冬凌草核型分析及高杆野生稻与宽叶野生稻基因组FISH分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1.利用Gimesa显带技术对冬凌草进行了染色体数目和染色体核型分析,研究结果表明,冬凌草染色体数目为2n=2x=24,相对长度组成为2n=2x=24=10M2+14M1,核型公式为K(2n)=2x=24=16m+8sm。此外,本研究中,G-显带条纹数目虽然有限,但能准确的反映染色体结构特点,从染色体水平初步推测冬凌草在系统演化上可能属于较原始的种类。
     2.用高杆野生稻(CCDD) C0t-1 DNA作为探针,对其自身体细胞染色体和宽叶野生稻(CCDD)体细胞染色体进行荧光原位杂交实验。同源染色体呈现相似的杂交带型,对其核型进行同源性聚类。杂交结果表明,这2种野生稻所有染色体上均有信号分布,主要分布在染色体的着丝粒,近着丝粒和端粒,同时染色体的信号都是24条染色体信号较强,24条染色体信号较弱。2种野生稻较强信号的24条染色体信号非常一致,而高杆野生稻的较弱信号的24条染色体明显的比宽叶野生稻较弱的信号24条染色体强,说明四倍体高杆野生稻和宽叶野生稻CD基因组中一个基因组比较保守,另一个基因组差异相对较大,结合C基因组的C0t-1 DNA对两个种的荧光原位杂交研究表明保守的基因组应该是C基因组,差异的为D基因组。上述结果表明,C0t-1 DNA具有很强的种的特异性和依赖基因组型的特异性,利用C0t-1 DNA进行荧光原位杂交能够更有效的研究物种基因组之间的关系。同时,通过高杆野生稻C0t-1 DNA荧光原位杂交对两个同基因组的异源四倍体中高度重复序列进行了比较分析,对重复序列在稻属多倍体进化过程中的机制进行了初步的探讨。
     3.利用药用野生稻CC基因组作为探针,对高杆野生稻和宽叶野生稻(CCDD)体细胞分裂中期染色体进行荧光原位杂交实验。在一定的杂交严谨度条件下,同源性高的表现出强的杂交信号,而同源性比较低的则信号弱,因此,杂交信号强的那部分染色体就是C基因组的染色体,从而把CCDD基因组中的C,D基因组染色体分开。杂交结果表明,在杂交严谨度合适的条件下,这两种四倍体的野生稻的48条染色体有一部分有信号,而另一部分则信号相对较弱或几乎没有信号。其中,高杆野生稻的48条染色体中,无论怎么调整杂交严谨度都不能很好的把C基因组染色体分开成24条,而宽叶野生稻能够很好的区分强信号的染色体和弱信号的染色体分别是24条。说明高杆野生稻和宽叶野生稻基因组还是存在着一定的差异。同时,通过比较高杆野生稻和宽叶野生稻染色体上信号的分布特点,我们对稻属异源多倍体的起源和进化机制进行了初步的探讨。
1.The number and karyotype of the Rabdosia rubescens (Hemsl.) Hara was studied by using G-band method in this work. The results shows that the chromosome number of the specie is 2n=2x=24, constitution of relative length was 2n=10M2+14M2,karyotype formula was K(2n)=2x=24=16m+8sm. The accuracy of karyotyp analysis of the choromosome was improved by bands of the G-band because it can revealed the struction of the chromosomes . Base on the result of chromosomal characteristics, speculated that the R. rubescens was speculated that belong to the more original species.
     2.Fluorescence in situ hybridization (FISH) procedure was employed to investigate relationships and comparative analysis between Oryza.alta and O.latifolia with the probe of C0t-1 DNA from O.alta.The homologous category on karyotype analysis of the Oryza.alta and O.latifolia, base on the banding of C0t-1 DNA which the homologous chromosomes shows the similar signal bandings of C0t-1 DNA.The result showed that all the chromosomes displayed signals which mainly located in the centromere of chromosomes, the proximal centromere and the telomere, while the 24 chromosomes present shrong sigals than the other 24 in both two species.More interesting, the strong signals of the two amphidiploid species which has the same CCDD genome appeared similar while their weak sigals is different, according to the previously shudy,it is concluded that the similar part is belong to the C genome and the different part is may belong to the D geonome. The results above reveal that C0t-1 DNA has its high specificity to a certain genome/species during evolution, and it can be used as a probe in FISH for studing the relationships of species more effiently. Moreover, according to comparative analysis of the highly repetitive sequence and the moderate repeats of O.alta and O.latifolia using FISH based on the C0t-1 DNA probe from O.alta, the origin mechanism of allotetraploid in genus Oryza was also discussed.
     3.Fluorescence in situ hybridization (FISH) procedure was employed to investigate relationships and comparative analysis between Oryza.alta and O.latifolia with the probe of gDNA from Oryza officinalis Wall.in the.in a right hybridization strict the probe can identified the C and D genome.because of the hight homologous.shows the strong signal.The results shows the signal on the chromosomes C and D genome is different.the shrong signal chromosomes belong to the C genome while the others weak signal The result shows that the CCDD of the O.alta cannot identified the C Genome clear as 24 chromosomes while the O.latifolia can.It is shows that there are very different between the two CCDD genomic species. The origin of allotetraploid in genus Oryza was also discussed.
引文
柴守诚,员海燕.高等植物DNA重复序列的主要类型和特点.西北植物学报,1999,19:555-563
    陈瑞阳.植物染色体高分辨G带研究技术[J].植物学报, 1987, 29 (4) : 341-346.
    董正伟,柳哲胜,王德彬,蓝伟侦,覃瑞.利用栽培稻C0t-1 DNA和基因组DNA比较分析斑点野生稻和短药野生稻基因组.植物遗传资源学报,2007,8 (3):343-346
    范树国,张再君,刘林,刘鸿先,梁承邺.中国野生稻遗传资源的保护及其在育种中的利用.生物多样性, 2000, 8(2): 196-207
    何光存,舒理慧.野生稻遗传基础研究与有利基因的发掘和利用.中国野生稻研究与利用.第一届全国野生稻大会论文集. 2003,pp193-201
    何光存.细胞工程与分子生物学结合——野生稻优异种质资源的有效途径.生物工程进展,1998,18(2):41-45
    姜文正.东乡野生稻研究.作物品种资源. 1988, 3: 1-4.
    蓝伟侦,何光存,吴士筠,覃瑞.利用水稻C0t-1 DNA和基因组DNA对栽培稻、药用野生稻和疣粒野生稻基因组的比较分析.中国农业科学, 2006,39(6):1083-1090
    蓝伟侦,何光存,吴士筠,覃瑞.利用水稻C0t-1 DNA和基因组DNA对栽培稻、药用野生稻和疣粒野生稻基因组的比较分析.中国农业科学,2006,39 (6): 1083-1090
    蓝伟侦,覃瑞,李刚,何光存.利用C基因组C0t-1 DNA比较分析稻属A,B,C,D基因组.科学通报,2006,51
    李懋学.关于植物染色体核型分辨的标准问题.武汉植物学研究, 1985 (3) : 297-302
    刘净,梁敬钰,谢韬.冬凌草研究进展.海峡药学, 2004,16 (2) : 1-7
    卢宝荣,葛颂,桑涛等.稻属分类的现状及存在问题.植物分类学报,2001,39(4):373-388
    卢宝荣.稻种遗传多样性的开发利用及保护.生物多样性,1998,6:63-72
    庞汉华.中国普通野生稻种资源若干特性分析.作物品种资源. 1992, 4: 6-8
    彭绍裘,魏子生,毛昌祥,罗宽,黄河清,肖放华.野生稻多抗病性鉴定—高抗白叶枯病的抗源疣粒野生稻.湖南农业科学, 1981,(5):47-48.
    孙汉董,许云龙,姜北,香茶菜属植物二萜化合物,科学出版社,2001
    覃瑞,魏文辉,宋运淳.BAC-FISH在植物基因组研究中的应用.生物化学与生物物理进展,2000,27(1):20-23
    颜辉煌,熊振民,闵绍楷,胡慧英,张志涛,田淑兰,汤圣祥.紧穗野生稻的褐飞虱抗性导入栽培稻的研究.遗传学报, 1997, 24(5): 424-431
    姚青,宋运淳,刘立华.水稻染色体G-带的研究.遗传学报, 1990, 17 (4) : 301-307.
    阴健.中药现代研究与临床应用[M].北京:学苑出版社,1995.223-227
    应存山.对国际热带农业研究所收集的稻属种的柱头外溶性状的研究.中国水稻科学, 1989, 3: 62-66
    钟代彬,罗利军,郭龙彪,应存山.栽野杂交转移药用野生稻抗褐飞虱基因.西南农业学报, 1997, 10(2): 5-9
    钟代彬,罗利军,应存山.野生稻有利基因转移研究进展.中国水稻科学, 2000, 14(2):103-106
    周雪雁,关伟军,马月辉,等.染色体显带技术及其在生物学研究中的意义.上海畜牧兽医通讯, 2004 (5) : 2-3
    Aggarwal R K, Brar D S., Huang N., Khush G.S. Differentiation within CCDD genome species in the genus Oryza as revealed by total genomic hybridization and RFLP analysis.Rice Genet News,1996,13: 54–57
    Aggarwal R K, Brar D S, Khush G S. Two new genomes in the Oryza complex identified on the basis of molecular divergence analysis using total genomic DNA hybridization. Mol Gen Genet, 1997, 254: 1-12
    Ali Mohammed H B, Fransz P, Schubert I. Localization of 5S RNA genes on tobacco chromosomes. Chromosome Res, 2000, 8: 85–87
    Amante A D.Sheath blight(ShB) resistance in wild rices. Intl Rice Res Nesvsl.1990,15:5
    Anamthawat-Jónsson K, Schwarzacher T, Leitch A R, Bennett M D, Heslop-Harrison J S. Discrimination between closely related Triticeae species using genomic DNA as a probe. Theor Appl Genet, 1990, 79: 721–728
    Arano H1. Cytological studies in subfamily carduoideae (compositae) of Japan[J ]. Bot Mag ,1963 , 76 :32-39
    Aravind L, Roman L, Tatusov. Yuri I. Wolf, et al. Evidence for massive gene exchange between archaeal and beacterial hyperthemophiles. Trend Genetics, 1998, 14(11): 442-444
    Bao Y, Ge.S. Origin and phylogeny of Oryza species with the CD genome based on multiple-gene sequence data.Plant Syst.Evol,2004,249:55–66
    Bedrook J, Jones JO Dell M, et al. A molecular description of telomeric heterochromatin in Secale specie. Cell, 1980, 19: 545-560
    Belyayev A, Raskina O, Korol A, Nevo E. Coevolution of A and B genomes in allotetraploid Triticum dicoccoides. Genome, 2000, 43(6): 1021-1026
    Bennett S T, Bennett M D. Spatial distribution of ancestral genomes in the wild grass Milium montianum Parl. Ann Bot, 1992, 70: 111–118
    Bennetzen J L, Jianxin M A, Devos K M. Mechanisms of recent genome size
    variation in flowering plants. Ann Bot-London, 2005,95: 127-132
    Bennetzen J L. Comparative sequence analysis of plant nuclear genomes: microcolinearity and its many exceptions. Plant Cell, 2000a, 12: 1021-1029
    Buso G. S. C., Rangel P.H., Ferreira M. E. Analysis of random and specific sequences of nuclear and cytoplasmic DNA in diploid and tetraploid American wild rice species (Oryza spp.). Genome ,2001,44: 476–494
    Chang T T. Conservation of rice genetic resources: luxury or necessity? Science, 1984: 251-256.
    Chen M S, Presting G, Barbazuk W B, et al. An integrated physical and genetic map of the rice genome. plant cell, 2002, 14: 537-545
    Cheng Z K, Dong F G, Langdon T, et al. Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell, 2002, 14: 1691-1704
    Dally A M, Second G. 1990. Chloroplast DNA diversity in wild and cultivated species of rice (genus Oryza, section Oryza). Cladistic mutation and genetic distance analysis.Theoretical and Applied Genetics 80: 209–222
    Feng Q, Zhang Y, Hao P, Wang S, et al. Sequence and analysis of rice chromosome 4. Nature, 2002, 420:316-320
    Flavell R B. Repetitive DNA and chromosome evolution in plants. Philis. Trans. R. Soc. Lond. B., 1986, 312: 227-242
    Flavell R B. Repetitive DNA and chromosome evolution in plants. Philis. Trans. R. Soc. Lond. B., 1986, 312: 227-242
    Fukui K, Ohmido N, Khush G S. Variability in rDNA loci in the genus Oryza detected through fluorescence in situ hybridization. Theor Appl Genet, 1994. 87: 893-899
    Fukui K, Shishido R, Kinoshita T. Identification of the rice D-genome chromosomes by genomic in situ hybridization. Theor Appl Genet, 1997, 95: 1239-1245
    Galasso I, Schmidt T, Pignone D, et al. The molecular cytogenetics of Vigna unguiculata (L) Walp: The physical organization and characterization of 18s-58s-25s rRNA genes, 5s rRNA genes, telomere-like sequences, and a family of centromeric repetitive DNA sequences. Theor Appl Genet, 1995, 91: 928-935
    Ge S, Sang T, Lu B R, Hong DY. Phylogeny of rice genome with emphasis on origins of allotetraploid species. Proc Natl Acad Sci USA, 1999, 96: 14400-14405
    Goldsbrough P B, Lane C, Lomonosoff G P. Sequence variation and methylation of flax 5S RNA genes. Nucl Acids Res, 1982, 10: 4501-4514
    Gong Y P, Borromeo T, Lu B R. A biosystematic study of the Oryza meyeriana complex (Poaceae). Plant Syst Evol, 2000, 224: 139-151
    Grandbastien M A. Retroelements in higher-plants. Trends Genet, 1992, 8: 103-108
    Grellet F, Delcasso D, Panabienesf F, et al. Organization and evolution of a higher plant alphoid-like satellite DNA sequences. J. Mot Biol, 1986, 187: 495-507
    Gustafson J P, DilléJ E. Chromosomal location of Oryza sativa recombination linkage groups. Proc Natl Acad Sci USA, 1992, 89: 8646-8650
    Heinrichs E A. Perspectives and directions for the continued development of insect-resistant rice varieties. Agric Ecosystems Environ, 1986, 18:9-36.
    Heslop-Harrison JS, Schwarzacher T. Genomic Southern and in situ hybridization for plant genome analysis. In: Jauhar PP (ed), Methods of genome analysis in plants, pp 163–180. New York: CRC Press. 1996
    Houben A, Schubert I. DNA and proteins of plant centromeres. Curr Opin Plant Biol, 2003, 6: 554-560
    Jellen E N, Gill BS, Cox TS. Genomic in situ hybridization differentiates between A/D and C genome chromatin and detects intergenomic translocations in polyploid oat species (genus Avena). Genome, 1994, 37: 613–618
    Jena K K, Khush G S. Introgression of genes from Oryza officinalis Well ex Watt to cultivated rice, O.sativa L. Theor Appl Genet, 1990, 80: 737-745Fukui K, Iijima K. Somatic chromosome map of rice by imaging methods. Theor Appl Genet, 1991, 81: 589-596
    Jena K K, Kochert G. Restriction fragment length polymorphism analysis of CCDD genome species of the genus Oryza L. Plant Mol Bio, 1991, 16: 831-839 Jiang J, Birchler J B, Parrott W A, et al. A molecular view of plant centromeres. Trends Plant Sci, 2003, 8: 570-575
    Jiang J, Gill B S. Nonisotop ic in situ hybridization and plant genome mapping: the first 10 years. Genom e, 1994, 37: 717 -725
    Joshi S P, V.S. Gupta,R.K. Aggarwal, P.K. Ranjekar, D.S.Brar. Genetic diversity and phylogenetic relationship as revealed by inter simple sequence repeat (ISSR) polymorphism in the genus Oryza. Theor Appl Genet, 2000,100:1311-1320
    Kallioniemi A. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science, 1992, 258: 818-821
    Kenton A, Parokonny AS, Gleba YY, Bennett MD. Characterization of the Nicotiana tabacum L. genome by molecular cytogenetics. Mol Gen Genet, 1993, 240: 159–169
    Kobayashi N, Ikeda R, Vaughan D A, et al. Resistance to Tungro in some wild relatives of rice. Rice Res Neusel, 1991, 16: 13
    Kumar A, Bennetzen J L. Plant retrotransposons. Annu Rev Genet, 1999, 33: 479-532
    Lapitan NLV. Organization and evolution of higher plant nuclear genomes. Genome,1992, 35: 171-181
    Le H, Armstrong K, Miki B. Detection of rye DNA in wheat-tye hybrids and wheat translocation stocks using total genomic DNA as a probe. Plant Mol Biol Rep, 1989, 7:150-158
    Leitch A R, Schwarzacher T, Mosg?ller W, Bennett MD, Heslop-Harrison JS. Parental genomes are separated throughout the cell cycle in a plant hybrid. Chromosoma, 1991, 101: 206–213.
    Li C B, Zhang D M, Ge S, et al. Differentiation and inter-genomic relationships among C, E and D genomes in the Oryza officinalis complex (Poaceae) as revealed by multicolor genomic in situ hybridization. Theor Appl Genet, 2001a, 103: 197-203
    Li C B, Zhang D M, Ge S, et al. Identification of genome constitution of Oryza malampuzhaensis, O. minuta, and O. punctataby multicolor genomic in situ hybridization. Theor Appl Genet, 2001b, 103: 204-211
    Li W, Zhang P, Fellers J P, et al. Sequence composition, organization, and evolution of the core Triticeae genome. Plant J, 2004, 40: 500-511
    Liu L, Lafitte R, Guan D. Wild Oryza species as potential sources of drought-adaptive traits. Euphytica, 2004, 138: 149-161
    Lu B R. Taxonomy of the genus Oryza (Poaceae): a historical perspective and current status. Intern Rice Resour Notes, 1999, 24: 4-8 M asterson J. Stomatal size in fo ssil p lants: evidence fo rpo lyp lo idy in majo rity of angio sperm s [ J ]. S cience, 1994,264: 421 424
    Manoir S. Detection of complete and partial chromosome gains and losses by comparative genomic in situ hybridization. Hum Genet, 1995, 90: 590-610
    Martin A, Cabrera, A, Esteban E, Hernández P, Ramirez MC, Rubiales D. A fertile amphiploid between diploid wheat (Triticum tauschii) and crested wheatgrass (Agropyron cristatum). Genome, 1999, 42: 519–524
    Martinez-Zapater J, Estlle M,Sommerville C. A highly repeated DNA sequence in Arabidopsis thaliana. Mol Gen Genet, 1986, 204: 417-423
    Matyasek R, Gazdova B, Fajkus J, et al. NTRS, a new family of highly repetitiveDNAs specific for the T1 chromosome of tobacco. Chromosoma, 1997, 106: 369-379
    McClintock B. Cytogenetic studies of maize and Neurospora. Camegie Inst Wash Yrbk, 1947, 46: 146-152
    McCouch, S. R. et al. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res, 2002, 9: 257-279
    Meyers B C, Tingey S V, Morgante M. Abundance, distribution and transcriptional activity of repetitive elements in the maize genome. Genome Res, 2001, 11: 1660-1676
    Miklos G. Localized highly repetitive DNA sequence in vertebrate and invertebrate genomes. Plenum Press, New York, 1986, 241-322
    Morinaga T. Cytogenetical investigations on Oryza species. In: IRRI ed. Rice genetics and cytogenetics.Amsterdam: Elsevier. 1964. 91–102
    Moscone EA, Matzke MA, Matzke AJM. The use of combined FISH/GISH in conjunction with DAPI counterstaining to identify chromosomes containing transgene inserts in amphidiploid tobacco. Chromosoma, 1996, 105: 231–236
    Mukai Y, Friebe B, Hatchett J H, Yamamoto M, Gill B S. Molecular cytogenetic analysis of radiation-induced wheat-rye terminal and intercalary chromosomal translocations and the detection of rye chromatin specifying resistance to hessian fly. Chromosoma, 1993, 102:88-95
    Multani D S, Khush G S, Reyes delos B G, et al. Alien genes introgression and development of monosomic alien addition lines from Oryza latifolia Desv.to rice, Oryza sativa L. Theor Appl Genet, 2003, 107: 395-405
    Nagaki K, et al. Sequencing of a rice centromere uncovers active genes. Nature Genet, 2004, 36, 138-145
    Nayar N. M. Origin and cytogenetics of rice.Adv. Genet,1973,17: 153–292
    Ohmido N, Kijima K, Akiyama Y, et al. Quantification of total genomic DNA and selected repetitive sequences reveals concurrent changes in different DNA families in indica and japonica rice. Mol Gen Genet, 2000, 263: 388-394
    Parokonny AS, Kenton A, Gleba YY, Bennett MD. The fate of recombinantchromosomes and genome interaction in Nicotiana asymmetric somatic hybrids and their sexual progeny. Theor Appl Genet, 1994, 89: 488–497
    Parokonny A S, Kenton A Y. Comparative physical mapping and evolution of the Nicotiana tabacum L. karyotype. In: Brandham PE, Bennett MD (eds), Proceedings of the Kew chromosome conference IV, pp 301–320. The Royal Botanical Gardens, Kew. 1995
    Pickering R A. Characterization by RELP analysis and genomic in situ hybridization of a recombinant and a monosomic substitution plant derived from Hordeum vulgare L.×H. bulbosum L. crosses. Genome, 1997, 40: 195-200
    Piegu B., Guyot R., Picault N., Roulin A., Saniyal A., Kim H., Collura K., Brar D.S., Jackson S., Wing R.A., et al. Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Res. 2006;16:1262–1269
    Pinkel D T, Gray J W. Cytogenetic analysis using quantitative, high sensitivity fluorescence hybridization. Proc Natl Acad Sci USA, 1986, 83: 2934-2938
    Prodoehl A. Oryzeae monographice describuntur. Bot Arch, 1922, 1:211-224.
    Rayburn A L, GillB S. Use of biotin-labeled p robes to map specific DNA sequences on wheat chromosomes. J Hered, 1985,76: 78– 81
    Ren F G, Lu B R, Li S Q, et al. A comparative study of genetic relationships among the AA-genome Oryza species using RAPD and SSR markers. Theor Appl Genet, 2003, 108: 113-120
    Ren F, Lu B R, Li S, Huang J, Zhu Y. A comparative study of genetic relationships among the AA-genome Oryza species using RAPD and SSR markers. Theor. Appl. Genet,2003,108, 113–120
    Ren N, Song Y C, Bi X Z, et al. The physical location of genes cdc2 and prh1 in Maize (Zea mays L.)[J]. Hereditas, 1997, 126:211-217
    Rokka V M, Clark M S, Knudson D L, et al. Cytological and molecular characterization of repetitive DNA sequences of Solanum brevidens and Solanum tuberosum. Genome, 1998, 41: 487-494
    Romero D, Palacios R. Gene amplification and genomic plasticity in prokaryotes.Annu Rev Gent, 1997, 31: 91-100
    Sakurako Uozu1, Hiroshi Ikehash, Nobuko Ohmido, Hisako Ohtsubo,Eiichi Ohtsubo and Kiichi Fukui. Repetitive sequences: cause for variation in genome size and chromosome morphology in the genus Oryza. Plant Molecular Biology,1997, 35: 791–799
    Schwarzacher T, Leitch A R, Bennett M D, Heslop- Harrison J S. In situ hybridization of parental genomes in a wide hybrid. Ann Bot, 1989, 64: 315-324
    Schwarzacher T. DNA, chromosomes, and in situ hybridization. Genom e, 2003, 46: 953-962
    Schweizer G, Canal M, Ninnemann H, et al. Species-specific DNA sequences for identification of somatic hybrids between Lycopersicon esculentum and Solanum acaule. Theor Appl Genet, 1988, 75: 679-684
    Shishido R, Apisitwanich S, Ohmido N, Okinaka Y, Mori K, Fukui K. Detection of specific chromosome reduction in rice somatic hybrids with the A, B, and C genomes by multi-color genomic in situhybridization. Theor Appl Genet, 1998, 97: 1013–1018
    Stebbins G L. Chromosome Evolution in High Plants [M] . London : Edward Arnold LTD. 1971, 87-90
    Takahashi C, Leitch IJ, Ryan A, Bennett MD, Brandham PE. The use of genomic in situ hybridization (GISH) to show transmission of recombinant chromosomes by a partially fertile bigeneric hybrid, Gasteria lutzii A?loe aristata (Aloaceae), to its progeny. Chromosoma, 1997, 105: 342–348.
    Tanksley S D, McCouch S R. Seed banks and molecular maps: unlocking genetic potential from the wild. Science, 1997, 227(22): 1063-1066
    Tateoka T. Taxonomic studies of Oryza I.O. latifolia complex. Bot. Mag. Tokyo 1962,75: 418–427
    Tateoka T. Taxonomic studies of Oryza, III. Key to the species and their enumeration. Bot Mag Tokyo, 1963, 76:165-173.
    The Rice Chromosome 10 Sequencing Consortium. In depth view of structure, activity, and evolution of rice chromosome 10. Science, 2003, 300: 1566-1569
    Tomotaro Nishikawa,Duncan A. Vaughan,Koh-ichi, Kadowaki. Phylogenetic analysis of Oryza species, based on simple sequence repeats and their flanking nucleotide sequences from the mitochondrial and chloroplast genomes. Theor Appl Genet,2005,110: 696-705
    Toshie Miyabayashi, Ken-Ichi Nonomura, Hiroko Morishima, Nori Kurata. Genome Size of Twenty Wild Species of Oryza Determined by Flow Cytometric and Chromosome Analyses. Breeding Science,2007,57:73-78
    Vaughan D A, Morishima H, Kadowaki K. Diversity in the Oryzagenus. Curr Opin Plant Biol, 2003, 6: 139—146
    Vaughan D A. A new rhizomatous Oryza species( Poaceae) from Sri Lanka. Bot J L inn Soc , 1990 ,103 :159 - 163.
    Vaughan D A. The genus Oryza L. Current status of taxonomy. IRRI Res Paper Series, 1989, 138: 1-21
    Vaughan D A. The wild relatives of rice. 3-4. 1994. IRRI, Los Ba?os, Philippines Vershinin A V, Schwarzacher T, Heslop-Harrison J S. The large-scale organization of repetitive DNA families at the telomeres of rye chromosomes. Plant Cell, 1995, 7: 1823-1833
    Vision T J, Brown D G, Tanksley S D. The origins of genomic duplications in Arabidopsis. Science, 2000, 290: 2114-2117
    Wang K B, Wang W K, Wang C Y, Song G L, Cui R X, Li S H, Zhang X D. Studies of FISH and karyotype of Gossypium barbadense. Chinese Acta Genetica Sinica, 2001, 28(1): 69-75
    Wang L, Ning S B, Song Y C, Lu Y T. The progress and application of fluorescent in situ hybridization. Acta B ot S in,2000, 42: 1 101 - 1 107
    Wang Z X, Kurata N, Saji S, et al. A chromosome 5-specific repetitive DNA sequence in rice (Oryza sativa L). Theor Appl Genet, 1995, 90: 907-913
    Wang Z Y, Second G, Tanksley S D. Polymorphism and phylogenetic relationships among species in the genus Oryza as determined by analysis of nuclear RFLPs. Theor Appl Genet, 1992, 83: 565-581
    Wendel J F , Schnabel A , Seelanan T. Bidirectional interlocus concerted evolutionfollowing allopolyploid speciation in cotton ( Gossypium) . Proc Natl Acad Sci USA,1995,92 : 280-284
    Wendel J F. Genome evolution in polyploids. Plant Mol Biol , 2000,42 :225-249
    Wu J, Yamagata H, Hayashi-Tsugane M, et al. Composition and structure of the centromeric region of rice chromosome 8. Plant Cell, 2004, 16, 967-976
    Yan H H, Min S K, Zhu L H. Visualization of Oryza eichingeri chromosomes in intergenomic hybrid plants from O. sativa / O. eichingeri via fluorescent in situ hybridization. Genome, 1999, 42:48-51
    Yu J, Hu S, Wang J, Wong G K, et al.. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science, 2002, 296: 79-92
    Zhang Y, Huang Y C, Zhang L, et al. Structural features of the rice chromosome 4 centromere. Nucleic Acids Res. 2004, 32, 2023-2030
    Zwick M S, Hanson R E, Mcknight T D, et al. A rapid procedure for the isolation of C0t-1 DNA from plants. Genome, 1997, 40: 138~142
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.