毛细管限域流体与碱性聚电解质的分子模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类文明的进步与化石能源(特别是“黑金”石油)的利用密不可分,但化石能源的过度开采和利用引发了严重的能源和环境危机。从短期来看,缓解石油危机须有效地提高石油采收率,高效利用石油资源,并治理石油工业的环境污染。从长远的角度来看,彻底解决能源枯竭和环境污染这两大棘手的问题的出路在于发展清洁的新能源。氢能是一种可再生的清洁能源,其产生、储运以及燃料电池应用是目前能源领域的研究热点。
     本论文工作以三次采油和燃料电池为背景,运用分子模拟方法对若干重要过程和关键材料进行微观和动态的模拟研究。本工作包含两个部分,第一部分与石油开采和地下水污染治理有关。我们以毛细管限域流体为计算模型,运用多体耗散粒子动力学(MDPD)方法对毛细管中多种流体行为进行了多方面的研究,主要进展如下:
     1.毛细管中液体自发吸入和自发退出过程的MDPD模拟。
     建立了液体在毛细管中所形成的静态接触角与固-液相互作用力参数之间的关系,为调控液体润湿性提供依据。研究了自发吸入与自发退出过程的发生条件,并对不同浸润性的液体的动态过程进行了系统的模拟。在经过两次修正的(以动态接触角代替静态接触角、考虑惯性阻力)Lucas-Washburn方程中引入滑动距离b,并推导相应的数学公式,成功地将其应用范围拓展至不完全浸润管壁液体的自发吸入和自发退出过程。
     2.受外力驱动的毛细管中液-液驱替过程的MDPD模拟。
     建立油/水界面张力γE与油-水相互作用参数AE的对应关系,为界面张力的调控提供依据。设计受外力驱动的毛细管中液-液驱替过程的计算模型,可定量调节驱替外力f、水/毛细管界面张力γw、油/毛细管界面张力γo和油/水界面张力yE。当固定水-毛细管相互作用参数Aw、油-毛细管相互作用参数Ao和油-水相互作用参数AE只改变驱替外力f时,我们发现f必须大于临界值,驱替才能发生,并且驱替时液体流量与外力大小成正比。依据此规律,获得了模拟中启动压力fs的计算公式,讨论了参数Aw和AE对启动压力的影响;给出残油量ROC的计算方法,并讨论了参数AW、AE和f对毛细管残油量的影响。这些结果产生了一组外力驱替参数的优选原则,为实践提供有价值的参考。
     3.毛细管中液-液自发驱替过程的MDPD模拟。
     设计了合理的油/水/毛细管三相界面静态接触角计算模型,提出弯液面位置的新定义。设计毛细管中液-液自发驱替过程的计算模型,模拟了各种不同条件下的自发驱替过程。针对油/水界面不分离的情况推导了描述毛细管中液-液自发驱替过程的数学表达式,以模拟所得动态接触角代入该公式,得到了与模拟计算相吻合的预测曲线。我们进一步在该数学式中采用MKT理论描述动态接触角与弯液面运动速度之间关系的,使公式的应用不再依赖模拟所获得的动态接触角。
     本论文第二部分工作采用分子动力学(MD)模拟研究了燃料电池的一种新型聚电解质膜—碱性聚合物电解质(APE)膜的结构和动态性质,主要进展如下:
     1.将文献报道的Nafion膜模拟经验移植到对碱性聚电解质(APEs)的模拟中,研究了侧链长度不同的三种APE膜在不同含水量下的结构和动态性质。
     2.对特定类型的APE膜,随含水量的增加,膜的密度先增大后减小。根据该规律我们提出膜中空体积的概念,用以解释水分子进入APE膜时的填充行为,促进对聚合物膜溶胀规律的理解。
     3.分析了膜内多种原子(水分子中氧原子OW、氢氧根离子中氧原子Oh、季铵根离子中氮原子Nq)之间的径向分布函数(RDF),发现APE膜中季铵官能团均匀分布,氢氧根离子在含水的膜中发生电离并聚集于含水区域:APE膜存在小范围的亲水/憎水相分离结构,有别于Nafion膜的较大面积相分离结构。
     4.通过均方位移(MSD)的计算,分析了膜中水分子与氢氧根离子不同条件下的自扩散系数,发现两者相比Nafion膜均偏低,但两类粒子在APE膜中扩散活化能较大,提升工作温度可大幅提高APE膜离子电导。
Modern civilization is established on the utilization of fossil fuels, especially the "black gold" petroleum; but now has to face severe energy and environmental crises due to the overexploitation. As a short-term resolution to the crises, the efficiency of oil recovery and utilization must be improved while effectively reducing environmental pollutions. As a long-term resolution, new clean energy sources are necessary, such as hydrogen, whose production, storage, distribution, and fuel-cell application are very hot research subjects nowadays.
     This thesis is about the molecular simulations of key processes and materials in oil recovery and fuel cells. The contents include two parts. The first one is related to oil recovery and groundwater remediation, which share common features of capillary-confined fluids. Many-body dissipative particle dynamics (MDPD) methods are employed in this work, resulting in the following main results:
     1. MDPD study of spontaneous capillary imbibition (SCI) and drainage (SCD).
     The relationship between static contact angles and solid-liquid interaction parameters is established, which enables the definition of fluid wettability. Startup conditions for SCI and SCD are studied and a series of such processes are simulated for fluids with distinct wettability. We have refined the modified Lucas-Washburn equation (with the static contact angle replaced by the dynamic contact angle, and the inertial resistance included) to incorporate the slip length b, such that SCI and SCD processes with partly-wetting fluids can also be well described.
     2. MDPD study of forced capillary displacement (FCDis).
     The relationship between the oil/water interfacial tensionγE and the oil-water interaction parameter AE is established, which enables the control of the interfacial tension between oil and water. A simulation model for FCDis is designed, in which external force f,water/capillary interfacial tension yw, oil/water interfacial tension yo, and oil/water interfacial tensionγE can be quantitatively regulated. With fixed water-capillary interaction parameter AW, oil/capillary interaction parameter AO and oil/water interaction parameter AE, it is found that FCDis can only take place when f exceeds a critical value and the flow rate is proportional to f.Accordingly, a parameter named starting force fs is derived and the influences of AW and AE are studied. Meanwhile, the residual oil content (ROC) could be extracted from the simulation, which is influenced by AW, AE, and f. Systematic investigations have produced a set of optimized conditions for FCDis, which may instruct realistic applications.
     3. MDPD study of spontaneous capillary displacement (SCDis).
     An appropriate oil/water/capillary 3-phase static contact angle model is designed, and a new definition for meniscus position is proposed. A simulation model for SCDis is designed, and a series of simulations under various conditions are conducted. A differential equation is derived to make use of the simulated dynamic contact anglesθd, which can describe the SCDis process very well. Further, after plugging in the relationship betweenθd and the meniscus velocity obtained from the MKT theory, the above differential equation is refined to be independent of the simulatedθd.
     The second part of the thesis is about molecular dynamics (MD) simulations on the static and dynamic properties of alkaline polymer electrolyte (APE) membrane, a novel material for fuel cells. The main results are summarized as follows:
     1. The static and dynamic properties of three types of APE membranes with different side chains are simulated using the force field for Nafion simulations reported in the literature.
     2. It is found that the density of hydrated APE membranes peaks at certain water content, according to which the concept of vacuum volume is proposed and demonstrated to be useful in explaining the filling behavior of water, and helpful in understanding the swelling nature of APE membranes.
     3. Radial distribution functions (RDFs) are calculated between typical atoms, including the water oxygen Ow, the hydroxide ion oxygen Oh, and the quaternary ammonium (QA) ion nitrogen Nq, which provide a variety of structural information of APE membranes. The QA functional groups are found to distribute uniformly in the APE membrane, while the hydroxide ions can be dissociated and assemble in the aqueous domains. There exist hydrophilic/hydrophobic phase separations in small range in APE membranes, differing from the wide-range phase separation observed in Nafion.
     4. Self-diffusion coefficients of water molecules and hydroxide ions are obtained by calculating their mean squared displacement (MSD) in the APE membranes. Although both coefficients are smaller than those in Nafion, the corresponding particle diffusion activation energies are larger in APE membranes, indicating greater conductivity can be obtained at elevated temperatures.
引文
[1]M. K. Hubbert, Energy from fossil fuels, Science,1949,109,103.
    [2]A. S. H. Charles, C. J. Cleveland, Oil exploration, Science,1981,213,1448.
    [3]D. Clery, A sustainable future, if we pay up front, Science,2007,315,782.
    [4]L. Schlapbach, A. Ziittel, Hydrogen-storage materials for mobile applications, Nature,2001,414,332.
    [5]W. Hafele, A global and long-range picture of energy developments, Science, 1980,209,174.
    [6]Petroleum, Wikipedia:The Free Encyclopedia.
    [7]陈淦,21世纪的油田开发,新疆石油地质,1997,18,184。
    [8]陈淦,发展三次采油的战略意义及政策要求,油气采收率技术,1997,4,1。
    [9]A. L. Lydersen, Cocurrent vacuum de-aeration of water for injection into oil reservoirs, Chemical Engineering and Technology,1991,14,248.
    [10]牟建海,李干佐,三次采油技术的发展及展望,化工科技市场,2000,7,92。
    [11]国外油气技术研发动态,2010,8。
    [12]M. Bajomo, I. Robb, J. H. G. Steinke, A. Bismarck, Fully reversible pH-triggered network formation of amphoteric polyelectrolyte hydrogels, Advanced Fuctional Materials,2011,21,172.
    [13]M. Behesht, R. Roostaazad, F. Farhadpour, M. R. Pishvaei, Model development for MEOR process in conventional non-fractured reservoirs and investigation of physico-chemical parameter effects, Chemical Engineering and Technology,2008, 31,953.
    [14]M. Awang, M. S. Goh, Sulfonation of phenols extracted from the pyrolysis oil of oil palm shells for enhanced oil recovery, ChemSusChem,2008,1,210.
    [15]W. Wang, Y. Liu, Y. Gu, Application of a novel polymer system in chemical enhanced oil recovery (EOR), Colloid and Polymer Science,2003,281,1046.
    [16]S. Khemakhem, R. B. Amar, A. Larbot, Synthesis and characterization of a new inorganic ultrafiltration membrane composed entirely of Tunisian natural illite clay, Desalination,2007,206,210.
    [17]Y. C. Chiu, S.J. Wang, The micellar dissociation concentration of some commercial surfactants containing carboxymethyl ethoxylates,Colloids and Surfaces,1990,48,311.
    [18]J. H. Clint, E. L. Neustadter, P. A. Wheeler, Interaction of enhanced oil recovery surfactants with model crude oil surfactants, Colloids and Surfaces,1984,11, 129.
    [19]刘方,高正松,缪鑫才,表面活性剂在石油开采中的应用,精细化工,2000,17,696。
    [20]V. Hornof, G. H. Neale, M. Gholam-Hosseini, Effects of flow rate and alkali-to-acid ratio on the displacement of acidic oil by alkaline solutions in radial porous media, Journal of Colloid and Interface Science,2000,231,196.
    [21]L. Zhang, L. Luo, S. Zhao, B. Yang, J. Yu, Studies of synergism/antagonism for lowering dynamic interfacial tension in surfactant/alkali/acidic oil systems 3. Synergism/antagonism in surfactant/alkali/acidic model oil systems, Journal of Colloid and Interface Science,2003,260,398.
    [22]S. S. Adkins, X.Chen, I. Chan, E. Torino, Q. P. Nguyen, A. W. Sanders, K. P. Johnston, Morphology and stability of CO2-in-water foams with nonionic hydrocarbon surfactants, Langmuir,2010,26,5335.
    [23]Kevin C. Taylor, Laurier L. Schramm, Measurement of short-term low dynamic interfacial tensions:Application to surfactant enhanced alkaline flooding in enhanced oil recovery, Colloids and Surfaces,1990,47,245.
    [24]周万富,张士诚,王庆国,周世杰,强碱三元复合驱长岩心模拟实验中成垢离子变化规律,大庆石油学院学报,2010,34,77。
    [25]J. Klier, C. J. Tucker, T. H. Kalantar, D. P. Green, Properties and applications of microemulsions, Advanced Materials,2000,12,1751.
    [26]M.-J. Schwuger, K. Stickdornt, Microemulsions in technical processes, Chemical Reviews,1995,95,849.
    [27]L. P. Whorton, E. R. Brownscombe, A. B. Dyes, Method for producing oil by means of carbon dioxide, U.S. Patent 2623596,1952.
    [28]A. Aspelund, M. J. Mφlnvik, G. D. Koeijership, Transport of CO2 technical solutions and analysis of costs, energy utilization, exergy efficiency and CO2 emissions, Chemical Engineering Research and Design,2006,84,847.
    [29]Bae J, Irani C. A laboratory investigation of thickened CO2 process. SPE 20467, 1990.
    [30]Davis B, W. Organosilicon polymer having nonrandom crosslinkages useful EOR using Carbon dioxide flooding. U. S. Patent 5080169,1992.
    [31]岳湘安,赵仁保,赵凤兰,我国C02提高石油采收率面临的技术挑战,中国科技论文在线,2007,7,487。
    [32]L. R. Brown, Microbial enhanced oil recovery (MEOR), Current Opinion in Microbiology,2010,13,316.
    [33]G. E. Jenneman, R. M. Knapp, M. J. McInerney, D. E. Menzie, D. E. Revus, Experimental studies of in situ microbial enhanced oil recovery. SPE Journal, 1984,24,33.
    [34]R. A. Raiders, M. J. McInerney, D. E. Revus, H. M. Torbati, R. M. Knapp, G. E. Jenneman,Selectivity and depth of microbial plugging in Berea sandstone cores, Journal of Industrial Microbiology and Biotechnology,1986,1,195.
    [35]J. Li, J. Liu, M. G. Trefry, J. Park, K. Liu, B. Haq, C. D. Johnston, H. Volk, Interactions of microbial-enhanced oil recovery processes, Transport in Porous Media,2011,87,77.
    [36]J. Zhang, B. Han, C. Zhang, W. Li, X. Feng, Nanoemulsions induced by compressed gases, Angewandte Chemie International Edition,2008,47,3012.
    [37]J. Giles, Oil exploration:Every last drop, Nature,2004,429,694.
    [38]M. I. Hoffert, K. Caldeira, G. Benford, D. R. Criswell, C. Green, H. Herzog, A. K. Jain, H. S. Kheshgi, K. S. Lackner, J. S. Lewis, H. D. Lightfoot, W. Manheimer, J. C. Mankins, M. E. Mauel, L. J. Perkins, M. E. Schlesinger, T. Volk, T. M. L Wigley, Advanced technology paths to global climate stability:Energy for a greenhouse planet, Science,2002,298,981.
    [39]R. Lal, Soil carbon sequestration impact on global climate change and food security, Science,2004,304,1623.
    [40]S. J. Davis, K. Caldeira, H. D. Matthews, Future CO2 emissions and climate change from existing energy infrastructure, Science,2010,329,1330.
    [41]袁男优,低碳经济的概念内涵,城市环境与城市生态,2010,23,43。
    [42]哥本哈根世界气候大会(COP15)背景及成果,黑龙江金融,2009,12,11。
    [43]R. E. Sweatman, M. E. Parker, S. L. Crookshank, Industry CO2 EOR experience relevant for carbon capture and storage (CCS). Oil and Gas Journal, 2009,107,20.
    [44]http://oceanworld.tamu.edu/resources/environment-book/groundwaterremediation .html
    [45]W. D. Miller, Waste Disposal Effects on Groundwater:A Comprehensive Survey of the Occurrence and Control of Ground-Water Contamination Resulting from Waste Disposal Particles, Premier Press, Berkeley, California,1980.
    [46]C. V. Chrysikopoulos, E. T. Vogler, Acoustically enhanced multicomponent NAPL ganglia dissolution in water saturated packed columns, Environmental Science & Technology,2004,38,2940.
    [47]C. A. Peters, C. D. Knightes, D. G. Brown, Long-term composition dynamics of PAH-containing NAPLs and implications for risk assessment, Environmental Science & Technology,1999,33,4499.
    [48]C. A. Ramsburg, K. D. Pennell, Density-modified displacement for DNAPL source zone remediation:Density conversion and recovery in heterogeneous aquifer cells, Environmental Science & Technology,2002,36,3176.
    [49]H. Destaillats, T. W. Alderson Ⅱ, M. R. Hoffmann, Applications of ultrasound in NAPL remediation:Sonochemical degradation of TCE in aqueous surfactant solutions, Environmental Science & Technology,2001,35,3019.
    [50]M. Zhou, R. D. Rhue, Screening commercial surfactants suitable for remediating DNAPL source zones by solubilization, Environmental Science & Technology, 2000,34,1985.
    [51]Enhanced oil recovery, Wikipedia:The Free Encyclopedia.
    [52]M. J. De Ruijter, T.D. Blake, J. De Coninck, Dynamic wetting studied by molecular modeling simulations of droplet spreading. Langmuir,1999,15,7836.
    [53]D. R. Heine, G.S. Grest, E. B. Webb Ⅲ, Spreading dynamics of polymer nanodroplets in cylindrical geometries, Physical Review E,2004,70,01 1606.
    [54]S. Supple, N. Quirke, Rapid imbibition of fluids in carbon nanotubes, Physical Review Letters,2003,90,214501.
    [55]D. Seveno, J. De Coninck, Possibility of different time scales in the capillary rise around a fiber, Langmuir,2004,20,737.
    [56]F. Gentner, G. Ogonowski, J. De Coninck, Forced wetting dynamics:A molecular dynamics study, Langmuir,2003,19,3996.
    [57]D. Seveno, G. Ogonowski, J. De Coninck, Liquid coating of moving fiber at the nanoscale, Langmuir,2004,20,8385.
    [58]M. H. Adao, M. de Ruijter, M. Voue, J. De Coninck, Droplet spreading on heterogeneous substrates using molecular dynamics, Physical Review E,1999,59, 746.
    [59]G. Martic, T. D. Blake, J. De Coninck, Dynamics of imbibition into a pore with a heterogeneous surface, Langmuir,2005,21,11201.
    [60]G. Grest, D. R. Heine, E. B. Webb Ⅲ, Liquid nanodroplets spreading on chemically patterned surfaces, Langmuir,2006,22,4745.
    [61]D. Seveno, V. Ledauphin, G. Martic, M. Voue, J. De Coninck, Spreading drop dynamics on porous surface, Langmuir,2002,18,7496.
    [62]D. R. Heine, G. S. Grest, E. B. Webb III, Spreading dynamics of polymer nanodroplets in cylindrical geometries, Physical Review E,2004,70,011606.
    [63]E. Bertrand, T. D. Blake, J. De Coninck, Spreading dynamics of chain-like monolayers:A molecular dynamics study, Langmuir,2005,21,6628.
    [64]S. Supple, N. Quirke, Molecular dynamics of transient oil flows in nanopores 1: Imbibition speeds for single wall carbon nanotubes, The Journal of Chemical Physics,2004,121,6571.
    [65]T. P. Swiler, R. E. Loehman, Molecular dynamics simulations of reactive wetting in metal-ceramic systems, Acta Materialia,2000,48,4419.
    [66]E. B. Webb III, G. S. Grest, D. R. Heine, Precursor film controlled wetting of Pb on Cu, Physical Review Letters,2003,91,236102.
    [67]E. B. Webb III, G. S. Grest, D. R. Heine, J. J. Hoyt, Dissolutive wetting of Ag on Cu:A molecular dynamics simulation study, Acta Materialia,2005,53,3163.
    [68]G. Martic, F. Gentner, D. Seveno, D. Coulon, J. De Coninck, T. D. Blake, A molecular dynamics simulation of capillary imbibitions, Langmuir,2002,18, 7971.
    [69]D. I. Dimitrov, A. Milchev, K. Binder, Capillary rise in nanopores:Molecular dynamics evidence for the Lucas-Washburn Equation, Physical Review Letters, 2007,99,054501.
    [70]M. P. Allen, D. J. Tildesley, Computer Simulation of Liquids, Oxford University Press,1989.
    [71]P. J. Hoogerbrugge, J. M. V. A. Koelman, Simulting microscopic hydrodynamic phenomena with dissipative particle dynamics, Europhyics Letters,1992,19,155.
    [72]I. Pagonabarraga, D. Frenkel, Dissipative particle dynamics for interacting systems, The Journal of Chemical Physics,2001,115,5015.
    [73]S. Y. Trofimov, E. L. F. Nies, M. A. J. Michels, Constant-pressure simulations with dissipative particle dynamics, The Journal of Chemical Physics,2002,117, 9383.
    [74]P. B. Warren, Vapor-liquid coexistence in many-body dissipative particle dynamics, Physical Review E,2003,68,066702.
    [75]C. Cupelli, B. Henrich, T. Glatzel, R. Xengerle, M. Moseler, M. Santer, Dynamic capillary wetting studied with dissipative particle dynamics, New Journal of Physics,2008,10,043009.
    [76]M. R. Stukan, P. Ligneul, J. P. Crawshaw, E. S. Boek, Spontaneous imbibition in nanopores of different roughness and wettability, Langmuir,2010,26,13342.
    [77]李兵,王培红,氢能经济的发展现状及展望,上海电力,2010,3,173.
    [78]金名,氢能经济的前世今生,中国商报,2004,7月27臼。
    [79]M. Z. Jacobson, W. G. Colella, D. M. Golden, Cleaning the air and improving health with hydrogen fuel-cell vehicles, Science,2005,308,1901.
    [80]U. S. DOE hydrogen program, www.hydrogen.energy.gov,2006.
    [81]肖丽,“氢-水”电化学循环中的非铂催化剂研究,武汉大学博士学位论文,2010。
    [82]N. Armaroli, V. Balzani, The future of energy supply:Challenges and opportunities, Angewandte Chemie International Edition,2007,46,52.
    [83]M. Winter, R. J. Brodd, What are batteries, fuel cells, and supercapacitors? Chemical Reviews,2004,104,4245.
    [84]C.-Y. Wang, Fundamental models for fuel cell engineering, Chemical Reviews, 2004,104,4727.
    [85]R. Bashyam, P. Zelenay, A class of non-precious metal composite catalysts for fuel cells, Nature,2006,433,63.
    [86]B. C. H. Steele, A. Heinzel, Materials for fuel-cell technologies, Nature,2001, 414,345.
    [87]R. Borup, J. Meyers, B. Pivovar, Y. S. Kim, R. Mukundan, N. Garland, D. Myers, M. Wilson, F. Garzon, D. Wood, P. Zelenay, K. More, K. Stroh,T. Zawodzinski, J. Boncella, J. E. McGrath, M.Inaba, K.Miyatake, M. ori, K. Ota, Z. Ogumi, S. Miyata, A. Nishikata, Z. Siroma, Y. Uchimoto, K.Yasuda, K. Kimijima, N. Iwashita, Scientific aspects of polymer electrolyte fuel cell durability and degradation, Chemical Reviews,2007,107,3904.
    [88]J. Pan, Y. Li, L. Zhuang, J. Lu, Self-crosslinked alkaline polymer electrolyte exceptionally stable at 90℃, Chemical Communications,2010,46,8597.
    [89]Fuel Cell Breakthroughs, Part 1, http://www.lanl.gov/orgs/mpa/mpal1/breakthrough 1.htm
    [90]Church, Steven, Del. firm installs fuel cell. The News Journal, January 6,2006, B7.
    [91]K. A. Mauritz, R. B. Moore, State of understanding of Nafion, Chemical Reviews, 2004,104,4535.
    [92]W. Y. Hsu, T. D. Gierke, Ion transport and clustering in Nafion perfluorinated membranes, Journal of Membrane Science,1983,13,307.
    [93]T. D. Gierke, G. E. Munn, F. C. Wilson, The morphology in Nafion perfluorinated membrane products, as determined by wide- and small-angle x-ray studies, Journal of Polymer Science:Polymer Physics Edition,1981,19,1687.
    [94]W. Y. Hsu, T. D. Gierke, Elastic theory for ionic clustering in perfluorinated ionomers, Macromolecules,1982,15,101.
    [95]A. Eisenberg, B. Hird, R. B. Moore, A new multiplet-cluster model for the morphology of random ionomers, Macromolecules,1990,23,4098.
    [96]M. Fujimura, T. Hashimoto, H. Kawai, Small-angle x-ray scattering study of perfluorinated ionomer membranes.1. Origin of two scattering maxima, Macromolecules,1981,14,1309.
    [97]M. Fujimura, R. Hashimoto, H. Kawai, Small-angle x-ray scattering study of perfluorinated ionomer membranes.2. Models for ionic scattering maximum, Macromolecules,1982,15,136.
    [98]Marx, C. L.; D. F. Caulfield, S. J. Cooper, High-resolution imaging of ionic domains and crystal morphology in ionomers using AFM techniques, Macromolecules,2000,33,6541.
    [99]H. W. Starkweather Jr., Crystallinity in perfluorosulfonic acid ionomers and related polymers, Macromolecules,1982,15,320.
    [100]T. J. Peckham, S. Holdcroft, Structure-morphology-property relationships of non-perfluorinated proton-conducting membranes, Advanced Materials,2010,22, 4667.
    [101]R. Devanathan, Recent developments in proton exchange membranes for fuel cells, Energy & Environmental Science,2008,1,101.
    [102]K. Prater, The renaissance of the solid polymer fuel cell, Journal of Power Sources,1990,29,239.
    [103]V. Arcella, C. Troglia, A. Ghielmi, Hyflon ion membranes for fuel cells, Industrial and Engineering Chemistry Research,2005,44,7646.
    [104]Y. Wang, L. Li, L. Hu, L. Zhuang, J. Lu, B. Xu, A feasibility analysis for alkaline membrane direct methanol fuel cell:Thermodynamic disadvantages versus kinetic advantages, Electrochemistry Communications,2003,5,662.
    [105]A. E. S. Sleightholme, J. R. Varcoe, A. Kucernak, Oxygen reduction at the silver/hydroxide-exchange membrane interface, Electrochemistry Communications,2008,10,151.
    [106]L. A. Adams, S. D. Poynton, C. Tamain, R. C. T. Slade, J. R. Varcoe, A carbon dioxide tolerant aqueous-electrolyte-free anion-exchange membrane alkaline fuel cell, ChemSusChem,2008,1,79.
    [107]J. R. Varcoe, R. C. T. Slade, E.L. H. Yee, S. D. Poynton, D. J. Driscoll, D. C. Apperley, Poly(ethylene-co-tetrafluoroethylene)-derived radiation-grafted anion-exchange membrane with properties specifically tailored for application in metal-cation-free alkaline polymer electrolyte fuel cells, Chemistry of Materials, 2007,19,2686.
    [108]C. Tamain, S. D. Poynton, R. C. T. Slade, B. Carroll, J. R. Varcoe, Development of cathode architectures customized for H2/O2 metal-cation-free alkaline membrane fuel cells, The Journal of Physical Chemistry C,2007,111,18423.
    [109]J.R. Varcoe, Investigations of the ex situ ionic conductivities at 30℃ of metal-cation-free quaternary ammonium alkaline anion-exchange membranes in static atmospheres of different relative humidities, Physical Chemistry Chemical Physics,2007,9,1479.
    [110]J.R. Varcoe, R.C.T. Slade, E.L.H. Yee, S.D. Poynton, D.J. Driscoll, Investigations into the ex situ methanol, ethanol and ethylene glycol permeabilities of alkaline polymer electrolyte membranes, Journal of Power Sources,2007,173,194.
    [111]J. R. Varcoe, R. C. T. Slade, E. L. H. Yee, An alkaline polymer electrochemical interface:A breakthrough in application of alkaline anion-exchange membranes in fuel cells, Chemical Communications,2006,1428.
    [112]J. R. Varcoe, R. C. T. Slade, G. L. Wright, Y. Chen, Steady-state dc and impedance investigations of H2/O2 alkaline membrane fuel cells with commercial Pt/C, Ag/C, and Au/C cathodes, The Journal of Physical Chemistry B,2006,110, 21041.
    [113]J. R. Varcoe, R. C. T. Slade, An electron-beam-grafted ETFE alkaline anion-exchange membrane in metal-cation-free solid-state alkaline fuel cells, Electrochemistry Communications,2006,8,839.
    [114]R.C.T. Slade, J. R. Varcoe, Investigations of conductivity in FEP-based radiation-grafted alkaline anion-exchange membranes, Solid State Ionics 2005, 176,585.
    [115]H. Herman, R. C. T. Slade, J. R. Varcoe, The radiation-grafting of vinylbenzyl chloride onto poly(hexafluoropropylene-co-tetrafluoroethylene) films with subsequent conversion to alkaline anion-exchange membranes:Optimisation of the experimental conditions and characterization, Journal of Membrane Science, 2003,218,147.
    [116]T. N. Danks, R. C. T. Slade, J. R. Varcoe, Alkaline anion-exchange radiation-grafted membranes for possible electrochemical application in fuel cells, Journal of Materials Chemistry,2003,13,712.
    [117]T. N. Danks, R. C. T. Slade, J. R. Varcoe, Comparison of PVDF- and FEP-based radiation-grafted alkaline anion-exchange membranes for use in low temperature portable DMFCs, Journal of Materials Chemistry,2002,12,3371.
    [118]J. Pan, S. Lu, Y. Li, A. Huang, L. Zhuang, J. Lu, High-performance alkaline polymer electrolyte for fuel cell applications, Advanced Functional Materials, 2009,19,1.
    [119]M. R. Hibbs, C. H. Fujimoto, C. J. Cornelius, Synthesis and characterization of poly(phenylene)-based anion exchange membranes for alkaline fuel cells, Macromolecules,2009,42,8316.
    [120]J. Wang, Z. Zhao, F. Gong, S. Li, S. Zhang, Synthesis of soluble poly(arylene ether sulfone) ionomers with pendant quaternary ammonium groups for anion exchange membranes, Macromolecules,2009,42,8711.
    [121]M. Tanaka, M. Koike, K. Miyatake, M. Watanabe, Anion conductive aromatic ionomers containing fluorenyl groups, Macromolecules,2010,43,2657.
    [122]S. Lu, J. Pan, A. Huang, L. Zhuang, J. Lu, Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts, Proceedings of the National Academy of Sciences of the United States of America,2008,105,20611.
    [123]N. J. Robertson, H. A. Kostalik IV, T. J. Clark, P. F. Mutolo, H. D. Abruna, G. W. Coates, Tunable high performance cross-linked alkaline anion exchange membranes for fuel cell applications, Journal of the American Chemical Society, 2010,132,3400.
    [124]T. J. Clark, N. J. Robertson, H. A. Kostalik IV, E. B. Lobkovsky, P. F. Mutolo, H. D. Abruna, G. W. Coates, Journal of the American Chemical Society,2009,131, 12888.
    [125]J. A. Elliott, S. J. Paddison, Modelling of morphology and proton transport in PFSA membranes, Physical Chemistry Chemical Physics,2007,9,2602.
    [126]S. J. Paddison and J. A. Elliott, Selective hydration of the'short-side-chain' perfluorosulfonic acid membrane. An ONIOM study, Solid State Ionics,2007, 178,561.
    [127]S. J. Paddison and J. A. Elliott, Molecular modeling of the short-side-chain perfluorosulfonic acid membrane, The Journal of Physical Chemistry A,2005, 709,7583.
    [128]S. J. Paddison and J. A. Elliott, The effects of backbone conformation on hydration and proton transfer in the'short-side-chain'perfluorosulfonic acid membrane, Solid State Ionics,2006,177,2385.
    [129]S. J. Paddison and J. A. Elliott, On the consequences of side chain flexibility and backbone conformation on hydration and proton dissociation in perfluorosulfonic acid membranes, Physical Chemistry Chemical Physics,2006,8,2193.
    [130]S. J. Paddison, L. R. Pratt, T. A. Zawodzinski Jr., Variation of the dissociation constant of triflic acid with hydration, The Journal of Physical Chemistry A,2001, 105,6266.
    [131]S. J. Paddison and T. A. Zawodzinski Jr., Molecular modeling of the pendant chain in Nation, Solid State Ionics,1998,113-115,333.
    [132]M. Eikerling, S. J. Paddison, L. R. Pratt and T. A. Zawodzinski Jr., Defect structure for proton transport in a triflic acid monohydrate solid, Chemical Physics Letters,2003,368,108.
    [133]V.-A. Glezakou, M. Dupuis and C. J. Mundy, Acid/base equilibria in clusters and their role in proton exchange membranes:Computational insight, Physical Chemistry Chemical Physics,2007,9,5752.
    [134]D. Seeliger, C. Hartnig and E. Spohr, Aqueous pore structure and proton dynamics in solvated Nafion membranes, Electrochimica Acta,2005,50,4234.
    [135]M. K. Petersen, F. Wang, N. P. Blake, H. Metiu and Gregory A. Voth, Excess proton solvation and delocalization in a hydrophilic pocket of the proton conducting polymer membrane Nafion, The Journal of Physical Chemistry B, 2005,109,3727.
    [136]M. K. Petersen and G. A. Voth, characterization of the solvation and transport of the hydrated proton in the perfluorosulfonic acid membrane Nafion, The Journal of Physical Chemistry B,2006,110,18594.
    [137]A. Vishnyakov and A. V. Neimark, Molecular dynamics simulation of microstructure and molecular mobilities in swollen Nafion membranes, The Journal of Physical Chemistry B,2001,105,9586.
    [138]S. Urata, J. Irisawa, A. Takada, W. Shinoda, S. Tsuzuki and M. Mikami, Molecular dynamics simulation of swollen membrane of perfiuorinated ionomer, The Journal of Physical Chemistry B,2005,109,4269.
    [139]S. S. Jang, V. Molinero, T. Cagun and W. A. Goddard Ⅲ, Nanophase-segregation and transport in Nafion 117 from molecular dynamics simulations:Effect of monomeric sequence, The Journal of Physical Chemistry B,2004,108,3149.
    [140]S. Cui, J. Liu, M. E. Selvan, D. J. Keffer and W. V. Steele, A molecular dynamics study of a Nafion polyelectrolyte membrane and the aqueous phase structure for proton transport, The Journal of Physical Chemistry B,2007,111,2208.
    [141]N. P. Blake, G. Mills and H. Metiu, Dynamics of H2O and Na+ in Nafion membranes, The Journal of Physical Chemistry B,2007,111,2490.
    [142]A. Venkatnathan, R. Devanathan and M. Dupuis, Atomistic simulations of hydrated Nafion and temperature effects on hydronium ion mobility, The Journal of Physical Chemistry B,2007,111,7234.
    [143]R. Devanathan, A. Venkatnathan and M. Dupuis, Atomistic simulation of Nafion membrane:I. Effect of hydration on membrane nanostructure, The Journal of Physical Chemistry B,2007,111,8069.
    [144]R. Devanathan, A. Venkatnathan and M. Dupuis, Atomistic simulation of Nafion membrane.2. Dynamics of Water molecules and hydronium ions, The Journal of Physical Chemistry B,2007,111,13006.
    [145]D. Brandell, J. Karo, A. Liivat and J. O. Thomas, Molecular dynamics studies of the Nafion(?), Dow(?) and Aciplex(?) fuel-cell polymer membrane systems, Journal of Molecular Modeling,2007,13,1039.
    [146]I. H. Hristov, S. J. Paddison and R. Paul, Atomistic simulation of Nafion membrane.2. Dynamics of water molecules and hydronium ions, The Journal of Physical Chemistry B,2008,112,2937.
    [147]J. T. Wescott, Y. Qi, L. Subramanian and T. W. Capehart, Mesoscale simulation of morphology in hydrated perfluorosulfonic acid membranes, Journal of Chemical Physics,2006,124,134702.
    [148]S. J. Paddison, Proton conduction mechanisms at low degrees of hydration in sulfonic acid-based polymer electrolyte membranes, Annual Review of Materials Research,2003,33,289.
    [149]A. Warshel, Computer Modeling of Chemical Reactions in Enzymes and Solutions, John Wiley, New York,1991.
    [1]D. Frenkel, B. Smit, Understanding Molecular Simulation:From Algorithms to Applications (2nd edition), Academic Press, New York,2002.
    [2]A. R. Leach, Molecular Modelling:Principles and Applications (2nd edition), Prentice Hall,2001.
    [3]Molecular modelling, Wikipedia:The Free Encyclopedia.
    [4]P. Atkins, J. de Paula, Atkins's Physical Chemistry (7th edition), New York, Oxford University Press,2002.
    [5]D. J. Griffiths, Introduction to Quantum Mechanics (2nd edition), Prentice Hall, 2004.
    [6]唐敖庆,杨忠志,李前树,量子化学,科学出版社,北京,1982。
    [7]廖沐真,吴国是,刘洪霖,量子化学从头算方法,清华大学出版社,北京,1984。
    [8]R. G. Parr, Density functional theory, Annual Review of Physical Chemistry,1983, 34,631.
    [9]P. Hohenberg, W. Kohn, Inhomogeneous electron gas, Physical Review,1964, 136, B864.
    [10]W. Kohn, L. J. Sham, Self-consistent equations including exchange and correlation effects, Physical Review,1965,140, A1133.
    [11]Born-Oppenheimer approximation, Wikipedia:The Free Encyclopedia.
    [12]M. P. Allen, D. J. Tildesley, Computer Simulation of Liquids, Oxford University Press,1989.
    [13]B. J. Alder, T. E. Wainwright, Phase Transition for a hard-sphere system, The Journal of Chemical Physics,1957,27,1208.
    [14]J. E. Lennard-Jones, On the determination of molecular fields. Ⅱ. From the equation of state of a gas, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character,1924,106,463.
    [15]L. Verlet, Computer 'Experiments' on classical fluids.Ⅰ. Thermodynamical properties of Lennard-Jones molecules, Physical Review,1967,159,98.
    [16]W. C. Swope, H. C. Anderson, P. H. Berens, K. R. Wilson, A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules:Application to small water clusters. The Journal of Chemical Physics,1982,76,637.
    [17]M. S. Daw, M. I. Baskes, Embedded-atom method:Derivation and application to impurities, surfaces, and other defects in metals, Physical Review B,1984,29, 6443.
    [18]J. Tersoff, New empirical approach for the structure and energy of covalent systems, Physical Review B,1988,37,6991.
    [19]W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, P. A. Kollman, A second generation force field for the simulation of proteins, nucleic acids and organic molecules, Journal of the American Chemical Society,1995,117,5179.
    [20]B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, M. Karplus, CHARMM:A program for macromolecular energy, minimization, and dynamics calculations, Journal of Computational Chemistry,1983,4,187.
    [21]P. Dauber-Osguthorpe, V. A. Roberts, D. J. Osguthorpe, J. Wolff, M. Genest, A. T. Hagler, Structure and energetics of ligand binding to proteins:E. coli dihydrofolate reductase-trimethoprim, a drug-receptor system, Proteins:Structure, Function and Genetics,1988,4,31.
    [22]S. L. Mayo, B. D. Olafson, W. A. Goddard III, DREIDING:A generic force field for molecular simulations, Journal of Physical Chemistry,1990,94,8897.
    [23]W. L. Jorgensen, J. Tirado-Rives, The OPLS forcefield for proteins. Energy minimizations for crystals of cyclic peptides and crambin, Journal of the American Chemical Society,1988,110,1657.
    [24]W. L. Jorgensen, D. S. Maxwell, J. Tirado-Rives, Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids, Journal of the American Chemical Society,1996,118,11225.
    [25]A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard Ⅲ, W. M. Skiff, UFF, a full periodic table forcefield for molecular mechanics and molecular dynamics simulations, Journal of the American Chemical Society,1992,114,10024.
    [26]H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, J. Hermans, Intermolecular Forces, Reidel, Dordrecht,1981.
    [27]H. J. C. Berendsen, J. R. Grigera, T. P. Straatsma, The missing term in effective pair potentials, Journal of Physical Chemistry,1987,91,6269.
    [28]W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, M. L. Klein, Comparison of simple potential functions for simulating liquid water, The Journal of Chemical Physics,1983,79,926.
    [29]W. L. Jorgensen, J. D. Madura, Temperature and size dependence for Monte Carlo simulations of TIP4P water, Molecular Physics,1985,56,1381.
    [30]M. W. Mahoney, W. L. Jorgensen, A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions, The Journal of Chemical Physics,2000,112,8910.
    [31]M. Levitt, M. Hirshberg, R. Sharon, K. E. Laidig. V. Daggett, Calibration and testing of a water model for simulation of the molecular dynamics of proteins and nucleic acids in solution, The Journal of Physical Chemistry B,1997,101,5051.
    [32]N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. N. Teller, E. Teller, Equation of state calculations by fast computing machine, The Journal of Chemical Physics,1953,21,1087.
    [33]P. J. Hoogerbrugge, J. M. V. A. Koelman, Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics, Europhyics Letters,1992,19,155.
    [34]R. Groot, P. B. Warren, Dissipative particle dynamics:Bridging the gap between atomistic and mesoscopic simulation, The Journal of Chemical Physics,1997, 107,4423.
    [35]R. D. Groot, T. J. Madden, D. J. Tildesley, On the role of hydrodynamic interactions in block copolymer microphase separation, The Journal of Chemical Physics,1999,110,9739.
    [36]R. D. Groot, Mesoscopic simulation of polymer-surfactant aggregation, Langmuir, 2000,16,7493.
    [37]S. Jury, P. Bladon, M. Cates, S. Krishna, M. Hagen, N. Ruddock, P. Warren, Simulation of amphiphilic mesophases using dissipative particle dynamics, Physical Chemistry Chemical Physics,1999,1,2051.
    [38]P. Prinsen, P. B. Warren, M. A. J. Michels, Mesoscale simulations of surfactant dissolution and mesophase formation, Physical Review Letters,2002,89,148302.
    [39]R. D. Groot, T. J. Madden, Dynamic simulation of diblock copolymer microphase separation, The Journal of Chemical Physics,1998,108,8713.
    [40]P. B. Warren, Hydrodynamic bubble coarsening in off-critical vapor-liquid phase separation, Physical Review Letters,2001,87,225702.
    [41]J. C. Shillcock, R. Lipowsky, Tension-induced fusion of bilayer membranes and vesicles, Nature Materials,2005,4,225.
    [42]P. B. Warren, Vapor-liquid coexistence in many-body dissipative particle dynamics, Physical Review E,2003,68,066702.
    [43]P. Espanol, P. B. Warren, Statistical mechanics of dissipative particle dynamics, Europhysics Letters,1995,30,191.
    [44]A. A. Louis, P. G. Bolhuis, J. P. Hansen, Mean-field fluid behavior of the Gaussian core model, Physical Review E,2000,62,7961.
    [45]I. Pagonabarraga, D. Frenkel, Dissipative particle dynamics for interacting systems, The Journal of Chemical Physics,2001,115,5015.
    [46]S. Y. Trofimov, E. L. F. Nies, M. A. J. Michels, Constant-pressure simulations with dissipative particle dynamics, The Journal of Chemical Physics,2002,117, 9383.
    [47]S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, Journal of Computational Physics,1995,117,1.
    [48]http://lammps.sandia.gov
    [49]Gaussian 09, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT,2009.
    [50]http://accelrys.com/products/materials-studio/
    [51]http://www.mathworks.com/products/matlab/
    [52]W. Humphrey, A. Dalke, K. Schulten, VMD-Visual Moleuclar Dynamics, Journal of Molecular Graphics,1996,14,33.
    [53]http://www.ks.uiuc.edu/Research/vmd/
    [1]M. Alava, M. Dube, M. Rost, Imbibition in disordered media, Advances in Physics,2004,53,83.
    [2]P. G. de Gennes, Wetting:Statics and dynamics, Reviews of Modern Physics,1985, 57,827.
    [3]W. F. Pickard, The ascent of sap in plants, Progress in Biophysics and Molecular Biology,1982,37,181.
    [4]W. J. Bramlage, A. C. Leopold, D. J. Parrish, Chilling stress to soybeans during imbibition, Plant Physiology,1978,61,525.
    [5]N. R. Morrow, G. Mason, Recovery of oil by spontaneous imbibition, Current Opinion in Colloid & Interface Science,2001,6,321.
    [6]A. Clarke, T. D. Blake, K. Carruthers, A. Woodward, Spreading and imbibition of liquid droplets on porous surfaces, Lamgmuir,2002,18,2980.
    [7]N. Brielles, F. Chantraine, M. Viana, D. Chulia, P. Branlard, G. Rubinstenn, F. Lequeux, D. Lasseux, M. Birot, D. Roux, O. Mondain-Monval, Imbibition and dissolution of a porous medium, Industrial & Engineering Chemistry Research, 2007,46,5785.
    [8]S. Supple, N. Quirke, Rapid imbibition of fluids in carbon nanotubes, Physical Review Letters,2003,90,214501.
    [9]R. Lucas, Ueber das zeitgesetz des kapillaren aufstiegs von flussigkeiten, Kolloid Z.,1918,23,15.
    [10]E. W. Washburn, The dynamics of capillary flow, Physical Review,1921,17,273.
    [11]B. V. Zhmud, F. Tiberg, K. Hallstensson, Dynamics of capillary rise, Journal of Colloid and Interface Science,2000,228,263.
    [12]K. G. Kornev, A. V. Neimark, Modeling of spontaneous penetration of viscoelastic fluids and biofluids into capillaries, Journal of Colloid and Interface Science,2003,262,253.
    [13]G. Martic, F. Gentner, D. Seveno, D. Coulon, J. De Coninck, A molecular dynamics simulation of capillary imbibition, Langmuir,2002,18,7971.
    [14]S. Supple, N. Quirke, Molecular dynamics of transient oil flows in nanopores I: Imbibition speeds for single wall carbon nanotubes, The Journal of Chemical Physics,2004,121,8571.
    [15]D. I. Dimitrov, A. Milchev, K. Binder, Capillary rise in nanopores:Molecular dynamics evidence for the Lucas-Washburn equation, Physical Review Letters, 2007,99,054501.
    [16]C. Cupelli, B. Henrich, T. Glatzel, R. Xengerle, M. Moseler, M. Santer, Dynamic capillary wetting studied with dissipative particle dynamics, New Journal of Physics,2008,10,043009.
    [17]J. L. Jones, M. Lal, J. N. Ruddock, N. A. Spenley, Dynamics of a drop at a liquid/solid interface in simple shear fields:a mesoscopic simulation study, Faraday Discussions,1999,112,129.
    [18]J. A. Backer, P. C. Lowe, H. C. J. Hoefsloot, P. D. Iedema, Poiseuille flow to measure the viscosity of particle model fluids, The Journal of Chemical Physics, 2005,122,154503.
    [19]B. Henrich, C. Cupelli, M. Moseler, M. Santer, An adhesive DPD wall model for dynamic wetting, Europhysics Letters,2007,80,60004.
    [20]Surface tension, Wikipedia:The Free Encyclopedia.
    [21]Viscosity, Wikipedia:The Free Encyclopedia.
    [22]Contact angle, Wikipedia:The Free Encyclopedia.
    [23]P. Atkins, J. de Paula, Atkins's Physical Chemistry (7th edition), New York, Oxford University Press,2002.
    [24]S. P. Sutera, R. Skalak, The history of poiseuille's law, Annual Review of Fluid Mechanics,1993,25,1.
    [1]J. F. Pankow and J. A. Cherry, Dense Chlorinated Solvents and Other DNAPLs in Groundwater:History, Behavior, and Remediation, Waterloo Press, Portland, Oregon,1996.
    [2]L. W. Lake, Enhanced Oil Recovery, Prentice Hall, Old Tappan, New Jersey, 1989.
    [3]D. M. Mackay, P. V. Roberts, J. A. Cherry, Transport of organic contaminants in groundwater, Environmental Science & Technology,1985,19,384.
    [4]D. M. Mackay, J. A. Cherry, Groundwater contamination:pump-and-treat remediation, Environmental Science & Technology,1989,23,630.
    [5]M. Hayman, R. R. Dupont, Groundwater and Soil Remediation:Process Design and Cost Estimating of Proven Technologies, ASCE Press, Reston, Virginia, 2011.
    [6]Enhanced oil recovery, Wikipedia:The Free Encyclopedia.
    [7]朱建军,王志恒,长庆油田攻克超低渗透油田开发难题,新华网,2007。
    [8]M. Alava, M. Dube, M. Rost, Imbibition in disordered media, Advances in Physics,2004,53,83.
    [9]J. De Coninck, T. D. Blake, Wetting and molecular dynamics simulations of simple liquids, Annual Review of Materials Research,2008,38,1.
    [10]B. Henrich, C. Cupelli, M. Moseler, M. Santer, An adhesive DPD wall model for dynamic wetting, Europhysics Letters,2007,80,60004.
    [1]Extraction of petroleum, Wikipedia:The Free Encyclopedia.
    [2]Enhanced oil recovery, Wikipedia:The Free Encyclopedia.
    [3]B. Henrich, C. Cupelli, M. Moseler, M. Santer, An adhesive DPD wall model for dynamic wetting, Europhysics Letters,2007,80,60004.
    [4]C. Cupelli, B. Henrich, T. Glatzel, R. Xengerle, M. Moseler, M. Santer, Dynamic capillary wetting studied with dissipative particle dynamics, New Journal of Physics,2008,10,043009.
    [5]T. D. Blake, J. M. Haynes, Kinetics of liquid/liquid displacement, Journal of Colloid and Interface Science,1969,30,421.
    [6]S. Glasstone, K. J. Laidler, H. J. Eyring, The Theory of Rate Processes, McGraw-Hill, New York,1941.
    [7]G. Martic, J. De Coninck, T. D. Blake, Influence of the dynamic contact angle on the characterization of porous media, Journal of Colloid and Interface Science, 2003,263,213.
    [8]G. Martic, F. Gentner, D. Seveno, J. De Coninck, T. D. Blake, The possibility of different time scales in the dynamics of pore imbibition, Journal of Colloid and Interface Science,2004,270,171.
    [9]M. J. de Ruijter, J. De Coninck, G. Oshanin, Droplet spreading:Partial wetting regime revisited, Langmuir,1999,15,2209.
    [10]M. J. de Ruijter, T. D. Blake, J. De Coninck, Dynamic wetting studied by molecular modeling simulations of droplet spreading, Langmuir,1999,15,7836.
    [11]G. Martic, F. Gentner, D. Seveno, D. Coulon, J. De Coninck, A molecular dynamics dimulation of capillary imbibition, Langmuir,2002,18,7971.
    [12]T. D. Blake, The physics of moving wetting lines, Journal of Colloid and Interface Science,2006,299,1.
    [13]M. R. Stukan, P. Ligneul, J. P. Crawshaw, E. S. Boek, Spontaneous imbibition in nanopores of different roughness and wettability, Langmuir,2010,26,13342.
    [1]K. A. Mauritz, R. B. Moore, State of understanding of Nafion, Chemical Reviews, 2004,104,4535.
    [2]K.-D. Kreuer, S. J. Paddison, E. Spohr, M. Schuster, Proton conductors for fuel cell applications:Simulations, elementary reactions, and phenomenology, Chemical Reviews,2004,104,4637.
    [3]C. Heitner-Wirguin, Recent advances in perfluorinated ionomer membranes: structure, properties and applications, Journal of Membrane Science,1996,120, 1.
    [4]G. Gelbard, Organic synthesis by catalysis with ion-exchange resins, Industrial & Engineering Chemistry Research,2005,44,8468.
    [5]M. A. Hickner, B. S. Pivovar, The chemical and structural nature of proton exchange membrane fuel cell properties, Fuel Cells,2004,5,213.
    [6]T. J. Peckham, S. Holdcroft, Structure-morphology-property relationships of non-perfluorinated proton-conducting membranes, Advanced Materials,2010,22, 4667.
    [7]R. Devanathan, Recent developments in proton exchange membranes for fuel cells, Energy & Environmental Science,2008,1,101.
    [8]S. J. Paddison, Proton conduction mechanisms at low degrees of hydration in sulfonic acid-based polymer electrolyte membranes, Annual Review of Materials Research,2003,33,289.
    [9]M. A. Hickner, Ion-containing polymers:new energy & clean water, Materials Today,2010,13,34.
    [10]W. Goddard III, B. Merinov, A. Van Duin, T. Jacob, M. Blanco, V. Molinero, S. S. Jang, Y. H. Jang, Multi-paradigm multi-scale simulations for fuel cell catalysts and membranes, Molecular Simulation,2006,32,251.
    [11]A. Vishnyakov, A. V. Neimark, Molecular simulation of study of Nafion membrane solvation in water and methanol, The Journal of Physical Chemistry B, 2000,104,4471.
    [12]N. P. Blake, M. K. Petersen, G. A. Voth, H. Metiu, Structure of hydrated Na-Nafion polymer membranes, The Journal of Physical Chemistry B,2005,109, 24244.
    [13]Y.-K. Choe, E. Tsuchida, T. Ikeshoji, S. Yamakawa, S. Hyodo, Nature of water transport and electro-osmosis in Nafion:insights from first-principles molecular dynamics simulations under an electric field, The Journal of Physical Chemistry B,2008,112,11586.
    [14]S. S. Jang, W. A. Goddard III, Structure and transport properties of hydrated water-soluble dendrimer-grafted polymer membranes for application to polymer electrolyte membrane fuel cells:classical molecular dynamics approach, The Journal of Physical Chemistry C,2007,111,2759.
    [15]T. Mashio, K. Malek, M. Eikerling, A. Ohma, H. Kanesaka, K. Shinohara, Molecuar dynamics study of ionomer and water adsorption at carbon support materials, The Journal of Physical Chemistry C,2010,114,13739.
    [16]D. Brandell, J. Karo, J. O. Thomas, Modelling the Nafion diffraction profile by molecular dynamics simulation, Journal of Power Sources,2010,195,5862.
    [17]G Brunello, S. G. Lee, S. S. Jang, Y. Qi, A molecular dynamics simulation study of hydrated sulfonated poly(ether ether ketone) for application to polymer electrolyte membrane fuel cell:effect of water content, Journal of Renewable and Sustainable Energy,2009,1,033101.
    [18]M. Goswami, S. K. Kumar, A. Bhattacharya, J. F. Douglas, Computer simulations of ionomer self-assembly and dynamics, Macromolecules,2007,40,4113.
    [19]K. Schmidt-Rohr, Q. Chen, Parallel dylindrical water nanochannels in Nafion fuel-cell membranes, Nature Materials,2008,7,75.
    [20]E. Allahyarov, P. L. Taylor, H. Lowen, Simulation study of sulfonate cluster swelling in ionomers, Physical Review E,2009,80,061802.
    [21]Y. Termonia, Nanoscale modeling of the structure of perfluorosulfonated ionomer membranes at varying degrees of swelling, Polymer,2007,48,1435.
    [22]S. Urata, J. Irisawa, A. Takada, W. Shinoda, S. Tsuzuki, M. Mikami, Molecular dynamics simulation of swollen membrane of perfluorinated ionmer, The Journal of Physical Chemistry B,2005,109,4269.
    [23]R. Devanathan, A. Venkatnathan, M. Dupuis, Atomistic simulation of Nafion membrane:I. Effect of hydration on membrane nanostructure, The Journal of Physical Chemistry B,2007,111,8069.
    [24]R. Devanathan, A. Venkatnathan, M. Dupuis, Atomistic simulation of Nafion membrane.2. Dynamics of water molecules and dydronium ions, The Journal of Physical Chemistry B,2007,111,13006.
    [25]C. K. Knox and G. A. Voth, Probing selected morphological models of hydrated Nafion using large-scale molecular dynamics simulations, The Journal of Physical Chemistry B,2010,114,3205.
    [26]D. Wu, S. J. Paddison, J. A. Elliott, A comparative study of the hydrated morphologies of perfluorosulfonic acid fuel cell membranes with mesoscopic simulations, Energy & Environmental Science,2008,1,284.
    [27]D. Brandell, J. Karo, A. Liivat, J. O. Thomas, Molecular dynamics studies of the Nafion, Dow and Aciplex fuel-cell polymer membrane systems, Journal of Molecular Modeling,2007,13,1039.
    [28]A. Vishnyakov, A. V. Neimark, Molecular dynamics dimulation of Nafion oligomer solvation in equimolar methanol-water mixture, The Journal of Physical Chemistry B,2001,105,7830.
    [29]S. S. Jang, S.-T. Lin, P. K. Maiti, M. Blanco, W. A. Goddard III, P. Shuler, Y. Tang, Molecular dynamics study of a surfactang-mediated decane-water interface: effect of molecular architecture of alkyl benzene sulfonate, The Journal of Physical Chemistry B,2004,108,12130.
    [30]S. Urata, J. Irisawa, A. Takada, W. Shinoda, S. Tsuzuki, M. Mikami, Molecular dynamics study of the methanol effect on the membrane morphology of perfluorosulfonic ionomers, The Journal of Physical Chemistry B,2005,109, 17274.
    [31]N. P. Blake, G. Mills, H. Metiu, Dynamics of H2O and Na+ in Nafion membranes, The Journal of Physical Chemistry B,2007,111,2490.
    [32]E. Allahyarov, P. L. Taylor, Simulation study of the correlation between structure and conductivity in stretched Nafion, The Journal of Physical Chemistry B,2009, 113,610.
    [33]K. Schmidt-Rohr, Simulation of small-angle scattering curves by numerical Fourier transformation, Journal of Applied Crystallography,2007,40,16.
    [34]C. H. Cheng, P. Y. Chen, C. W. Hong, Atomistic analysis of hydration and thermal effects on proton dynamics in the Nafion membrane, Journal of The Electrochemical Society,2008,155, B435.
    [35]S. S. Jang, V. Molinero, C. Tahir, W. A. Goddard III, Nanophase-segregation and transport in Nafion 117 from molecular dynamics simulations:Effect of monomeric sequence, The Journal of Physical Chemistry B,2004,108,3149.
    [36]C. V. Mahajan, V. Ganesan, Atomistic simulations of structure of solvated sulfonated poly(ether ether ketone) membranes and their comparison to Nafion:I. Nanophase segregation and hydrophilic domains, The Journal of Physical Chemistry B,2010,114,8357.
    [37]C. V. Mahajan, V. Ganesan, Atomistic simulations of structure of solvated sulfonated poly(ether ether ketone) membranes and their comparison to Nafion:II. Structure and transport properties of water, hydronium ions, and methanol, The Journal of Physical Chemistry B,2010,114,8367.
    [38]K. Malek, M. Eikerling, Q. Wang, Z. Liu, S. Otsuka, K. Akizuki, M. Abe, Nonophase segregation and water dynamics in hydrated Nafion:molecular modeling and experimental validation, The Journal of Chemical Physics,2008, 129,204702.
    [39]E. Allahyarov, P. L. Taylor, Role of electrostatic forces in cluster formation in a dry ionomer, The Journal of Chemical Physics,2007,127,154901.
    [40]G. Dorenbos, Y. Suga, Simulation of equivalent weight dependence of Nafion morphologies and predicted trends regarding water diffusion, Journal of Membrane Science,2009,330,5.
    [41]K. Malek, M. Eikerling, Q. Wang, T. Navessin, Z. Liu, Self-organization in catalyst layers of polymer electrolyte fuel cells, The Journal of Physical Chemistry C,2007,111,13627.
    [42]J. Liu, S. Cui, D. J. Keffer, Molecular-level investigation of critical gap size between catalyst particles and electrolyte in hydrogen proton exchange membrane fuel cells, Fuel Cells,2008,8,422.
    [43]M. E. Selvan, J. Liu, D. J. Keffer, S. Cui, B. J. Edwards, W. V. Steele, Molecular dynamics study of structure and transport of water and hydronium ions at the membrane/vapor interface of Nafion, The Journal of Physical Chemistry C,2008, 112,1975.
    [44]J. Liu, M. E. Selvan, S. Cui, B. J. Edwards, D. J. Keffer, W. V. Steele, Molecular-level modeling of the structure and wetting of electrode/electrolyte interfaces in hydrogen fuel cells, The Journal of Physical Chemistry C,2008,112,1985.
    [45]S. Cui, J. Liu, M. E. Selvan, S. J. Paddison, D. J. Keffer, B. J. Edwards, Comparison of the hydration and diffusion of protons in perfluorosulfonic acid membranes with molecular dynamics simulatiions, The Journal of Physical Chemistry B,2008,112,13273.
    [46]J. Karo, A. Aabloo, J. O. Thomas, D. Brandell, Molecular dynamics modeling of proton transport in Nafion and Hyflon nanostructures, The Journal of Physical Chemistry B,2010,114,6056.
    [47]J. Liu, N. Suraweera, D. J. Keffer, S. Cui, S. J. Paddison, On the relationship between polymer electrolyte structure and hydrated morphology of perfluorosulfonic acid membranes, The Journal of Physical Chemistry C,2010, 114,1179.
    [48]D. Wu, S. J. Paddison, J. A. Elliott, Effect of molecular weight on hydrated morphologies of the short-side-chain perfluorosulfonic acid membrane, Macromolecules,2009,42,3358.
    [49]S. J. Paddison, J. A. Elliott, Molecular modeling of the short-side-chain perfluorosulfonic acid membrane, The Journal of Physical Chemistry A,2005, 109,7583.
    [50]I. H. Hristov, S. J. Paddison, R. Paul, Molecular modeling of proton transport in the short-side-chain perfluorosulfonic acid ionomer, The Journal of Physical Chemistry B,2008,112,2937.
    [51]D. Wu, S. J. Paddison, J. A. Elliott, S. J. Hamrock, Mesoscale modeling of hydrated morphologies of 3M perfluorosulfonic acid-based fuel cell electrolytes, Langmuir,2010,26,14308.
    [52]R. C. T. Slade, J. R. Varcoe, Prospects for alkaline anion-exchange membranes in low temperature fuel cells, Fuel Cells,2005,5,187.
    [53]S. Lu, J. Pan, A. Huang, L. Zhuang, J. Lu, Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts, Proceedings of the National Academy of Sciences of the United States of America,2008,105,20611.
    [54]J. Pan, S. Lu, Y. Li, A. Huang, L. Zhuang, J. Lu, High-performance alkaline polymer electrolyte for fuel cell applications, Advanced Functional Materials, 2010,20,312.
    [55]D. Tang, J. Pan, S. Lu, L. Zhuang, J. Lu, Alkaline polymer electrolyte fuel cells: principle, challenges, and recent progress, Science in China Series B-Chemistry, 2010,53,357.
    [56]J. Pan, Y. Li, L. Zhuang, J. Lu, Self-crosslinked alkaline polymer electrolyte exceptionally stable at 90℃, Chemical Communications,2010,46,8597.
    [57]S. L. Mayo, B. D. Olafson, W. A. Goddard III, DREIDING:a generic force field for molecular simulations, Journal of Physical Chemistry,1990,94,8897.
    [58]M. Levitt, M. Hirshberg, R. Sharon, K. E. Laidig, V. Daggett, Calibration and testing of a water model for simulation of the molecular dynamics of proteins and nucleic acids in solution, The Journal of Physical Chemistry B,1997,101,5051.
    [59]J. Gasteiger, M. Marsili, Iterative partial equalization of orbital electronegativity —a rapid access to atomic charges, Tetrahedron,1980,36,3219.
    [60]R. S. Mulliken, Electronic population analysis on LCAO-MO molecular wave functions. I, The Journal of Chemical Physics,1955,23,1833.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.