高温超导块材与永磁体组合形式对其磁悬浮力的影响规律及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
REBCO(RE为稀土元素Y、Gd等)高温超导体因其独特的抗磁特性和良好的自稳定磁悬浮性在磁浮轴承和磁悬浮轨道交通等领域具有广泛应用,超导体和永磁体之间的相互作用力特性是超导磁悬浮系统设计、制作和应用的基础,是人们研究和关注的重点。本文利用超导体与永磁体之间较大的磁悬浮力、良好的磁悬浮稳定性、以及永磁体之间较强的磁力和良好的刚性,研究REBCO高温超导块材与永磁体的组合形式对其磁悬浮力的影响,并进行了相关的应用探索,利用超导理论和磁学理论对实验结果进行了阐释。
     首先,介绍了三维空间磁场和磁力测试系统的结构、工作原理和测试功能;分析了现有测试系统微弱信号采集存在的问题,并通过硬件上采用二次稳压和滤波技术,软件上采用极值和均值相结合的混合滤波算法进行了改进。实验结果表明,改进后的测试系统有效的抑制了干扰信号的影响,提高了信噪比,微弱信号的数据质量得到了明显改善;对三维磁力测量卡具进行了改进;研究了单畴GdBCO高温超导块材在轴对称、零场冷条件下的磁悬浮力特性,结合Bean模型对超导磁悬浮力的磁滞特性进行了分析。结果表明,磁悬浮力具有明显的磁滞现象,通过优化外加磁场分布和提高磁场强度,可获得较大的超导磁悬浮力;研究了场冷条件下单畴GdBCO超导块材磁悬浮力的特点,结果发现,在一定的场冷高度范围内,随着场冷高度增加,超导体的捕获磁场强度减小,磁悬浮力增大,吸引力减小。
     其次,研究了永磁体的组合形式对超导磁悬浮力的影响。通过对方形永磁体的不同组态形式对单畴GdBCO超导块材磁悬浮力的影响,发现不同的磁体数量和组态形式,在超导体中产生感应环流及其半径不同,在磁体数量相同的情况下,磁极数越少感应环流半径越大;研究了条状永磁体组合形式及间距对超导磁悬浮力的影响,实验结果表明,采用最佳的三个条状永磁体比两个条状永磁体组成的组合磁体可使超导体获得较大的磁悬浮力,并结合磁体的磁场分布进行了分析和解释;研究了超导体相对于永磁体做横向运动时对其磁悬浮力的影响,在此基础上,提出了获得较大的悬浮力的可能途径;研究了条状永磁体的组合形式对超导磁悬浮导向力的影响规律、以及辅助永磁体对单畴GdBCO超导块材磁悬浮力的影响规律,并利用电磁场有限元法(FEMM)分析解释了其磁场变化规律。结果表明,当超导体与永磁体的组合形式为HTS-(PM-PM↑-PM)时,系统的超导磁悬浮力最大;当超导体与永磁体的组合形式为HTS-(PM↓-PM↑-PM↓)时,系统的磁悬浮导向力、以及磁悬浮系统的稳定性更好。当测量轴对称情况下超导体与圆柱形永磁体(磁体的N指向超导体)的磁悬浮力时,在超导体两侧引入两个辅助永磁体,当放在超导体两侧的辅助永磁体磁极N指向GdBCO超导块材PM↓-(PM-HTS-PM)时,系统的磁悬浮力及其刚度得到明显提高;当辅助永磁体的磁极N竖直向上PM↓-(PM↑-HTS-PM↑)时,磁悬浮力则减小。比较系统地研究了聚磁极的引入及其宽度变化对超导磁悬浮力的影响,发现引入宽度合适的聚磁材料可提高磁体的磁场强度和超导体的磁悬浮力。
     研究了轴对称情况下辅助永磁体的磁极取向对单畴GdBCO超导块材的捕获磁场分布和磁悬浮力的影响,实验结果表明,当辅助永磁体相对于测量用永磁体的磁极取向相同时,磁悬浮力减小;磁极取向相反时,磁悬浮力增加。研究了非轴对称情况下,超导体的捕获磁场对其磁悬浮力的影响,发现超导体和测量用永磁体间的磁悬浮力与磁化用永磁体相对于GdBCO超导块材的水平位置(x)密切相关,当x=0、测量用永磁体的磁极与被磁化GdBCO超导块材的磁极取向相同(PMl1↓-SCPM↓)时,超导体的磁悬浮力最小;当x=0、测量用永磁体的磁极与被磁化GdBCO超导块材的磁极取向相反(PM1↓-SCPM↑)时,超导体的磁悬浮力的最大。
     最后,在超导磁悬浮系统(HTS-PM)中引入永磁磁悬浮(PM-PM)。研究了场冷高度对超导磁悬浮和混合磁悬浮系统磁悬浮力的影响,并进行了对比分析。结果表明,永磁磁悬浮(PM-PM)的引入有效地提高了混合系统的磁悬浮力;就混合磁悬浮系统(HTS-PM和PM-PM)的构建形式对磁悬浮力的影响进行了初步研究,发现混合磁悬浮系统的磁悬浮力与磁体的磁场分布、以及永磁磁悬浮的合理引入等密切相关。
     在以上研究的基础上,设计制作了一种磁悬浮列车演示模型,对模型设计原理和操作方法做了较为详细的叙述,分析了磁体组合形式对磁悬浮列车模型出现失稳、倾斜、跳跃、震荡、减速或停止等现象原因。
High levitation force and good self stability of REBCO (RE=Y、Gd) bulk superconductors make it possible for applications such as superconducting magnetic bearings and levitation transportation systems etc.. These applications are based on the levitation force characteristics between the superconductors and magnets, so it is very important for us to investigate the levitation properties between superconductors and magnets. In this paper, the effect of magnet configurations on the levitation force of REBCO bulk superconductor have been investigated and interpreted based on the theory of superconductivity, and a small maglev model has been designed and constructed; the main results are as following:
     A levitation force and magnetic field distribution measurement system was used in this work. In order to improve the accuracy of the measurement system, a filtering circuits and a hybrid filtering algorithm have been designed and applied; the results show that the quality of signal to noise ratio has been effectively improved after the modification. A levitation force measurement device in three dimensions improved. The levitation force, between a single domain GdBCO bulk superconductor and a cylindrical permanent magnet, has been investigated in coaxial symmetry at zero field cooling state. The results show that the levitation force has an obvious hysteresis and directly dependent on the applied magnetic field, and higher levitation force can be obtained by optimizing the magnetic field during the measurement process. It is also found that the repulsion force increases and the attractive force decreases when the field-cooling height between the single domain GdBCO bulk superconductor and permanent magnet increases. The results are well interpreted based on the Bean model.
     The effect of magnet configurations on the levitation force of a single domain GdBCO bulk superconductor has been investigated. For small cubic permanent magnets(less than the size of the GdBCO bulk), it is discovered that the levitation force is closely related with the number and configuration of cubic permanent magnets, for a given number of cubic magnets, the fewer the cubic magnet number and the magnetic poles, the higher the levitation force of the superconductor; For small bar magnets(the width and height less than the length, but the length near to the size of the GdBCO bulk), It is found that reasonable configuration of assembled bar magnets(ABM) can produce higher levitation force, three bar magnets can generate higher levitation force than that of two bar magnets. The levitation force and guidance force between a bulk superconductor and assembled bar magnets has also been investigated and interpreted. It is found that the higher levitation force is obtained in the HTS-((?)-PM↑-(?)) configuration, and larger guidance force is obtained in HTS-(PM↓-PM↑-PM↓) configuration. Effects of additional permanent magnet configuration on the levitation force of a single domain GdBCO bulk superconductor have been investigated with a cylindrical permanent magnet in their coaxial configuration at liquid nitrogen temperature, the magnetic pole N of the cylindrical permanent magnet is directed to the GdBCO bulk superconductor in their coaxial configuration. It is found that the larger levitation force is obtained in the PM↓-((?)-HTS-(?)) configuration, and smaller levitation force is obtained in the PM↓-(PM↑-HTS-PM↑) configuration. The width effects of the iron for condensing magnetic field on the levitation force indicate that reasonable iron width is helpful to enhance the magnetic flux density and improve the levitation force of the superconductors.
     The effect of magnetization methods with additional permanent magnet on the magnetic field distribution and levitation force of single domain GdBCO bulk superconductor have been investigated with a cubic permanent magnet in their coaxial configuration at liquid nitrogen temperature. It is found that:if the N pole of the cubic permanent magnet, during the levitation force measurement, is placed above the GdBCO bulk superconductor and in downward direction, the maximum levitation force can be improved, when the N pole of the additional cubic permanent magnet points to upward and stick together to the bottom of the GdBCO bulk. The maximum levitation force can be improved (or reduced), when the GdBCO bulk superconductor is closely placed below and magnetized by the additional cubic permanent magnet with N pole in upward(or downward) direction, and removed away after the magnetization.
     The effect of lateral magnetization position(x) between a cubic permanent magnet and GdBCO bulk superconductor at fixed height on the levitation force has been measured, it is found that the largest (or smallest) maximum levitation force is obtained at x=0when the magnetic poles N of the magnetized GdBCO bulk is in a direction opposite (or parallel) to the magnetic pole N of the permanent magnet used for measurement.
     A hybrid levitation system of permanent magnet-permanent magnet levitation (PM-PM) and high temperature superconductor-permanent magnet levitation (HTS-PM) has been also investigated; it is found that the levitation force and stiffness of the hybrid system can be modified by the combination of HTS-PM and PM-PM levitation.
     A small HTS maglev model has been designed and constructed for the demonstration of interaction properties between the high temperature bulk superconductor and different magnet configurations, which can demonstrate the normal, instability, tilting, jumping, shocking, or stopping phenomena of the maglev gestures.
引文
[1]H. K. Onnes. On the sudden change in the rate at which the resistance of mercury disappears Commun. Phys. Lab. Univ. Leiden,1911,120b:122b.
    [2]J. Bardeen, L. N. Cooper, J. R. Schrieffer. Theory of Superconductivity. Phys. Rev 1957,108: 1175-1204.
    [3]J. H. Lee, K. Fujita, K. Mcelroy, et al. Interplay of electro-lattice interactions and sunerconductivity in Bi2Sr2CaCu2O8+d. Nature,2006,442:546-550.
    [4]John R H, Shaul H, Tomotake M. Characterization of a high-temperature superconducting bearing for use in a cosmic microwave background polarimeter. Supercond. Sci. Technol, 2005,18:S1-S5.
    [5]Werfel F N, Floegel-Delor U, Rothfeld R. Modelling and construction of a compact 500kg HTS magnetic bearing. Supercond Sci Technol,2005,18:S19-S23.
    [6]N. Koshizuka. R&D of superconducting bearing technologies for flywheel energy storage systems. Physica C,2006,445-448:1103-1108.
    [7]Miyagawa Y, Kameno H, Takahata R. A 0.5 kWh Flywheel Energy Storage System using A High-Tc Superconducting Magnetic Bearing. IEEE Trans Appl Supercond,1999,9(2): 996-999.
    [8]H. Fujimoto, H. Kamijo, T, M. Murakami, et al. IEEE Transactions on Applied Superconductivity,1999,9(2):301-307.
    [9]Jia su Wang, Su yu Wang, You wen Zeng, et al. The first man-loading high temperature superconducting Maglev test vehicle in the world. Physica C,2002,378-381:809-814.
    [10]王家素,王素玉.超导技术应用,成都电子科技大学出版社,成都.1995.
    [11]张永,徐善纲.高温超导磁悬浮模型车.低温与超导.1998,26(4):35-39.
    [12]杨学实.气悬浮列车研究的新进展.交通运输系统工程与信息.2003,3(3):66-70.
    [13]L. V King. On the acoustic radiation pressure on spheres. Proc. Roy. Soc,1934, A 147:212.
    [14]W. J. Xie, and B. Wei. Parametric study of single-axis acoustic levitation. Appl.Phys. Lett, 2001,79(6):881-883.
    [15]A. Ashkin, and J. M. Dziedzic. Optical levitation by radiation pressure. Appl.Phys. Lett, 1971,19(6):283-285.
    [16]A. Ashkin. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys. J,1992,61:569.
    [17]E. H. Brandt. Levitation in physics. Science,1989,243:349-355.
    [18]S. Earnshaw. On the nature of the molecular forces which regulate the constitution of luminiferous ether, Trans. Camb. Phil. Soc,1842,7:97-112.
    [19]R C. Moon. Magnete-Solid Mechanics. John Eily& Sons, New York.1984.
    [20]王莉.混合EMS磁悬浮系统研究[D].成都:西南交通大学博士学文论文,2000.
    [21]武建军.磁悬浮列车一轨道祸合控制系统的动力稳定性研究[D],兰州:兰州大学博士学位论文,2000.
    [22]X J Zheng, J J Wu, Y H Zhou. Numerical analyses on dynamical of five DOF maglev vehicle moving on flexible guideways. J. Sound Yb,2000,235:43-61.
    [23]武建军,郑晓静,周又和等.两级悬浮EMS磁悬浮控制的非线性动力学特性.固体力学学报,2003,24:68-74.
    [24]Zheng Xiao jing, Wu Jiann jun, Zhou You he. Effect of spring nonlinearity on dynamic stability of a controlled maglev vehicle and its guideway system. J. Sound Yb,2005,279: 201-215.
    [25]E. H. Brandt. Friction in levitated superconductors. Appl. Phys. Lett,1988,53:1554-1556.
    [26]Wan MinYang, Guo Zheng Li, Jun Ma, et al. SmallHigh-Temperature Superconducting Maglev Propeller System Model. IEEE Trans Appl Supercond,2010,20(5):2317-2321.
    [27]Tsuda, T Kawasaki, T Yagai, et al. Improvement of Levitation Force Characteristics in Magnetic Levitation Type Seismic Isolation Device Composed of HTS Bulk and Permanent Magnet. Journal of Physics:Conference Series,2008,97:012104.
    [28]H. K. Onnes. On the sudden change in the rate at which the resistance of mercury disappears. Leiden Comm.,1911,124c.
    [29]J.G. Bednorz and K.A. Miiller. Possible High Tc Superconductivity in the Ba-La-Cu-O System. Phys. B,1986,64:189-193.
    [30]周午纵,梁维耀.高温超导基础研究.上海:上海科学技术出版社,1999年
    [31]M.K.Wu, J.R.Ashburn. Superconductivity at 93 K in a new mixed-phase YBCO compound system at ambient pressure. Phys. Rev. Lett,1987,58(9):908.
    [32]赵忠贤,陈立泉,杨乾声等Ba-Y-Cu氧化物液氮温区的超导电性.科学通报,1987,32(4):412-414.
    [33]钱廷欣,周雅伟,赵晓鹏.新型超导材料的研究进展.材料导报,2006,20:98-101.
    [34]章立源,张金龙,崔广雾.超导物理学,北京:电子工业出版社,1995年.
    [35]B. Martinez, X. O., A. Gou, et al. In-plane flux YBCO (123+2115) composites pinning in melt-textured. Phys. Rev. B,1998,58(22):15198.
    [36]B.V.Reddl, K.Jain, S. Singh, et al. Densification and microstructural studies on Y-Ba-Cu-O superconducting oxide[J]. Supercon. Sci. Technol,1988,1:148-152.
    [37]Nan Chen, K C Goretta, M T Lanagan, et al. Effect of heating rate on properties of YBCO [J]. Supercon.Sci.Technol,1988,1:177-179.
    [38]D. Dimos. Superconducting transport properties of grain boundaries in YBa2Cu3O7 bicrystals[J]. Phys Rev.B,1990,41:4038.
    [39]Jin S, Tiefel T H, Sherwood R C, et al. High crital currents in YBCO superconductors[J]. Applied Physics Letters,1988,52:2074-2076.
    [40]Salama K, Selvamanickam V, Gao L, et al. High current density in bulk YBa2Cu3Ox superconductor[J]. Applied Physics Letters,1989,54:2352-2354.
    [41]M Murakami, M Morita, K Doi, et al. A New process with the promise fo high Jc in oxide superconductors [J]. Jpn. J. Phy,1989,28:1189-1194.
    [42]张红,冯勇Gd2O3、Gd211的添加对PMP法制备的Gd-Ba-Cu-O超导块材性能的影响[J].低温物理学报,2003,25:403-409.
    [43]肖玲,任洪涛,焦玉磊等REBaCuO单畴超导块的研究与进展[J].低温物理学报,2003增刊,25:309-314.
    [44]S. Kohayashi, S.Yoshizawa. Large domain growth of Ag-doped YBaCuO-system superconductor[J]. Materials Science and Engineering,1998, B53:70-74.
    [45]J. G. Bednorz, K. A. Mttller. Possible high-Tc superconductivity in La-Ba-Cu-O system. Z. Physik B,1986,64:189-193.
    [46]P. N. silver, R. C. Sisk, et al. Observation of enhanced properties in sample of silver oxide doped YBa2Cu3Ox.1988,52:2066.
    [47]T. Takamori, J. J. Boland, D. B. Dove. Magnetic field controlled levitation and suspension of a magnet above and below type II superconductor. Appl. Phys.Lett,1989,55(14):1454.
    [48]T. Maebatake, N.Mori, R.Teranishi, et al. Effects of joining conditions on the structures and properties of joints of REBCO coated conductors. Physica C.2010,470:1358-1360.
    [49]G Fuchs, K Nenkov, G Krabbes, et al. Strongly enhanced irreversibility fields and Bose-glass behaviour in bulk YBCO with discontinuous columnar irradiation defects. Supercond. Sci. Technol.2007,20:S179-S204.
    [50]N. Moutalibi, A. Mchirgu, J.Noudem. Alumina nano-inclusions as effective flux pinning centers in Y-Ba-Cu-O superconductor fabricated by seeded inltration and growth. Physica C. 2010,470:568-574.
    [51]Paolo Mele, Kaname Matsumoto, Tomoya Horide, et al. Supercond.Sci. Technol.2008,21 032002(5pp).
    [52]Chan-Joong Kim, Najam ul Qadir, Asif Mahmood, et al. The effect of BaCeO3 nano particles on the current density of a melt-processed YBCO superconductor. Physica C,2007,463-465: 344-347.
    [53]M R Koblischka, M Winter, U Hartmann, et al. Analysis of melt-textured YBCO with nanoscale inclusions. J. Physics:Conference Series,2006,43:522-526.
    [54]T. Maebatake, N.Mori.R.Teranishi, et al. Effects of joining conditions on the structures and properties of joints of REBCO coated conductors. Physica C,2010,470:1358-1360.
    [55]S. Gruss, G Fuchs, G Krabbes, et al..Trapped fields beyond 14 Tesla in bulk YBaCuO. IEEE Trans. Appl. Supercond,2001,11(1):3720.
    [56]G Fuchs, G Krabbes, P. Schatzle, et al. Bulk superconducting magnets with fields beyond 14 T. Phys. B,2001,294:398-402.
    [57]梁伟,杨万民,程晓芳等Gd2Ba4CuNbOy掺杂对单畴GdBCO超导块材性能的影响.中国科学:物理学 力学 天文学.2011,41(2):201-206.
    [58]Shi Y, Hari Babu N, Iida K, et al. The influence of Gd-2411(Nb) on the superconducting properties of GdBCO/Ag single grains. Supercond Sci Technol,2009,22:075025.
    [59]Hari Babu N, Reddy E S, Cardwell D A, et al. Artificial flux pinning centers in large single-grain RE-Ba-Cu-O superconductors. Appl Phys Lett,2003,83:4806-4808.
    [60]Hari Babu N, Iida K, Shi Y, et al. YBa2Cu3Oy/Y2Ba4CuMOy single grain nanocomposite superconductors with high critical current densities. Supercond Sci Technol,2006, 19:S461-S465.
    [61]E. H. Brandt. Friction in levitated superconductors.Phys. Lett,1988,53(16):1554.
    [62]R. Williams, J.R. Matey, et al. The effect of mass and pole strength on the levitation height of a magnet over a superconductor. J. Appl. Phys,1989,65 (9):3583-3585.
    [63]F. C. Moon, K. C. Weng, P. Z. Chang. Dynamic magnetic forces in superconducting ceramics. J. Appl. Phys,1989,66 (11):5643-5645.
    [64]R. C. Moon, K. C. Weng, P. Z. Chang. Dynamic magnetic forces in superconducting ceramic, J. Appl. Phys,1989,66:5643-5645.
    [65]R. C. Moon. Magnetic forces in High-Tc superconducting bearings. Int. J. Appl. Electromagn. Mater,1990,1:29-35.
    [66]R. C. Moon, P. Z. Chang, H. Hojaji. Levitation force relaxation and magnetic stiffness of Melt-Quenched YBCO. Jpn. J. Appl. Phys,1990,29:1257-1258.
    [67]P. Z. Chang. Mechanics of Superconducting magnetic bearings, Ph. D. Thesis, Cornell University.1991.
    [68]P. Z. Chang, F. C. Moon, et al. Levitation force and magnetic stiffness in bulk high-temperature superconductors. J. Appl. Phys,1990,67 (9):4358-4360.
    [69]B. Riise, T. H. Johansen, et al. Logarithmic relaxation in the levitation force in a magnet-high Tc superconductor system. Appl. Phys. Lett,1992,60 (18):2294-2296.
    [70]W.M.Yang, L.Zhou, Y.Feng, et al. The characterization of levitation force and attractive force of single-domain YBCO bulk under different field cooling process. Physica C,2003, 398:141-146.
    [71]W.M.Yang, L.Zhou, Y.Feng, et al. The effect of different field cooling processes on the levitation force and attractive force of single-domain YBa2Cu3O7-x bulk. Supercond.Sci.Technol,2002,15:1410-1414.
    [72]P. Boegler, C. Urban. Standardized measurements of interaction forces in autostable superconducting magnetic bearings, Appl. Superconductivity,1994,2 (5):315-325.
    [73]W. M. Yang, L. Zhou, Y Feng, et al. Identification of the effect of grain size on levitation force of well-textured YBCO bulk superconductors. Cryogenics,2002,42:589-592.
    [74]P. Stoye, G. Transactions Fuchs. Static Forces in a Superconducting Magnet Bearing. IEEE on magnetics,1995,31 (6):4220-4222.
    [75]M. Ullrich, A. Leenders, H. C. Freyhardt. Influence of thermal cycling on the levitation force of melt-textured YBaCuO. Appl. Phys. Lett,1996,68 (19):2735-2737.
    [76]张永,徐善纲.高温超导磁悬浮模型车.低温与超导,1998,26(4):35-39.
    [77]J. R. Wang, M. Z. Wu. High-Tc Superconductive Vehicle for Maglev Model. Rare Metal Materials and Engineering,1998,27 (4):240-243.
    [78]Zhang Yong, Xu Shan gang. Research of high temperature superconductor Maglev vehicle. Proceedings of the Symposium on Maglev Train Application in China (SMLTA'97), Hangzhou, China,1997. pp.53-58.
    [79]Y Zhang, S. G. Xu. Measurement and analysis of a HTSC Maglev model vehicle. In:L. Z. Lin, G. L. Shen, L. G. Yan, editors. Proceeding of the Fifteenth International Conference on Magnet Technology, Beijing,1998. Science Press, Part one, pp.763-766.
    [80]Dong lu Shi, D Qu. Domain-orientation dependence of levitation force in seeded melt grown single-domain YBa2Cu30x. Appl. Phys. Lett,1997,70 (26):3606-3608.
    [81]W. M. Yang, Y. Feng, L. Zhou, et al. The effect of the grain alignment on the levitation force in single domain YBa Cu O bulk superconductors. Physica C,1999,319 (3-4):164-168.
    [82]Wang Jia su, Wang Su yu, You wen Zeng, et al. The first man-loading high temperature superconducting maglev test vehicle in the world. Physica C,2002,378-381:809-814.
    [83]W M Yang, X X Chao, X B Bian, et al. The effect of magnet size on the levitation force and attractive force of single-domain YBCO bulk superconductors. Supercond. Sci. Technol, 2003,16 (7):789-792.
    [84]张永,徐善纲,金能强.高温超导磁悬浮列车模型悬浮方案的研究.电工电能新技术.1998,17(4):32-35.
    [85]John R. Hull, Ahmet Cansiz. Vertical and lateral forces between a permanent magnet and a high-temperature superconductor. Journal of Applied Physics,1999,86 (11):6396-6404.
    [86]Nagashima.K, Otani.T, Murakami.M. Magnetic interaction between permanent agnets and bulk superconductors. Physica C.1999,328 (3-4):137-144.
    [87]肖玲,任洪涛,焦玉磊等YBCO超导块的悬浮力及其测量.低温物理学报,1999,21(4):317-320.
    [88]Wang Xiao rong, Ren Zhong you. Experimental study on Relationship Between Levitation Force on YBCO Superconductor and Gradient of Applied Magnetic Field. Proceedings of Beijing International Conference on Cryogenics, Beijing,2000. pp.177-180
    [89]W.M. Yang, L. Zhou, Y. Feng, et al. The effect of magnet configurations on the levitation force of melt processed YBCO bulk superconductors. Physica C,2001,354 (1-4):5-12.
    [90]Hennig W, Parks D, R Weinstein, et al. Enhanced Levitation Force Using YBa2Cu3Ox Trapped Field Magnets. Physica C,2000,341-348 (Part 4):2613-2614.
    [91]W Hennig, D Parks, R Weinstein et al. Stable magnetic levitation with adjustable ratio of levitation force to restoring force using rings of zero-field cooled YBa2Cu3Ox, samples. Supercond. Sci. Technol,2000,13:1447-1449.
    [92]W. M. Yang, L. Zhou, Y. Feng, et al. Effect of perimeters of induced shielding current loops on levitation force in melt grown single-domain YBa2Cu3Ox bulk. Applied physics letters, 2001,79 (13):2043-2045.
    [93]朱敏,任仲友,王素玉,et al. YBaCuO超导块的厚度和形状对其悬浮力的影响.低温物理学报,2002,24(3):213-217.
    [94]Y Sanagawa, H Ueda, Tsuda, M, et al. Characteristics of lift and restoring force in HTS bulk-Application to two-dimensional maglev transporter. IEEE Trans. Appl. Supercond, 2001,11 (1):1797-1800.
    [95]W. M. Yang, L. Zhou, Y. Feng, et al. The relationship of levitation force between single and multiple YBCO bulk superconductors. Physica C,2002,371 (3):219-223.
    [96]W. M. Yang, L. Zhou, Y. Feng, et al. The effect of different field cooling processes on the levitation force and attractive force of single-domain YBa2Cu3Ox bulk. Supercond. Sci. Technol,2002,15 (10):1410-1414.
    [97]Z. Y. Ren, J. S. Wang, S. Y Wang, et al. Influence of shape and thickness on the levitation force of YBaCuO bulk HTS over a NdFeB guideway. Physica C,2003,384:159-162.
    [98]L Liu, Y Hou, C Y He, Z X Gao, et al. Effect of magnetization process on levitation force between a superconducting disk and a permanent magnet. Physica C,2004,416:29-33.
    [99]E. Ito, T. Suzuki, T. Sakai, et al. Levitation forces of bulk RE-Ba-Cu-O in high magnetic fields. Physica C,2006,445-448:412-416.
    [100]X Y Zhang, Y H Zhou, J Zhou. Effects of magnetic history on the levitation characteristics in a superconducting levitation system. Physica C,2008,468:1013-1016.
    [101]Jun Zhou, Xing Yi Zhang, You He Zhou. Temperature dependence of levitation force and its relaxation in a HTS levitation system, Physica C,2010,470:336-339.
    [102]W M Yang, L Zhou, FengYong, et al. A small Maglev car model usingYBCO bulk superconductors. Supercond.Sci.Technol,2006,19:S537-S539.
    [103]Ren Zhong you, Wang Jia su, et al. A hybrid maglev vehicle using permanent magnets and high temperature superconductor bulks. Physica C,2002,378-381 (Partl):873-876.
    [104]Ren Zhong you, Wang Jia su, et al. Two kinds of different hybrid maglev schemes using on board permanent magnets and HTS. In:Jiasu Wang ed. Proceedings of International Workshop on HTS Maglev (ISMAGLEV'2002), Chengdu, P. R. China,2002. pp.79-86.
    [105]Y. Zhao, J. S. Wang, S. Y. Wang, et al. Applications of YBCO Melt Textured Bulks in Maglev Technology, Physica C,2004,412-414:771-777.
    [106]X. R. Wang, H. H. Song, J. S. Wang, et al. Levitation force and guidance force of YBaCuO bulk in applied field. Physica C,2003,386:536-539.
    [107]Jun Zheng, X. R. Wang, Jia su Wang. Dependence of Levitation Stability of the YBaCuO Bulk above a NdFeB Guide way on Field-Cooled Position低温物理学报,2004,27(2),pp165.
    [108]Jun Zheng, Jing Li, Zi gang Deng, et al. Levitation capability of a YBa2Cu3O7-x bulk with NdFeB guideway by two Magnetization methods. Materials Science Forum,2007,546-549: 2079-2084.
    [109]郑珺.平移对称式高温超导磁悬浮系统的动态特性[D].成都:西南交通大学博士学位论文,2007.
    [110]H. H. Song, J.S. Wang, et al. Relationship between levitation force and levitation stiffness in both symmetrical and unsymmetrical applied field. The 4th International Workshop on Processing and Applications of Superconducting (RE)BCO Large Grain Materials (PASREG 2003). Jena, Germany.2003.
    [111]张兴义.高温超导悬浮系统在不同条件下的电磁力实验研究[D].兰州:兰州大学博士学位论文,2008.
    [112]Z. Deng, J. Zheng, J. Li, G Ma, Y Lu, Y Zhang, S. Wang and J. Wang. Superconducting bulk magnet for maglev vehicle:stable levitation performance above permanent magnet guideway. Materials Science and Engineering:B, 2008,151:117-121.
    [113]Z. Deny, J. Wang, J. Zheng, Q. Lin, Y Zhang, S. Wang, Maglev performance of a double-layer bulk high temperature superconductor above a permanent magnet guideway. Superconductor Science and Technology,2009,22:055003(4pp)
    [114]Qing yong He, Jia su Wang, Longcai Zhang, Su yu Wang. Influence of the ramp angle on levitation characteristics of HTS maglev. Physica C,2008,468:12-16.
    [115]何庆勇.外部扰动条件下高温超导YBCO块材在永磁轨道上的磁悬浮性能[D].成都:西南交通大学博士学位论文,2009.
    [116]T. Suzuki, S. Araki, M. Murakami. A study on levitation force and its time relaxation behavior for abulk superconductor-magnet system. Physica C,2008,468:1461-1464.
    [117]W. Liu, S.Y.Wang, H.Jing, Jing J, et al. Levitation performance of YBCO bulk in different applied magnetic fields. Physica C,2008,468:974-977.
    [118]Z Deng, J Wang,Y Zhang, et al. High-efficiency and low-costpermanent magnet guideway consideration for high-Tc superconducting Maglev vehicle practical application. Supercond. Sci. Technol.2008,21:115018(9pp).
    [119]F. Guo, Y. Tang, L. Ren, J. Li. A novel permanent magnetic rail for HTS levitation propulsion system. Physica C,2009,469:1825-1828.
    [120]Nuria D V, Alvaro S, Carles N. Lateral-displacement infuence on the levitation force in a superconducting system with translational symmetry. Appl.Phys.Lett,2008,92:042505(3pp)
    [121]Nuria D V, Alvaro S, Carles N. Optimizing levitation force and stability in superconducting levitation with translational symmetry. Appl.Phys.Lett,2007,92:042503(3pp)
    [122]M Tsuda, T Kawasaki, T Yagai, et al. Improvement of Levitation Force Characteristics in Magnetic Levitation Type Seismic Isolation Device Composed of HTS Bulk and Permanent Magnet. Journal of Physics:Conference Series,2008,97:012104.
    [123]H. Seki, H. Kurabayashi, M. Murakam, Enhancement of magnetic coupling between permanent magnets and bulk superconductors through iron embedding. Physica C,2009,469: 1278-1281.
    [124]S. Ohashi, S. Kobayashi. Effect of the repulsive force in the HTSC-permanent magnet hybrid bearing system. Physica C,2009,469:1816-1819.
    [125]R C. Moon, M. M. Yanoviak, R. Hysteretic. levitation forces in superconducting ceramics. Appl. Phys. Lett,1988,52:1534-1536.
    [126]R. Williams and J. R. Matey. Equilibrium of a magnet floating above a superconducting dish. Appl. Phys. Lett,1988,52:751-753.
    [127]Hiroaki Kuze, Atsushi Onae. Measurement and analysis of lateral forces between magnets and high-Tc superconductors. J. Appl. Phys,1995,77:770-778.
    [128]T H. Johansen, H. Mestl, and H. Bratsberg, Investigation of the lateral force and stiffness between a high-Tc superconductor and magnet of rectangular shapes. J. Appl. Phys,1994 75: 1667-1670.
    [129]J. Mora, M. Carrera, Granados, X et al. Flux trapping and levitation forces in directionally solidified s superconducting YBa2Cu307 ingots. J. Appl. Phys,1996,79 (8):6596-6598.
    [130]T. Hikihara and Cx Isozumi. Modeling of lateral force-displacement hysteresis caused by local flux pinning. Physica C,1996,270:68-74.
    [131]J R. Hull, A Cansiz. Vertical and lateral forces between a permanent magnet and a high-temperature superconductor. Journal of Applied Physics,1999,86 (11):6396-6404.
    [132]J. R. Hull, A. Cansiz. Vertical and lateral forces between a permanent magnet and a high-temperature superconductor. J. Appl. Phys,1999,86:6396-6404.
    [133]W Hennig, D Parks, R Weinstein, et al. Stable magnetic levitation with adjustable ratio of levitation force to restoring force using rings of zero-field cooled YBa2Cu30y samples. Supercond. Sci Technol,2000,13:1447-1449.
    [134]Y Sanagawa, H Ueda, Tsuda M, et al. Characteristics of lift and restoring force in HTS bulk-Application to two-dimensional maglev transporter. IEEE Trans. Appl. Supercond,2001, 11:1797-1800.
    [135]任仲友.永磁导轨上高温超导磁悬浮的实验研究与数值计算[D].成都:西南交通大学博士学位论文,2004.
    [136]张龙财.时变外磁场下高温超导体块材YBCO的导向力性能研究[D].成都:西南交通大学博士学位论文,2008.
    [137]Wang Xiao rong, Wang Suyu, et al. Guidance Force and Lateral Stiffness of YBaCuO Superconductors in Array In: Jiasu Wang ed. Proceedings of International Workshop on HTS Maglev (ISMAGLEV'2002), Chengdu, P. R. China,2002. pp.87-93.
    [138]Wang Xing zhi, Wang Jia su, et al. Guidance Forces of HTS Maglev Device over Tilted Guideway, In: Jiasu Wang ed. Proceedings of International Workshop on HTS Maglev(ISMAGLEV'2002), Chengdu, P. R. China,2002. pp.100-104.
    [139]Jia su Wang, Su yu Wang, et al. Guidance Forces of High Temperature Superconducting Maglev Test Vehicle. IEEE Transactions on Applied Superconductivity,2003,13 (2): 2154-2156.
    [140]Wang Su yu, Wang Jia su, et al. Guidance forces of HTS maglev vehicle, In: Jiasu Wang ed. Proceedings of International Workshop on HTS Maglev (ISMAGLEV'2002), Chengdu, P.R. China,2002. pp.74-78.
    [141]X. R. Wang, H. H. Song, Z.Y. Ren, et al. Levitation force and guidance force of YBaCuO bulk in applied field. Physica C.2003,386:536-539.
    [142]Xiao rong Wang, Jiasu Wang, Su yu Wang et al. The relationship of guidance force between single and multiple cylindrical Y-Ba-Cu-O superconductors. Physica C,2003,390 (2): 113-119.
    [143]马光同,王家素,王素玉等.高温超导块材与永磁体组成的混合磁悬浮,稀有金属材料与工程,2008增,37(28):42-345.
    [144]R C. Moon, M. M. Yanoviak, R. Hysteretic levitation forces in superconducting ceramics. Appl. Phys. Lett,1988,52:1534-1536.
    [145]A. B. Riise, T. H. Johansen, H. Bratsberg, Z. J.Yang. Logarithmic relaxation in the levitation force in a magnet-high Tcrconductor system. Appl. Phys. Lett,1992,60: 2294-2296.
    [146]Y Luo, T. Takagi, K. Miya. Reduction of levitation decay in high Tc superconducting magnetic bearings. Cryogenics,1999,39:331-338.
    [147]C. P. Bean. Magnetization of hard superconductors. Physical Review Letters,19628: 250-253.
    [148]C. P. Bean. Magnetization of high-field superconductors. Reviews of Modern Physics,1964, 36:31-39.
    [149]C. P. Bean. Surface barrier in type-2 superconductors. Physical Review Letters.1964,12: 14-16.
    [150]P W. Anderson. Theory of flux creep in hard superconductors. Phys.Rev.Lett,1962,9: 309-311.
    [151]B. M. Smolyak, Cx N. Prelshtein, Gc V Ermakov. Effects of relaxation in levitating superconductors. Cryogenics,2002,42:635-644.
    [152]肖玲,任洪涛,焦玉磊等YBCO超导块的悬浮力及其测量.低温物理学报,1999,21(4):3]7-320.
    [153]E. Postrekhin, K. B. Ma, H. Ye, et al. Dynamics and relaxation of magnetic stress between magnet and superconductor in a levitation system. IEEE Trans. Appl. Supercond,2001,11: 1984-1987.
    [154]Y. S. Tseng, C. H. Chiang, W. C. Chan. Levitation force relaxation in YBCO superconductor. Physica C,2004,411:32-34.
    [155]Jun Zhou, Xing Yi Zhang, You He Zhou. Temperature dependence of levitation force and its relaxation in a HTS levitation system. Physica C,2010,470:336-339.
    [156]Zhang X Y, Zhou J, Zhou Y H, et al. Relaxation property of magnetic force between a magnet and superconductor in an unsymmetrical levitation system, Superconductor Science & Technology.2009,22(2):025006.
    [157]Long cai. Zhang, Su yu Wang, Jia su Wang. Suppression of guidance force decay of HTS bulk exposed to AC magnetic field perturbation in a maglev vehicle system. Physica C, 2009,469:685-688.
    [158]Yu jie Qin, Yi yun Lu, Su yu Wang, et al. Levitation Force Relaxation of HTS Bulk above NdFeB Guideway sat Different Approaching Speeds J Supercond Nov Magn,2009,22: 511-516.
    [159]C. P. Bean. Magnetization of hard superconductors. Physical Review Letters.1962, 8(6):250-253.
    [160]C. P. Bean and J. D. Livingston. Surface barrier in type-II superconductors. Physical review letters,1964,12(1):14-16.
    [161]C. P. Bean. Magnetization of High-Field Superconductors. Reviews of Modern Physics, 1964,36, (1):31-38.
    [162]Y B. Kim, C. F. Hempstead, and A. R. Strnad. Critical persistent currents in hard superconductors. Physical review letters,1962,9(7):306-309.
    [163]Y B. Kim, C. F. Hempstead, and A. R. Strnad. Magnetization and critical supercurrents. Physical Review,1963,129(2):528-535.
    [164]P. W. Anderson and Y B. Kim. Hard superconductivity:theory of the motion of abrikosov flux lines. Rev. Mod. Phys,1964,36:39-45.
    [165]F.Irie and K. Yamafuji. Theory of Flux Motion in Non-Ideal Type-II Superconductors. J.Phys. Soc. Jpn.1967,23:255-268.
    [166]K.Yamafuji, T. Wakuda and T. Kiss. Generalized critical state model in high-Tc superconductors. Cryogenics,1997,37(8):421-430.
    [167]M. J. Qin, G Li, H. K. Liu, et al. Calculation of the hysteretic force between a superconductors and a magnet. Physical Review B,2002,66:024516.
    [168]Y Yoshida, M. Uesaka and K. Miya. Evaluation of dynamic magnetic force of high Tc superconductor with flux flow and creep. Int. J. Appl. Electromagn Mater,1994,5:83-89.
    [169]Y Yoshida, M. Uesaka and K. Miya. Magnetic field and force analysis of high Tc superconductor with flux flow and creep. IEEE Trans. Magn,1994,30(5):3503-3506.
    [170]Brandt, E. H. Friction in levitated superonductors. Appl. Phys. Lett,1988,53:1554.
    [171]Y B. Kim, C. F. Hempstead, A. R. Strnad. Flux-flow resistance in type-II superconductors. Phys. Rev,1965,139:A1163-A1172.
    [172]K.Yamafuji, Y.Mawatari. Electromagnetic properties of high Tc superconductors:relaxation of magnetization. Cryogenics,1992,32(6):569-577.
    [173]Y Yeshrun. A. P Malozemoff and A. Shaulov. Magnetic relaxation in high-temperature superconductors. Rev Mod. Phys,1996,68:911-949.
    [174]A. G urevich and H. Kupfer, Time scales of the flux creep in superconductors. Phys. Rev B, 1993,48:6477-6487.
    [175]K. Takase, S. Shindo, K. Demachi and K. Miya. A study on the relaxation of levitation property in an HTSC magnetic bearing. J. Mater. Process. Tech,2001,108:152-155.
    [176]Y Komano, E. Ito, K Sawa, et al. Effect of preloading on the relaxation of the levitation force in bulk Y-Ba-Cu-O superconductor. Physica C,2005,426-431:789-793.
    [177]Z. G. Deng, J. Zheng, J. S. Wang, et al. Studies on the levitation height decay of the high temperature superconducting maglev vehicle, Physica C,2007,463-465:1293-1296.
    [178]邓自刚.运动外磁场下高温超导YBCO块材的动态悬浮特性实验研究[D].成都:西南交通大学博士学位论文,2009.
    [179]E. Postrekhin, K. B. Ma, H. Ye et al. Dynamics and relaxation of magnetic stress between magnet and superconductor in a levitation system. IEEE Trans. Appl. Supercond,2001,11: 1984-1987.
    [180]Zhang X Y, Zhou Y H, Zhou J. Suppression of magnetic force relaxation in a magnet-high Tc superconductor system. IEEE Trans. Applied Superconductivity,2008,18(3):1687-1691.
    [181]Hiroshi SEINO, Ken NAGASHIMA, Yuuki ARA. Development of Superconducting Magnetic Bearing using Superconducting Coil and Bulk Superconductor. Journal of Physics: Conference Series,2008,97:012101.
    [182]W. M.Yang, X. X. Chao, Z. B. Shu, et al. A levitation force and magnetic field distribution measurement system in three dimensions. Physica C,2006,445-448:347-352.
    [183]杨万民,钞曦旭,舒志兵,刘鹏.三维空间磁力与磁场测试装置:中国,200410073501.9[P].2008-01-09.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.