量比。用该结构膜作太阳电池吸收层时,可增加吸收层对光的吸收,促进载流子的分离与传输,从而有望开发出高效太阳电池。
     另外,论文还就Ⅰ-Ⅲ-Ⅵ2族半导体材料CuInSe2化合物进行了一些研究,真空烧结合成了CuInSe2粉末,使用固态硒化法在Mo箔片上制备了CuInSe2薄膜。
     总之,论文围绕太阳电池的低成本和高效率,在太阳电池材料CIS粉末、薄膜、纳米棒阵列和Mo薄膜等方面展开研究,并取得了一定的研究成果。
As a renewable and clean energy, solar energy is a promising replaceable energy to traditional energy and its application research has been one of the main areas in the energy development, owing to its advantages of enormous reserves, inexhaustibility and being friendly to environment. Solar cell, on the base of photovoltaic effect, is an important form of utilization of solar energy. As the core of the photovoltaic systems, solar cell has been produced in large scale over the past 10 years, with an increase of more than 30% annually. However, compared with traditional thermal power generation and hydropower, solar cell has the problem of higher cost. To solve that, the key is to find methods to reduce production cost and improve the conversion efficiency of solar cell.
     CuInS2 (CIS), an importantⅠ-Ⅲ-Ⅵ2 ternary semiconductor materials, has emerged as one of the promising absorber materials for thin film solar cells, due to its notable advantages of high absorption coefficient, nearly ideal band gap value of 1.55eV, excellent chemical stablility and low toxicity. As the low cost techniques, electrodeposition, spray pyrolysis, paste coating techniques, screen printing and other non-vacuum technologies have recently been extensively applied to the fabrication of CIS absorber layer, while paste coating method and screen printing technologies using the polycrystalline CIS compound as the precursor, and single-source thermal evaporation and close-spaced sublimation method using the CIS powder to prepare high-quality CIS films. Thus, in the paper, it is systematically studied of the homogenized polycrystalline CIS compound sintered at low temperatures, which is crucial to the preparation of CIS thin film sintered from ball-milled precursors on glass substrates at low cost.
     As we all know, the photoelectric conversion efficiency of the CIS thin film solar cell is up to 27%-32% theoretically, while the highest conversion efficiency reported was only 12.2%, so there is a lot of potential to improve the efficiency of solar cells. On the other hand, the nanostructure of absorbing layer of solar cell can increase the light absorption, and improve the photo-induced carriers separation and transportation as well, which is effective to improve the efficiency of solar cell.
     Mo thin film is used as the back electrode material of solar cell by more and more researchers, because of its good properties of heat stability, low resistivity and a good ohmic contact between Mo thin film and the upper CIS thin film. Meanwhile, its performances have a direct effect on the crystalline orientation, surface morphology and interfacial properties of CIS thin film prepared exactly on Mo thin film, resulting in a huge impact on the performances of CIS thin film solar cell. Additionally, the solar cell reported with the highest conversion efficiency is also based on Mo thin film as bottom electrode.
     In this dissertation, the Mo thin films were deposited as the bottom electrode of solar cell by DC magnetron sputtering, while the chalcopyrite CIS powders were synthesized by vacuum sintering at low temperature, and the CIS thin films were prepared by single-source thermal evaporation and solid-state sulfurization method. The new CIS nanorod array thin film was also researched, by means of solid-state sulfurization method. The research results are summarized as follows:
     1. The obsoleted equipment was refited into a DC magnetron sputtering device, which was used to prepare Mo thin film, and the effects of sputtering conditions on the Mo film deposition rate, structure, morphology and electrical performance were systematically studied. In sputtering process, the Mo thin film was grown with (211) preferred orientation at 150℃, while (110) preferred orientation in other temperature conditions.
     2.The CIS powder was synthesized by vacuum sintering with both the precursors including Cu、In and S powders, and CuS、In2S3 powders. The chalcopyrite CIS powder was synthesized with ball-milled precursors including Cu, In and S powder in 10-1Pa at low temperature (350℃), with the product exhibiting a grain size of about 250nm, which is suitable for preparing CIS thin film by paste coating and single-source thermal evaporation method.
     3. The CIS thin film was deposited on soda-lime glass substrate by single-source thermal evaporation technique, with the synthesized CIS powder used as raw material. After annealing at 250℃-450℃the sample exhibited a (112) preferred orientation, with N type conductivity and a band gap of 1.50 eV.
     4.The evaporated Cu/In thin films on soda-lime glass had two phase transformations at 153℃and 314℃, confirmed by DSC test, and it was concluded that the monoclinic Cu11In9 and triclinic Cu7ln3 alloys were formed by XRD characterization, respectively. With further solid-state sulfurization, the two alloys were transformed to CIS thin films, which had P type conductivity and band gaps of 1.34eV and 1.39eV, respectively. However, the CIS thin film sulfurized from the precursor of Cu7ln3 alloy also contained a small amount of CuxS binary phase. In addition, the CIS thin film deposited on the glass/Mo substrate had better crystallization properties than that on the Mo foil substrate.
     5. The new CIS nanorod array thin film was prepared by the solid-state sulfurization method. It can be observed that the CIS nanorod arrays were grown vertically on the thin film by SEM, and the sample was near stoichiometric amount of CIS compound by EDS. The nanostructure of absorbing layer of solar cell is used to increase the absorption for light and improve the photo-induced carriers separation and transportation, which is an effective way to improve the efficiency of the solar cell.
     Besides, we have studied another importantⅠ-Ⅲ-Ⅵ2 group semiconductor material, CuInSe2 compound. The CuInSe2 powder was synthesized by the vacuum sintering method, and the thin film was deposited on the Mo foil substrate by the solid-state selenization method.
     In short, in this dissertation, we focus on the fabrication of solar cells with high efficiency and low cost. Many researches were performed on the preparation of CIS powders, thin film and new nanorod arrays thin film, as well as Mo thin film, with a certain amount of research achievement.
引文
[1]Jager-Waldau A,PV Status Report 2007[J]. European Commission,2007.
    [2]Trivich D A N, Photovoltaic cells and their possible use as power converters for solar energy[J]. The ohio journal of science,1953.53(5):300.
    [3]Chapin D M, Fuller C S, Pearson G L,A New silicon p-n junction photocell for converting solar radiation into electrical power[J]. Journal of Applied Physics,1954. 25:676.
    [4]Carlson D E, Wronski C R,Solar cells using discharge-produced amorphous silicon[J]. Journal of Electronic Materials,1977.6(2):95-106.
    [5]Green M A, Blakers A W, Narayanan S, Taouk M,Improvements in silicon solar cell efficiency[J]. Solar Cells,1986.17(1):75-83.
    [6]O'Regan B, Graetzel M,A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J]. Nature,1991.353:737-740.
    [7]Contreras M A, Egaas B, Ramanathan K, Hiltner J, Swartzlander A, Hasoon F, Noufi R,Progress toward 20% efficiency in Cu (In, Ga) Se 2 polycrystalline thin -film solar cells[J]. Progress in Photovoltaics Research and Applications,1999. 7(4):311-316.
    [8]Wu X, Dhere R G, Albin D S, Gessert T A, Dehart C, Keane J C, Duda A, Coutts T J, Asher S, Levi D H. High-efficiency CTO/ZTO/CdS/CdTe polycrystalline thin-film solar cells.2001.
    [9]黄昆,谢希德,半导体物理学.1958:科学出版社.
    [10]崔方明,化学法制备太阳电池用CulnS_2及ZnS薄膜材料.2008,浙江大学.
    [11]刘恩科朱秉升罗晋生等著,半导体物理学(第6版)[M].北京:电子工业出版社,2004.
    [12]杨德仁,太阳电池材料[M].北京:化学工业出版社,2007.
    [13]李静雷,郑凯波,李娟,孙大林,陈国荣,电场辅助溶液法制备氧化锌纳米棒阵列及其形貌研究[J].功能材料,2009.40(004):685-688.
    [14]Jain A, Kapoor A,A new approach to study organic solar cell using Lambert W-function[J]. Solar Energy Materials and Solar Cells,2005.86(2):197-205.
    [15]丁金磊,太阳电池IV方程显式求解原理研究及应用.2007,中国科学技术大学.
    [16]Rath J K,Low temperature polycrystalline silicon:a review on deposition, physical properties and solar cell applications[J]. Solar energy materials and solar cells,2003.76(4):431-487.
    [17]赵汝强,梁宗存,李军勇,金井升,沈辉,晶体硅太阳电池工艺技术新进展[J].材料导报,2009.23(005):25-29.
    [18]Gangopadhyay U, Dhungel S K, Mondal A K, Saha H, Yi J,Novel low-cost approach for removal of surface contamination before texturization of commercial monocrystalline silicon solar cells[J]. Solar Energy Materials and Solar Cells,2007. 91(12):1147-1151.
    [19]Berge C, Zhu M, Brendle W, Schubert M B, Werner J H,150-mm layer transfer for monocrystalline silicon solar cells[J]. Solar Energy Materials and Solar Cells, 2006.90(18-19):3102-3107.
    [20]Carnel L, Gordon 1, Van Gestel D, Beaucarne G, Poortmans J,Efficient solar cells based on fine-grained polysilicon[J]. Thin Solid Films,2008.516(20):6839-6843.
    [21]Arab A B,Analytical solutions for the photocurrent and dark diffusion current of preferentially doped polysilicon solar cells[J]. Solar Energy Materials and Solar Cells, 1995.37(3-4):239-258.
    [22]Melskens J, van Elzakker G, Li Y, Zeman M,Analysis of hydrogenated amorphous silicon thin films and solar cells by means of Fourier Transform Photocurrent Spectroscopy[J]. Thin Solid Films,2008.516(20):6877-6881.
    [23]Villar F, Antony A, Escarre J, Ibarz D, Roldan R, Stella M, Mu oz D, Asensi J M, Bertomeu J,Amorphous silicon thin film solar cells deposited entirely by hot-wire chemical vapour deposition at low temperature (< 150℃)[J]. Thin Solid Films,2009. 517(12):3575-3577.
    [24]Beaucarne G, Bourdais S, Slaoui A, Poortmans J,Thin-film polysilicon solar cells on foreign substrates using direct thermal CVD:material and solar cell design[J]. Thin Solid Films,2002.403:229-237.
    [25]Budianu E, Purica M, Manea E, Rusu E, Gavrila R, Danila M,Optical improved structure of polycrystalline silicon-based thin-film solar cell[J]. Solar energy materials and solar cells,2002.72(1-4):223-229.
    [26]Dharmadasa I M,Latest developments in CdTe, CuInGaSe2 and GaAs/AlGaAs thin film PV solar cells[J]. Current Applied Physics,2009.9:2.
    [27]Romeo N, Bosio A, Canevari V, Podesta A,Recent progress on CdTe/CdS thin film solar cells[J]. Solar Energy,2004.77(6):795-801.
    [28]徐立珍,李彦,秦锋,薄膜太阳电池的研究进展及应用前景[J].可再生能源,2006(003):9-12.
    [29]蒋荣华,肖顺珍,杨卫东,化合物太阳能电池与材料的研究进展[J].新材料产业,2004(005):38-42.
    [30]Romeo A, Khrypunov G, Kurdesau F, Arnold M, Baetzner D L, Zogg H, Tiwari A N,High-efficiency flexible CdTe solar cells on polymer substrates[J]. Solar Energy Materials and Solar Cells,2006.90(18-19):3407-3415.
    [31]Khrypunov G, Romeo A, Kurdesau F, B tzner D L, Zogg H, Tiwari A N,Recent developments in evaporated CdTe solar cells[J]. Solar Energy Materials and Solar Cells,2006.90(6):664-677.
    [32]Amin N, Sopian K, Konagai M,Numerical modeling of CdS/CdTe and CdS/CdTe/ZnTe solar cells as a function of CdTe thickness[J]. Solar Energy Materials and Solar Cells,2007.91 (13):1202-1208.
    [33]Deb S K,Recent developments in high eficiency photovoltaic cells[J]. Renewable energy,1998.15(1-4):467-472.
    [34]Uda H, Ikegami S, Sonomura H, Annealing effect of Cu2Te Au contact to evaporated CdTe film on photovoltaic properties of CdS/CdTe solar cell[J]. Solar Energy Materials and Solar Cells,1998.50(1-4):141-146.
    [35]Gupta A, Parikh V, Compaan A D,High efficiency ultra-thin sputtered CdTe solar cells[J]. Solar Energy Materials and Solar Cells,2006.90(15):2263-2271.
    [36]Compaan A D, Gupta A, Lee S, Wang S, Drayton J,High efficiency, magnetron sputtered CdS/CdTe solar cells[J]. Solar Energy,2004.77(6):815-822.
    [37]Jones E W, Barrioz V, Irvine S J C, Lamb D,Towards ultra-thin CdTe solar cells using MOCVD[J]. Thin Solid Films,2009.517(7):2226-2230.
    [38]Goren D, Amir N, Khanin E, Asa G, Nemirovsky Y,Single crystalline CdTe solar cells grown by MOCVD[J]. Solar Energy Materials and Solar Cells,1996. 44(4):341-356.
    [39]Ison V V, Rao A R, Dutta VCharacterization of spray deposited CdTe films grown under different ambient conditions[J]. Solid State Sciences,2009.
    [40]Ison V V, Ranga Rao A, Dutta V, Avasthi D K,Effect of swift heavy ion irradiation on spray deposited CdX (X= S, Te) thin films[J]. Nuclear Inst. and Methods in Physics Research, B,2007.262(2):209-214.
    [41]Morales-Acevedo A,Can we improve the record efficiency of CdS/CdTe solar cells[J]. Solar Energy Materials and Solar Cells,2006.90(15):2213-2220.
    [42]Schermer J J, Bauhuis G J, Mulder P, Haverkamp E J, Van Deelen J, Van Niftrik A T J, Larsen P K,Photon confinement in high-efficiency, thin-film Ⅲ-Ⅴ solar cells obtained by epitaxial lift-off[J]. Thin Solid Films,2006.511:645-653.
    [43]Bauhuis G J, Mulder P, Haverkamp E J, Huijben J, Schermer J J,26.1% thin-film GaAs solar cell using epitaxial lift-off[J]. Solar Energy Materials and Solar Cells, 2009.
    [44]Spanggaard H, Krebs F C,A brief history of the development of organic and polymeric photovoltaics[J]. Solar Energy Materials and Solar Cells,2004. 83(2-3):125-146.
    [45]施敏敏,陈红征,吴刚,汪茫,有机太阳电池面临的机遇,问题和对策[J].电源技术,2008.32(010):709-712.
    [46]陈冠雨,孙大林,陈国荣,ZnO纳米棒/聚合物混合型太阳电池[J].功能材料,2009(009):1416-1421.
    [47]Yin C, Schubert M, Bange S, Stiller B, Castellani M, Neher D, Kumke M, Ho rhold H H,Tuning of the excited-state properties and photovoltaic performance in PPV-based polymer blends[J]. The journal of physical chemistry C,2008. 112(37):14607-14617.
    [48]Gratzel M,Solar energy conversion by dye-sensitized photovoltaic cells[J]. Inorg. Chem,2005.44(20):6841-6851.
    [49]杨德仁,太阳电池材料.2006,北京:化学工业出版社.
    [50]Watanabe T, Matsui M,Solar Cells Based on CulnS2 Thin Films through Sulfurization of Precursors Prepared by Reactive Sputtering with H2S Gas[J]. Jpn. J. Appi. Phys. Vol,1996.35:1681-1684.
    [51]刘科高,王继扬,刘宏,CIS太阳电池材料的研究进展[J].功能材料,2009(009):1413-1415.
    [52]Rani S, Sanghi S, Agarwal A, Ahlawat N,Influence of Bi2O3 on optical properties and structure of bismuth lithium phosphate glasses[J]. Journal of Alloys and Compounds,2009.477(1-2):504-509.
    [53]Shi Y, Jin Z, Li C, An H, Qiu J,Effect of [Cu]/[In] ratio on properties of CuInS2 thin films prepared by successive ionic layer absorption and reaction method[J]. Applied Surface Science,2006.252(10):3737-3743.
    [54]Khemiri N, Chaffar Akkari F, Kanzari M, Rezig B,Highly absorbing Cu-In-0 thin films for photovoltaic applications[J]. Thin Solid Films,2008. 516(20):7031-7035.
    [55]Das K, Panda S K, Gorai S, Mishra P, Chaudhuri S,Effect of Cu/In molar ratio on the microstructural and optical properties of microcrystalline CuInS2 prepared by solvothermal route[J]. Materials Research Bulletin,2008.43(10):2742-2750.
    [56]周少雄,方玲,CuInS2薄膜太阳能电池[J].物理,2007.36(011):848-852.
    [57]Wagner S, Bridenbaugh P M,Multicomponent tetrahedral compounds for solar cells[J]. Journal of Crystal Growth,1977.39(1):151-159.
    [58]Walter T,Content A,Velthaus K O, Schock H W, Solar cells based on CuIn(Se,S)2 [J]. Solar energy materials and solar cells,1992.26(4):357-368.
    [59]Scheer R, Walter T, Schock H W, Fearheiley M L, Lewerenz H J,CuInS based thin film solar cell with 10.2% efficiency[J]. Applied Physics Letters,1993.63:3294.
    [60]李静雷,郑凯波,沈浩颋,邢晓艳,孙大林,陈国荣,基于单根氧化锌纳米线的场效应管的光电特性研究[J].真空科学与技术学报,2008.28(001):83-86.
    [61]Klenk R, Blieske U, Dieterle V, Ellmer K, Fiechter S, Hengel I, J ger-Waldau A, Kampschulte T, Kaufmann C, Klaer J,Properties of CuInS2 thin films grown by a two-step process without H2S[J]. Solar Energy Materials and Solar Cells,1997. 49(1-4):349-356.
    [62]Nakabayashi T, Miyazawa T, Hashimoto Y, Ito K,Over 10% efficient CuInS2 solar cell by sulfurization[J]. Solar Energy Materials and Solar Cells,1997. 49(1-4):375-381.
    [63]Siemer K, Klaer J, Luck I, Bruns J, Klenk R, Braeunig D,Efficient CuInS2 solar cells from a rapid thermal process(RTP)[J]. Solar energy materials and solar cells, 2001.67(1-4):159-166.
    [64]Seeger S, Ellmer K,Reactive magnetron sputtering of CulnS2 absorbers for thin film solar cells: Problems and prospects[J]. Thin Solid Films,2009. 517(10):3143-3147.
    [65]Onishi T, Abe K, Miyoshi Y, Wakita K, Sato N, Mochizuki K,Study of deep photoluminescence levels in CuInS2 crystals[J]. Journal of Physics and Chemistry of Solids,2005.66(11):1947-1949.
    [66]Akaki Y, Matsuo H, Yoshino K,Structural, electrical and optical properties of Bi-doped CUInS2 thin films grown by vacuum evaporation method[J]. Physica Status Solidi C Conferences,2006.3(8):2597.
    [67]Akaki Y, Komaki H, Yokoyama H, Yoshino K, Maeda K, Ikari T,Structural and optical characterization of Sb-doped CuInS2 thin films grown by vacuum evaporation method[J]. Journal of Physics and Chemistry of Solids,2003.64(9-10):1863-1867.
    [68]Abaab M, Kanzari M, Rezig B, Brunel M,Structural and optical properties of sulfur-annealed CuInS2 thin films[J]. Solar energy materials and solar cells,1999. 59(4):299-307.
    [69]Akl A A S, Ashour A, Ramadan A A, Abd El-Hady K,Structural study of flash evaporated CuInSe2thin films[J]. Vacuum,2001.61(1):75-84.
    [70]Ben Rabeh M, Zribi M, Kanzari M, Rezig B,Structural and optical characterization of Sn incorporation in CuInS2 thin films grown by vacuum evaporation method[J]. Materials Letters,2005.59(24-25):3164-3168.
    [71]Merino J M, Leon M, Rueda F, Diaz R,Flash evaporation of chalcogenide thin films[J]. Thin solid films,2000.361:22-27.
    [72]Bollero A, Trigo J F, Herrero J, Gutierrez M T,Simplified modulated evaporation process for the production of CulnS2 films with reduced substrate temperatures[J]. Thin Solid Films,2009.517(7):2167-2170.
    [73]单玉桥,党鹏,孙绍广,单连中,三源共蒸法制备CIS薄膜及其性能研究[J].东北大学学报:自然科学版,2009.30(002):233-237.
    [74]Amara A, Rezaiki W, Ferdi A, Hendaoui A, Drici A, Guerioune M, Bernede J C, Morsli M,Electrical and optical characterisation of CulnS2 crystals and polycrystalline coevaporated thin films[J]. Solar Energy Materials and Solar Cells,2007. 91(20):1916-1921.
    [75]Scheer R, Alt M, Luck 1, Lewerenz H J,Electrical properties of coevaporated CuInS2 thin films[J]. Solar Energy Materials and Solar Cells,1997.49(1-4):423-430.
    [76]阎有花,刘迎春,方玲,赵海花,李德仁,卢志超,周少雄,Cu7In3前驱膜制备(112)择优取向CuInS2薄膜[J].物理测试,2008.26(002):1-4.
    [77]Pisarkiewicz T, Jankowski H, Vacuum selenization of metallic multilayers for CIS solar cells[J]. Vacuum,2003.70(2-3):435-438.
    [78]Luo P, Zhu C, Jiang G,Preparation of CuInSe2 thin films by pulsed laser deposition the Cu-In alloy precursor and vacuum selenization[J]. Solid State Communications,2008.
    [79]Antony A, Asha A S, Yoosuf R, Manoj R, Jayaraj M K.Growth of CuInS2 thin flms by sulphurisation of Cu-In alloys[J]. Solar Energy Materials and Solar Cells, 2004.81(4):407-417.
    [80]Contreras M A, Egaas B, King D, Swartzlander A, Dullweber T,Texture manipulation of CuInSe2 thin films[J]. Thin Solid Films,2000.361:167-171.
    [81]查杉,元金石,张弓,庄大明,铜铟硫薄膜的固态硫化法制备及其性能研究[J].真空科学与技术学报,2007.27(001):63-66.
    [82]李健,朱洁,硒化技术对CuInSe?薄膜表面形貌和晶相的影响[J].物理学报, 2007.56(001):574-582.
    [83]阎有花,刘迎春,方玲,赵海花,朱景森,李德仁,卢志超,周少雄,硫化对Cu-In预制膜微结构的影响[J].材料热处理学报,2008.29(004):60-64.
    [84]阎有花,刘迎春,方玲,赵海花,李德仁,卢志超,周少雄,硫化温度对CuInS2收层薄膜微结构的影响[J].功能材料与器件学报,2008.14(005):900-906.
    [85]阎有花,刘迎春,方玲,赵海花,李德仁,卢志超,周少雄,氮气流量对CuInS2薄膜微结构的影响[J].功能材料,2007.38(A01):412-414.
    [[86]韩东麟,张弓,庄大明,元金石,李春雷,双层预制膜对CIGS薄膜结构和形貌的影响[J].真空科学与技术学报,2008.28(001):78-82.
    [87]Ogawa Y, J ger-Waldau A, Hua T H, Hashimoto Y, Ito K,Influence of KCN treatment on CuInS2 thin films[J]. Applied Surface Science,1996.92:232-236.
    [88]Yan Y, Liu Y, Fang L, Zhao H, Li D, Lu Z, Zhou S,Influence of post-grown treatments on CulnS2 thin films prepared by sulphurization of Cu-In films[J]. Rare Metals,2008.27(5):490-495.
    [89]Izquierdo V, Perez-Rodriguez A, Calvo-Barrio L, alvarez-Garcia J, Morante J R, Bermudez V, Ramdani O, Kurdi J, Grand P P, Parissi L,Raman scattering microcrystalline assessment and device quality control of electrodeposited Culn (S, Se) 2 based solar cells[J].Thin Solid Films,2008.516(20):7021-7025.
    [90]Lincot D, Guillemoles J F, Taunier S, Guimard D, Sicx-Kurdi J, Chaumont A, Roussel O, Ramdani O, Hubert C, Fauvarque J P,Chalcopyrite thin film solar cells by electrodeposition[J]. Solar Energy,2004.77(6):725-737.
    [91]Wilhelm T, Berenguier B, Aggour M, Kanis M, Lewerenz H J,Efficient CuInS2 (CIS) solar cells by photoelectrochemical conditioning[J]. Comptes rendus-Chimie, 2006.9(2):294-300.
    [92]Kois J, Bereznev S, Volobujeva O, Mellikov E,Electrochemical etching of copper indium diselenide surface[J]. Thin Solid Films,2007.515(15):5871-5875.
    [93]Berenguier B, Lewerenz H J,Efficient solar energy conversion with electrochemically conditioned CuInS2 thin film absorber layers[J]. Electrochemistry communications,2006.8(1):165-169.
    [94]Joswig A, Gossla M, Metzner H, Reisl hner U, Hahn T, Witthuhn W,Sulphurization of single-phase Cu11Ing precursors for CuInS2 solar cells[J]. Thin Solid Films,2007.515(15):5921-5924.
    [95]Cayzac R, Boulc'h F, Bendahan M, Lauque P, Knauth P,Direct preparation of crystalline CuInS2 thin films by radiofrequency sputtering[J]. Materials Science & Engineering B,2009.157(1-3):66-71.
    [96]Cayzac R, Boulc'h F, Bendahan M, Pasquinelli M, Knauth P,Preparation and optical absorption of electrodeposited or sputtered, dense or porous nanocrystalline CuInS2 thin films[J]. Comptes rendus-Chimie,2008.11 (9):1016-1022.
    [97]He Y B, Kr mer T, Polity A, Gregor R, Kriegseis W, sterreicher I, Hasselkamp D, Meyer B K,Preparation and characterization of highly (112)-oriented CuInS2 films deposited by a one-stage RF reactive sputtering process[J]. Thin Solid Films,2003. 431:231-236.
    [98]Liu X P, Shao L X,Reactive sputtering preparation of CuInS2 thin films and their optical and electrical characteristics[J]. Surface & Coatings Technology,2007. 201(9-11):5340-5343.
    [99]Shao L, Chang K, Hwang H,The one-step vacuum growth of high-quality CuInS2 thin film suitable for photovoltaic applications[J]. Materials Science in Semiconductor Processing,2003.6(5-6):397-400.
    [100]Ward J S, Ramanathan K, Hasoon F S, Coutts T J, Keane J, Contreras M A, Moriarty T, Noufi R,A 21.5% efficient Cu (In, Ga) Se 2 thin-film concentrator solar cell[J]. Progress in Photovoltaics Research and Applications,2002.10(1):41-46.
    [101]聂洪波,王延来,王义民,果世驹,粉末涂敷法制备CuInSe2薄膜的硒化烧结过程研究[J].粉末冶金技术,2009.27(002):132-l 37.
    [102]Nie H, Wang Y, Ni P, Guo S,Preparation of CuInSe2 thin films by paste coating[J]. Rare Metals,2008.27(6):591-597.
    [103]Norsworthy G, Leidholm C R, Halani A, Kapur V K, Roe R, Basol B M, Matson R,CIS film growth by metallic ink coating and selenization[J]. Solar energy materials and solar cells,2000.60(2):127-134.
    [104]Lee S Y, Kim K H, Park B O,Oxidation effect on densification of CuInS2 absorber layer by paste coating[J]. Thin Solid Films,2008.516(15):4709-4712.
    [105]Sahal M, Mari B, Mollar M,CuInS2 thin films obtained by spray pyrolysis for photovoltaic applications[J]. Thin Solid Films,2009.517(7):2202-2204.
    [106]Krunks M, Kijatkina O, Rebane H, Oja I, Mikli V, Mere A,Composition of CuInS2 thin films prepared by spray pyrolysis[J]. Thin Solid Films,2002.403:71-75.
    [107]Oja I, Nanu M, Katerski A, Krunks M, Mere A, Raudoja J, Goossens A,Crystal quality studies of CulnS2 films prepared by spray pyrolysis[J]. Thin Solid Films,2005. 480:82-86.
    [108]Sebastian T, Gopinath M, Sudha Kartha C, Vijayakumar K P, Abe T, Kashiwaba Y,Role of substrate temperature in controlling properties of sprayed CuInS2 absorbers[J]. Solar Energy,2009.83(9):1683-1688.
    [109]Nakamura S, Yamamoto A,Preparation of CulnS2 films with sufficient sulfur content and excellent morphology by one-step electrodeposition[J]. Solar Energy Materials and Solar Cells,1997.49(1-4):415-421.
    [110]Martinez A M, Fernandez A M, Arriaga L G, Cano U.Preparation and characterization of Cu-In-S thin films by electrodeposition[J]. Materials Chemistry & Physics,2006.95(2-3):270-274.
    [111]Ramdani O, Guillemoles J F, Lincot D, Grand P P, Chassaing E, Kerrec O, Rzepka E,One-step electrodeposited CulnSe2 thin films studied by Raman spectroscopy[J]. Thin solid films,2007.515(15):5909-5912.
    [112]李娟,莫晓亮,孙大林,陈国荣,单步电沉积法制备CuInS2薄膜[J].物理化学学报,2009,25(12):2445-2449.
    [113]Martinez A M, Arriaga L G, Fernandez A M, Cano U,Band edges determination of CuInS2 thin films prepared by electrodeposition[J]. Materials Chemistry & Physics, 2004.88(2-3):417-420.
    [114]Wijesundera R P, Siripala W,Preparation of CulnS2 thin films by electrodeposition and sulphurisation for applications in solar cells[J]. Solar Energy Materials and Solar Cells,2004.81 (2):147-154.
    [115]Garuthara R, Wijesundara R, Siripala W,Characterization of CuInS2 thin films prepared by electrodeposition and sulfurization with photoluminescence spectroscopy[J]. Solar energy materials and solar cells,2003.79(3):331-338.
    [116]Nakamura S, Yamamoto A,Electrodeposited CuInS?-based thin-film solar cells[J]. Solar Energy Materials and Solar Cells,2003.75(1):81-86.
    [117]Ihlal A, Bouabid K, Soubane D, Nya M, Ait-Taleb-Ali O, Amira Y, Outzourhit A. Nouet G,Comparative study of sputtered and electrodeposited Cl (S, Se) and CIGSethin films[J]. Thin Solid Films,2007.515(15):5852-5856.
    [118]Klenk R, Klaer J, Scheer R, Lux-Steiner M C, Luck 1, Meyer N, Ruhle U,Solar cells based on CuInS2-an overview[J]. Thin Solid Films,2005.480:509-514.
    [119]Rockett A,The behaviour of Na implanted into Mo thin" lms during annealing[J]. Solar Energy Materials & Solar Cells,1999.58:199-208.
    [120]Assmann L, Bernede J C, Drici A, Amory C, Halgand E, Morsli M,Study of the Mo thin films and Mo/CIGS interface properties[J]. Applied Surface Science,2005. 246(1-3):159-166.
    [121]朱继国,丁万昱,王华林,张树旺,张粲,张俊计,柴卫平,Al气压强对直流脉冲磁控溅射制备Mo薄膜性能的影响[J].微细加工技术,2008(004):35-38.
    [122]郑桂波,李凤岩,周志强,孙云,李长健.CIS (CIGS)太阳电池的背接触Mo衬底的研究.2004.
    [123]朱继国,直流脉冲磁控溅射制备Mo薄膜及其性能研究.2008,大连交通大学.
    [124]Scofield J H, Duda A, Albin D, Ballard B L, Predecki P K,Sputtered molybdenum bilayer back contact for copper indium diselenide-based polycrystalline thin-film solar cells[J]. Thin Solid Films,1995.260(1):26-31.
    [125]蒋方丹,冯嘉猷,铜铟硒薄膜太阳能电池的几个基础问题研究[J].物理,2006.35(011):957-960.
    [126]Goto H, Hashimoto Y, Ito K,Efficient thin film solar cell consisting of TCO/CdS/CuInS2/CuGaS2 structure[J]. Thin Solid Films,2004.451:552-555.
    [127]Morkel M, Weinhardt L, Lohmuller B, Heske C, Umbach E, Riedl W, Zweigart S, Karg F,Flat conduction-band alignment at the CdS/CulnSe thin-film solar-cell heterojunction[J]. Applied Physics Letters,2001.79:4482.
    [128]Shirakata S, Ohkubo K, lshii Y, Nakada T,Effects of CdS buffer layers on photoluminescence properties of Cu (In, Ga)Se2 solar cells[J]. Solar Energy Materials and Solar Cells,2009.93(6-7):988-992.
    [129]Andres S, Lehmann C, Pettenkofer C, Epitaxial growth of ZnO on CuInS2 (112)[J]. Thin Solid Films,2009,518(4):1032-1035.
    [130]Peng S, Cheng F, Liang J, Tao Z, Chen J,Facile solution-controlled growth of CuInS2 thin films on FTO and TiO2/FTO glass substrates for photovoltaic application[J]. Journal of Alloys and Compounds,2009.481 (1-2):786-791.
    [131]Contreras M A, Romero M J, To B, Hasoon F, Noufi R, Ward S, Ramanathan K,Optimization of CBD CdS process in high-efficiency Cu (In, Ga) Se2-based solar cells[J]. Thin Solid Films,2002.403:204-211.
    [132]Karimi M, Rabiee M, Moztarzadeh F, Tahriri M, Bodaghi M,Controlled synthesis, characterization and optical properties of CdS nanocrystalline thin films via chemical bath deposition (CBD) route[J]. Current Applied Physics,2009. 9:1263-1268.
    [133]Senthil K, Mangalaraj D, Narayandass S K, Kesavamoorthy R, Reddy G L N,Raman scattering and XRD analysis in argon ion implanted CdS thin films prepared by vacuum evaporation[J]. Nuclear Inst. and Methods in Physics Research, B,2001.173(4):475-482.
    [134]Mahmoud S A, Ibrahim A A, Riad A S,Physical properties of thermal coating CdS thin films using a modified evaporation source[J]. Thin Solid Films,2000. 372(1-2):144-148.
    [135]Berrigan R A, Maung N, Irvine S J C, Cole-Hamilton D J, Ellis D,Thin films of CdTe/CdS grown by MOCVD for photovoltaics[J]. Journal of crystal growth,1998. 195(1-4):718-724.
    [136]Irvine S J C, Hartley A, Stafford A,In situ monitoring of the MOCVD growth of CdS/CdTe[J]. Journal of Crystal Growth,2001.221(1):117-123.
    [137]Lee J H, Lee D J,Effects of CdC12 treatment on the properties of CdS films prepared by rf magnetron sputtering[J]. Thin Solid Films,2007.515(15):6055-6059.
    [138]Taneja P, Vasa P, Ayyub P,Chemical passivation of sputter-deposited nanocrystalline CdS thin films[J]. Materials Letters,2002.54(5-6):343-347.
    [139]Subbaramaiah K, Raja V S,Preparation and characterization of all spray-deposited p-CuIn (S sub (0.5) Se sub (0.5)) sub (2)/n-CdZnS:In thin film solar cells[J]. Solar Energy Materials and Solar Cells,1994.32(1):1-6.
    [140]Subbaiah Y P V, Prathap P, Reddy K T R, Miles R W, Yi J,Studies on ZnS0.5Se0.5 buffer based thin film solar cells[J]. Thin Solid Films,2008.516(20):7060-7064.
    [141]Theresa John T, Mathew M, Sudha Kartha C, Vijayakumar K P, Abe T, Kashiwaba Y,CulnS2/In2S3 thin film solar cell using spray pyrolysis technique having 9.5% efficiency[J]. Solar Energy Materials and Solar Cells,2005.89(1):27-36.
    [142]Ward J, Ramanathan K, Hasoon F, Coutts T, Keane J, Moriarty T, Noufi R,Cu (In, Ga)Se2 Thin-Film Concentrator Solar Cells[J].
    [143]lijima S,Helical microtubules of graphitic carbon[J]. nature,1991. 354(6348):56-58.
    [144]Akita S, Nishijima H, Nakayama Y, Tokumasu F, Takeyasu K,Carbon nanotube tips for a scanning probe microscope:their fabrication and properties[J]. Journal of Physics D:Applied Physics,1999.32:1044-1048.
    [145]Moloni K, Buss M R, Andres R PTapping mode scanning force microscopy in water using a carbon nanotube probe[J]. Ultramicroscopy,1999.80(4):237-246.
    [146]Durkop T, Getty S A, Cobas E, Fuhrer M S,Extraordinary mobility in semiconducting carbon nanotubes[J]. Nano Letters,2004.4(1):35-39.
    [147]Fisher A C, Peter L M, Ponomarev E A, Walker A B, Wijayantha K G U,Intensity dependence of the back reaction and transport of electrons in dye-sensitized nanocrystalline TiO2 solar cells[J]. J. Phys. Chem. B,2000. 104(5):949-958.
    [148]Greene L E, Yuhas B D, Law M, Zitoun D, Yang P,Solution-grown zinc oxide nanowires[J]. Inorg. Chem,2006.45(19):7535-7543.
    [149]Paulose M, Shankar K, Varghese O K, Mor G K, Hardin B, Grimes C A,Backside illuminated dye-sensitized solar cells based on titania nanotube array electrodes[J].Nanotechnology,2006.17:1446-1448.
    [150]Leschkies K S, Divakar R, Basu J, Enache-Pommer E, Boercker J E, Carter C B, Kortshagen U R, Morris D J, Aydil E S,Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices[J]. Nano letters(Print),2007. 7(6):1793-1798.
    [151]Hanna M C, Nozik A J,Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers[J]. Journal of Applied Physics,2006.100:074510.
    [152]Sun W T, Yu Y, Pan H Y, Gao X F, Chen Q, Peng L M,CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes[J]. J. Am. Chem. Soc,2008. 130(4):1124-1125.
    [153]Kayes B M, Atwater H A, Lewis N S,Comparison of the device physics principles of planar and radial pn junction nanorod solar cells[J]. Journal of Applied Physics,2005.97:114302.
    [154]Wang Z L, Song J,Piezoelectric nanogenerators based on zinc oxide nanowire arrays[J]. Science,2006.312(5771):242.
    [155]Wang X, Song J, Liu J, Wang Z L,Direct-current nanogenerator driven by ultrasonic waves[J]. Science,2007.316(5821):102.
    [156]庄大明,张弓,铜铟镓硒薄膜太阳能电池的发展现状以及应用前景[J].真空,2004.41(002):1-7.
    [157]Tsakalakos L,Nanostructures for photovoltaics[J]. Materials Science & Engineering R,2008.62(6):175-189.
    [158]Fan Z Y, Razavi H, Do J, Moriwaki A, Ergen O, Chueh Y L, Leu P W, Ho J C, Takahashi T, Reichertz L A,Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates[J]. Nature Materials,2009.
    [159]Crosby A J, Lee J Y,Polymer Nanocomposites: The'Nano' Effect on Mechanical Properties[J]. Polymer Reviews,2007.47(2):217-229.
    [160]Wang P, Klein C, Humphry-Baker R, Zakeeruddin S M, Gr tzel M,Stable 8% efficient nanocrystalline dye-sensitized solar cell based on an electrolyte of low volatility[J]. Applied Physics Letters,2005.86:123508.
    [161]Kim J Y, Lee K, Coates N E, Moses D, Nguyen T Q, Dante M, Heeger A J,Efficient tandem polymer solar cells fabricated by all-solution processing[J]. Science,2007.317(5835):222.
    [162]Rimada J C, Hernandez L, Connolly J P, Barnham K W J,Conversion efficiency enhancement of AIGaAs quantum well solar cells[J]. Microelectronics Journal,2007. 38(4-5):513-518.
    [163]Ekins-Daukes N J, Barnham K W J, Connolly J P, Roberts J S, Clark J C, Hill G, Mazzer M,Strain-balanced GaAsP/InGaAs quantum well solar cells[J]. Applied Physics Letters,1999.75:4195.
    [164]Johnson D C, Ballard I, Barnham K W J, Bishnell D B, Connolly J P, Lynch M C, Tibbits T N D, Ekins-Daukes N J, Mazzer M, Airey R,Advances in Bragg stack quantum well solar cells[J]. Solar Energy Materials and Solar Cells,2005. 87(1-4):169-179.
    [165]Law M, Greene L E, Johnson J C, Saykally R, Yang P,Nanowire dye-sensitized solar cells[J]. Nature materials,2005.4(6):455-459.
    [166]Baxter J B, Aydil E S,Nanowire-based dye-sensitized solar cells[J]. Applied Physics Letters,2005.86:053114.
    [167]Tsakalakos L, Balch J, Fronheiser J, Korevaar B A, Sulima O, Rand J,Silicon nanowire solar cells[J]. Applied Physics Letters,2007.91:233117.
    [168]Marti A, Antolin E, Stanley C R, Farmer C D, Lopez N, Diaz P, Canovas E, Linares P G, Luque A,Production of photocurrent due to intermediate to conduction band transitions: A demonstration of a key operating principle of the intermediate-band solar cell[J]. Physical review letters,2006.97(24):247701.
    [169]Conibeer G, Green M, Corkish R, Cho Y, Cho E C, Jiang C W, Fangsuwannarak T, Pink E, Huang Y, Puzzer T,Silicon nanostructures for third generation photovoltaic solar cells[J]. Thin Solid Films,2006.511:654-662.
    [170]Castro S L, Bailey S G, Raffaelle R P, Banger K K, Hepp A F,Nanocrystalline chalcopyrite materials (CuInS2 and CuInSe2) via low-temperature pyrolysis of molecular single-source precursors[J]. Chem. Mater,2003.15(16):3142-3147.
    [171]Wang F, Chatterjee D K, Li Z, Zhang Y, Fan X, Wang M,Synthesis of polyethylenimine/NaYF4 nanoparticles with upconversion fluorescence[J]. Nanotechnology,2006.17:5786-5791.
    [172]Nanu M, Schoonman J, Goossens A,Solar-Energy Conversion in TiO2/CuInS2 Nanocomposites[J]. Advanced Functional Materials,2005.15(1):95-100.
    [173]Ohayre R, Nanu M, Schoonman J, Goossens A, Wang Q, Gratzel M,The influence of TiO2 particle size in TiO2/CuInS2 nanocomposite solar cells[J]. Advanced Functional Materials,2006.16(12):1566.
    [174]Phok S, Rajaputra S, Singh V P,Copper indium diselenide nanowire arrays by electrodeposition in porous alumina templates[J]. Nanotechnology,2007.18:475601.
    [175]Gou X, Cheng F, Shi Y, Zhang L, Peng S, Chen J, Shen P,Shape-Controlled Synthesis of Ternary Chalcogenide ZnIn2S4 and CuIn(S,Se)2 Nano-/Microstructures via Facile Solution Route[J]. J. Am. Chem. Soc,2006.128(22):7222-7229.
    [176]Qi Y, Tang K, Zeng S, Zhou W,Template-free one-step fabrication of porous CulnS2 hollow microspheres[J]. Microporous and Mesoporous Materials,2008. 114(1-3):395-400.
    [177]Wakita K, Iwai M, Miyoshi Y, Fujibuchi H, Ashida A,Synthesis of CuInS2 nanowires and their characterization[J]. Composites Science and Technology,2005. 65(5):765-767.
    [178]Xiao J, Xie Y, Tang R, Qian Y,Synthesis and Characterization of Ternary CuInS2 Nanorods via a Hydrothermal Route[J]. Journal of Solid State Chemistry,2001. 161 (2):179-183.
    [179]Uehara M, Watanabe K, Tajiri Y, Nakamura H, Maeda H,Synthesis of CuInS fluorescent nanocrystals and enhancement of fluorescence by controlling crystal defect[J]. The Journal of Chemical Physics,2008.129:134709.
    [180]Lu Q, Hu J, Tang K, Qian Y, Zhou G, Liu X,Synthesis of Nanocrystalline CuMS2 (M= In or Ga) through a Solvothermal Process[J]. Inorg. Chem,2000. 39(7):1606-1607.
    [181]Yu C, Yu J C, Wen H, Zhang C,A mild solvothermal route for preparation of cubic-like CuInS2crystals[J]. Materials Letters,2009.63(23):1984-1986.
    [182]Brian M, Dunn G, Brian A, Korgel A,Synthesis of CuInS2, CuInSe2, and Cu (InxGal-x)Se2 (CIGS) Nanocrystal "Inks" for Printable Photovoltaics[J]. Journal of the American Chemical Society,2008.130:49.
    [183]Feng J, Han J, Zhao X,Synthesis of CuInS2 quantum dots on TiO2 porous films by solvothermal method for absorption layer of solar cells[J]. Progress in Organic Coatings,2009.64(2-3):268-273.
    [184]Hedstr m J, Ohlsen H, Bodegard M, Kylner A, Stolt L, Hariskos D, Ruchk M, Shock H W,23rd IEEE Photovoltaic Specialists Conf[J]. Louisville, KY,1993.10:14.
    [185]Keyes B M, Hasoon F, Dippo P, Balcioglu A, Abulfotuh F, Influence of Na on the Electro-Optical Properties of Cu(In,Ga)Se2[C]. The 26th IEEE Photovoltic Specialists Conference,1997.
    [186]Deb S K,Frontiers in photovoltaic materials and devices[J]. Current Opinion in Solid State & Materials Science,1998.3(1):51-59.
    [187]Granata J E, Sites J R, Asher S, Matson R J. Quantitative Incorporation of Sodium in CuInSe2 and Cu (In, Ga) Se2 Photovoltaic Devices.1997:IEEE INC.
    [188]Braunger D, Hariskos D, Bilger G, Rau U, Schock H W,Influence of sodium on the growth of polycrystalline Cu(In,Ga)Se2 thin films[J]. Thin Solid Films,2000. 361:161-166.
    [189]Zribi M, Kanzari M, Rezig B,Post-growth annealing treatment effects on properties of Na-doped CuInS2 thin films[J]. Materials Science & Engineering B, 2007.
    [190]Zribi M, Kanzari M, Rezig B,Optical constants of Na-doped CuInS2 thin films[J]. Materials Letters,2006.60(1):98-103.
    [191]Theresa John T, Sebastian T, Sudha Kartha C, Vijayakumar K P, Abe T, Kashiwaba Y,Effects of incorporation of Na in spray pyrolysed CuInS2 thin films[J]. Physica B:Physics of Condensed Matter,2007.388(1-2):1-9.
    [192]Contreras M A, Ramanathan K, AbuShama J, Hasoon F, Young D L, Egaas B, Noufi R,Short Communication:Accelerated Publication:Diode characteristics in state-of-the-art ZnO/CdS/Cu(In], xGax)Se2 solar cells[J]. Progress in Photovoltaics Research and Applications,2005.13(3):209-216.
    [193]B r M, Ennaoui A, Klaer J, Kropp T, Saez-Araoz R, Allsop N, Lauermann I, Schock H W, Lux-Steiner M C,Formation of a ZnS/Zn(S,O) bilayer buffer on CuInS thin film solar cell absorbers by chemical bath deposition[J]. Journal of Applied Physics,2006.99:123503.
    [194]Braunger D, Hariskos D, Walter T, Schock H W,An 11.4% efficient polycrystalline thin film solar cell based on CuInS2 with a Cd-free buffer layer[J]. Solar energy materials and solar cells,1996.40(2):97-102.
    [195]Todorov T, Carda J, Escribano P, Grimm A, Klaer J, Klenk R,Electro deposited In2S3 buffer layers for CulnS2 solar cells[J]. Solar Energy Materials and Solar Cells, 2008.92(10):1274-1278.
    [196]Kois J, Bereznev S, Raudoja J, Mellikov E, pik A,Glass/ITO/In (O, S)/Culn (S, Se)2 solar cell with conductive polymer window layer[J]. Solar Energy Materials and Solar Cells,2005.87(1-4):657-665.
    [197]Asenjo B, Chaparro A M, Gutierrez M T, Herrero J, Klaer J,Study of CulnS2/ZnS/ZnO solar cells, with chemically deposited ZnS buffer layers from acidic solutions[J]. Solar Energy Materials and Solar Cells,2008.92(3):302-306.
    [198]Ben Nasr T, Kamoun N, Kanzari M, Bennaceur R,Effect of pH on the properties of ZnS thin films grown by chemical bath deposition[J]. Thin Solid Films,2006. 500(1-2):4-8.
    [199]Rusu M, Eisele W, Wurz R, Ennaoui A, Lux-Steiner M C, Niesen T P, Karg F,Current transport in ZnO/ZnS/Cu (In, Ga)(S, Se)2 solar cell[J]. Journal of Physics and Chemistry of Solids,2003.64(9-10):2037-2040.
    [200]Shao L X, Chang K H, Hwang H L,Zinc sulfide thin films deposited by RF reactive sputtering for photovoltaic applications[J]. Applied Surface Science,2003. 212:305-310.
    [201]Ennaoui A, Siebentritt S, Lux-Steiner M C, Riedl W, Karg F,High-efficiency Cd-free CIGSS thin-film solar cells with solution grown zinc compound buffer layers[J]. Solar energy materials and solar cells,2001.67(1-4):31-40.
    [202]Saez-Araoz R, Abou-Ras D, Niesen T P, Neisser A, Wilchelmi K, Lux-Steiner M C, Ennaoui A,In situ monitoring the growth of thin-film ZnS/Zn(S, O) bilayer on Cu-chalcopyrite for high performance thin film solar cells[J]. Thin Solid Films,2009. 517(7):2300-2304.
    [203]沃森JL,刘光诒,薄膜加工工艺.1987:机械工业出版社.
    [204]赵锡钦,溅射薄膜技术的应用[J].电子机械工程,1999(003):58-60.
    [205]张以忱,张峻豪,宋青竹,磁控溅射膜厚均匀性设计方法[J].真空工程学术交流会论文集,2009.
    [206]肖金凤,低功耗磁溅真真空镀膜机自动控制系统[J].机电一体化,2003(04).
    [207]孙运金,陈强,张跃飞,李朝阳,付亚波,新型高阻隔有机氧化硅薄膜制备[J].真空,2008.45(002):46-49.
    [208]王力衡,黄运添,郑海涛,薄膜技术,Beijing:Press of TsingHua University.
    [209]刘新福,孙以材,刘东升,四探针技术测量薄层电阻的原理及应用[J].半导体技术,2004.29(007):48-52.
    [210]孙以材,孙冰,微区薄层电阻四探针测试仪及其应用[J].固体电子学研究与进展,2002.22(001):93-93.
    [211]刘新福,孙以材,张艳辉,陈志永,用改进的Rymaszewski公式及方形四 探针法测定微区的方块电阻[J].物理学报,2004.53(008):2461-2466.
    [212]Weinhardt L, Blum M, B r M, Heske C, Fuchs O, Umbach E, Denlinger J D, Ramanathan K, Noufi R,Chemical properties of the Cu (In, Ga) Se2/Mo/glass interfaces in thin film solar cells[J]. Thin Solid Films,2007.515(15):6119-6122.
    [213]Kois J, Bereznev S, Mellikov E, pik A,Electrodeposition of CulnSe2 thin films onto Mo-glass substrates[J].Thin Solid Films,2006.511:420-424.
    [214]Schlenker T, Laptev V, Schock H W, Werner J H,Substrate influence on Cu (In, Ga)Se2 film texture[J]. Thin Solid Films,2005.480:29-32.
    [215]Maoujoud M, Kons P, Jardinier-Offergeld M, Bouillon F,C c-growth of dc-sputtered Mo and W thin films[J]. Thin Solid Films,1994,238(1):62-9.
    [216]Maoujoud M, Kons P, Jardinier-Offergeld M, Bouillon F,C c-growth of dc-sputtered Mo and W thin films[J]. Thin Solid Films,1994.238(1):62-9.
    [217]Herrero J, Gutierrez M T, Guillen C, Dona J M, Mart nez M A, Chaparro A M, Bayon R,Photovoltaic windows by chemical bath deposition[J]. Thin Solid Films, 2000.361:28-33.
    [218]Connor S T, Hsu C M, Weil B D, Aloni S, Cui Y,Phase Transformation of Biphasic Cu2S- CuInS2 to Monophasic CuInS2 Nanorods[J]. J. Am. Chem. Soc,2009. 131(13):4962-4966.
    [219]Yoosuf R, Jayaraj M K,Optical and photoelectrical properties of β-In2S3 thin films prepared by two-stage process[J]. Solar Energy Materials and Solar Cells,2005. 89(1):85-94.
    [220]Hj A,lnfluence Of The Cooling Rate On The Electrical Conductivity Of Coevaporated Cuins2 Thin Films[J]. Journal of Applied Physics,1997. 81(8):3667-3669
    [221]Alt M, Lewerenz H J, Scheer R,CuInS thin film growth monitoring by in situ electric conductivity measurements[J]. Journal of Applied Physics,1997.81:956.
    [222]Yang J, Jin Z, Liu T, Li C, Shi Y,An investigation into effect of cationic precursor solutions on formation of CulnSe2 thin films by SILAR method[J]. Solar Energy Materials and Solar Cells,2008.92(6):621-627.
    [223]P. Dutta D, Sharma G,A facile route to the synthesis of CulnS2 nanoparticles[J]. Materials Letters,2006.60(19):2395-2398.
    [224]Komaki H, Yoshino K, Seto S, Yoneta M, Akaki Y, Ikari T,Growth of CuInS2 crystals by a hot-press method[J]. Journal of Crystal Growth,2002.236(1):253-256.
    [225]Mobarak M, Shaban H T, Elhady A F.Electrical and thermoelectric properties of CuInS2 single crystals[J]. Materials Chemistry & Physics,2008.109(2-3):287-290.
    [226]Wada T, Kinoshita H,Preparation of Culn(S,Se)2 by mechanochemical process[J]. Thin Solid Films,2005.480:92-94.
    [227]周其刚,王为民,傅正义,王皓,王玉成,张金咏,自蔓延高温合成CuinSe2粉及细化的研究[J].武汉理工大学学报,2009(013):1-3.
    [228]周其刚,王为民,龙飞,傅正义,王皓,王玉成,张金咏,CuIn0.7Ga0.3Se2粉末的自蔓延高温合成[J].稀有金属材料与工程,2009.38(008):1476-1479.
    [229]Akaki Y, Komaki H, Yoshino K, Ikari T,Surface morphology of evaporated CuInS thin films grown by single source thermal evaporation technique[J]. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films,2002.20:1486.
    [230]Malar P, Kasiviswanathan S,Characterization of stepwise flash evaporated Culn3Se5 films[J]. Solar Energy Materials and Solar Cells,2005.85(4):521-533.
    [231]Guha P, Das D, Maity A B, Ganguli D, Chaudhuri S,Synthesis of CuInS2 by chemical route:optical characterization[J]. Solar energy materials and solar cells, 2003.80(1):115-130.
    [232]Wakita K, Hirooka H, Yasuda S, Fujita F, Yamamoto N,Resonant Raman scattering and luminescence in CuInS crystals[J]. Journal of Applied Physics,1998. 83:443.
    [233]Koschel W H, Bettini M,Zone-centered phonons in AⅠ BⅢ S2 chalcopyrites[J]. physica status solidi (c).72(2):729-737.
    [234]Lee S Y, Park B O,CulnS2 thin films deposited by sol-gel spin-coating method[J].Thin Solid Films,2008.516(12):3862-3864.
    [235]Alvarez-Garcia J, Barcones B, Perez-Rodriguez A, Romano-Rodriguez A, Morante J R, Janotti A. Wei S H, Scheer R,Vibrational and crystalline properties of polymorphic CulnC2(C=Se,S) chalcogenides[J]. Physical Review B,2005. 71(5):54303.
    [236]Ahlawat N, Sanghi S, Agarwal A, Rani S,Effect of Li2O on structure and optical properties of lithium bismosilicate glasses[J]. Journal of Alloys and Compounds,2009. 480(2):516-520.
    [237]Guezmir N, Ouerfelli J, Belgacem S,Optical properties of sprayed CuInS2 thin layers[J]. Materials Chemistry & Physics,2006.96(1):116-123.
    [238]Gheluwe J V, Clauws P,Study of thin film CulnS2-on-Cu-tape (CISCuT) solar cells using deep level transient spectroscopy (DLTS)[J]. Thin Solid Films,2007. 515(15):6256-6259.
    [239]Rau U, Taretto K, Siebentritt S,Grain boundaries in Cu(In, Ga)(Se,S)2 thin-film solar cells[J]. Applied Physics A:Materials Science & Processing,2009. 96(1):221-234.
    [240]Ingrid R, Miguel A C, Brian E,19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2%fill factor[J]. Progress in Photovoltaies:Research and Applications,2008. 16:235-239.
    [241]Rudigier E, Pietzker C, Wimbor M, Luck I, Klaer J, Scheer R, Barcones B, Jawhari Colin T, Alvarez-Garcia J, Perez-Rodriguez A,Real-time investigations of the influence of sodium on the properties of Cu-poor prepared CuInS2 thin films[J]. Thin Solid Films,2003.431:110-115.
    [242]Ward J S, Ramanathan K, Hasoon F S, Coutts T J, Keane J, Contreras M A, Moriarty T, Noufi R, A 21.5% efficient Cu(In,Ga)Se2 thin-film concentrator solar cell[J]. Progress in Photovoltaics:Research and Applications,2002.10(1):41-46.
    [243]Green M A, Emery K, King D L, Hisikawa Y, Warta W,Solar cell efficiency tables (version 27)[J]. Progress in Photovoltaics,2006.14(1):45-52.
    [244]H lzing A, Schurr R, Sch fer H, J ger A, Jost S, Palm J, Deseler K, Wellmann P, Hock R,Sulfo-selenization of metallic thin films of Cu, In and Cu-In[J]. Thin Solid Films,2009.517(7):2213-2217.
    [245]阎有花,刘迎春,方玲,卢志超,周少雄,李正邦,硫分压对光吸收层CuInS2薄膜性能的影响[J].稀有金属材料与工程,2009.38(005):838-841.
    [246]lzquierdo-Roca V, Fontane X, Calvo-Barrio L, Perez-Rodriguez A, Morante J R, alvarez-Garcia J, Duault F, Parissi L, Bermudez V,Analysis of sulphurisation processes of electrodeposited S-rich Culn(S,Se)2 layers for photovoltaic applications[J].Thin Solid Films,2009.517(7):2264-2267.
    [247]Jost S, Schurr R, H lzing A, Hergert F, Hock R, Purwins M, Palm J,The formation of the thin-film solar cell absorber CuInS2 by annealing of Cu-In-S stacked elemental layer precursors-A comparison of selenisation and sulfurisation[J]. Thin Solid Films,2009.517(7):2136-2139.
    [248]Spurgeon J M, Atwater H A, Lewis N S,A comparison between the behavior of nanorod array and planar Cd (Se, Te) photoelectrodes[J].2008.
    [249]Akkari F C, Kanzari M, Rezig B,Nanocolumnar CuInS2 thin films by glancing angle deposition[J]. Physica E Low-Dimensional Systems and Nanostructures,2008. 40:2577-2582.
    [250]许肖丽,韩伟,孙克,方玲,刘迎春,卢志超,周少雄,热处理温度对Cu-In 薄膜微观结构的影响[J].材料热处理学报,2007.28(006):131-133.
    [251]Kleinfeld H D, Chemical diffusion coefficients and stability of CuInS2 and CuInSe2 from polarization measurements with point electrodes[J]. Solid State Ionics, 1988.28:1111-1115.
    [252]Krunks M, Mere A, Katerski A, Mikli V, Krustok J,Characterization of sprayed CulnS2 films annealed in hydrogen sulfide atmosphere[J]. Thin Solid Films,2006. 511:434-438.
    [253]G the S, Wang Z, Ng L, Kindblom J M, Barros A C, Ohlsson C, Vennstr m B, Forrest D,Mice devoid of all known thyroid hormone receptors are viable but exhibit disorders of the pituitary-thyroid axis, growth, and bone maturation[J]. Genes & development,1999.13(10):1329.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.