热声发动机的回热器特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热声发动机是一种利用热声效应进行工作的新型动力机械。整机没有机械运动部件,可采用热能驱动,常用工质为惰性气体,具有结构简单、可靠性高、环境友好等突出优点。由其驱动的制冷、发电等系统具有广阔的应用前景。
     回热器(或板叠)是热声发动机中实现热功转化的场所,因此提高回热器性能始终是研究者不懈追求的目标。纵观热声发展历史,每一次热声技术的飞跃都伴随着研究者对回热器不断深入的认识和革新。本文主要围绕行波和驻波热声发动机中的回热器(板叠)特性开展理论和实验研究,取得的主要进展如下:
     1、行波热声发动机中多段式回热器的概念以及CFD模拟优化
     针对现有斯特林热声发动机系统存在的回热器热损失和动力损失,结合工质物性随温度非线性变化的特点,本文提出多段式回热器的概念。采用CFD计算方法以及DeltaE软件对现有的热声斯特林发动机进行建模,模拟了以氮气为工质、充气压力为2MPa和加热器温度为766K时的压力振幅、速度振幅以及温度的系统分布。在CFD模拟中,除回热器采用层流模型外,整机采用湍流模型。通过上述两种方法得到的计算结果与实验结果对比发现:(1)CFD和DeltaE的计算结果均表明,在相同的条件下,本文提出的多段式回热发动机的性能均高于原型发动机。(2)CFD计算得到原斯特林热声热机在特定位置处(声容、谐振管入口、锥形谐振管入口)的压力振幅结果较线性热声软件DeltaE获得的结果更加接近实验值。(3)CFD计算得到起振后回热器的轴向温度呈非线性分布,DeltaE的结果为线性分布,CFD的结果与实验测量到的温度分布情况更加吻合,说明CFD方法对热声系统的温度分布具有更好的预测作用。同时,CFD计算得到多段式回热器轴向温度分布较原斯特林回热器更趋于线性分布。说明多段式回热器有助于减小回热器内部直流损失。本文还对CFD仿真得到的整机模型三通处的流场进行分析,发现该处流场由于压力和速度的剧烈变化造成一个周期内流态出现了边界层分离、漩涡等复杂流态,造成较大能量损失。这为进一步提高热声发动机性能提供了改进方向。
     2、驻波热声发动机丝网板叠的输出特性和起消振时序的实验研究
     本文利用DeltaE设计了一台小型丝网型驻波热声发动机,搭建了实验台。初步实验表明,采用丝网板叠可获得较好的性能,18目丝网时热声发动机以氮气为工质在充气压力为2.2MPa可获得0.2017MPa的压力振幅。在此基础上,开展了不同板叠参数下整机输出特性的实验研究,结果表明一定参数范围内的丝网板叠,对应的最优工作区间不同:低充气压力下,低目数的丝网对应的加热器温升速率小、加热功率范围宽,可获得最优的整机输出性能;随着充气压力的升高,高目数丝网时的加热器温升速率逐渐减小,加热功率范围变宽,可获得最优的整机输出性能。此外实验观察了各种丝网目数下驻波热声发动机起消振过程的压力与频率的时序规律,即:起振时:频率先达到本征频率,压力振幅仅有小幅上升,压力振幅在能量继续累积到一定程度时才大幅激增;消振时:压力振幅先大幅下降,然后本征频率消失。
Thermoacoustic engine is a novel heat engine based on the thermoacoustic effects. It has the merits of no moving parts and can be driven by thermal energy. The working fluids are inert gases. Compared with traditional engines, it is reliable and environment-friendly. Systems driven by thermoacoustic engine have a promising future in application of refrigeration and electricity generation and so on.
     Regenerator (or stack) is a components of thermoacoustic engine which convert thermal energy to acoustic power. Therefore, To improve the performance of the regenerator (or stack) is the aim that researchers always pursue. Looking through the thermoacoustic history, every renovation was associated with deeper understanding on regenerator. Therefore, the following work was carried out to study characteristics of regenerator of thermoacoustic engines theoretically and experimentally.
     1. CFD simulation and optimization on the concept of multilayer regenerator in a Stirling thermoacoustic engine
     According to the fact that the physical properties of working fluid changes with temperature, a multilayer regenerator was proposed in a Stirling thermoacoustic engine to reduce the regenerator loss and dynamic loss. CFD tools and DeltaE were used to calculate the pressure amplitude, velocity amplitude, and temperature distributions. The working fluid is nitrogen, the filling pressure is 2MPa, and the temperature of the heater is 766K. In the CFD simulation, the whole engine uses turbulent model except that the regenerator uses laminar model. The calculation results by CFD and DeltaE were compared with the experimental results, which show: (1) Both CFD results and DeltaE results show that the engine with multilayer regenerator can obtain higher pressure amplitude than the traditional one. (2) The pressure amplitude obtained by CFD simulation agrees better with the experimental results in some specific position (compliance, entrance of the resonator) than DeltaE (3) The nonlinear axial temperature distribution is obtained after the engine onsets, while the results by DeltaE are linear. The CFD results agrees better with the experimental results than DeltaE, which indicates that CFD tools are more suitable to predict the axial temperature distribution in the regenerator of Stirling thermoacoustic engine. Besides, The CFD results shows that the axial temperature distribution is linearized in multilayer regenerator, indicating that multilayer regenerator can reduce streaming flow loss. In addition, the analysis of the flow field in the tee joint shows that the pressure and velocity change violently during an oscillation cycle. Complicated flow states such as vortex, boundary layer separation have been observed, which causes energy loss, and this result provides a further improvement direction for the engine.
     2. Output characteristic of the screen stack and time rule of onset and damping process in a standing-wave thermoacoustic engine
     A miniature standing-wave thermoacosuitc engine with screen stack was designed by DeltaE and the engine was made in the experiment. The elementary experiment shows that the engine has good performance with 18-mesh screens. With nitrogen of 2.2 MPa, the engine can produce pressure amplitude as high as 0.2017MPa The further experimental research on output characteristic with different screen stacks was conducted to optimize the screen parameters.The results illustrate the best performance of the engine depends on the screen parameters. With lower filling pressure, the screens with smaller mesh number lead to smaller increase of heater temperature and wider range of heating power, which makes the engine work with best output performance. As the filling pressure increases, the screens with larger mesh number lead to smaller increase of heater temperature and wider range of heating power. In addition, the timing rule of the onset and damping process of the thermoacoustic engine with different screen parameters were measured. In the onset process, the frequency comes to the eigenfrequency first, at the same time the pressure increases little, and then increase sharply after the energy accumulates to certain amount. In the damping process, the pressure amplitude decrease sharply first, then the frequency disappears.
引文
[1]R Radebaugh. A review of pulse tube refrigeration. Adv Cryo Eng,1990; 35 (B): 1191-1025
    [2]R Radebaugh. Recent developments in cryocoolers. Proceedings of 19th Int'l Congress on Refrigeration III,1995:973-988
    [3]R Radebaugh. Advances in cryocoolers. Proceedings of the ICEC 16/ICMC, Japan,1996:33
    [4]G Walker. Miniature refregerators for cryogenic sensors and cold electronics. Oxford:Oxford University Press,1989:89
    [5]G Walker. Stirling engines. Oxford:Clarendon,1973
    [6]A J Organ. Themodynamics and gas dynamics of the Stirling cycle machine. Cambridge University Press,1992:356
    [7]W E Gifford. The Gifford-McMahon cycle. Adv Cryo Eng,1961,22 (11):152
    [8]W E Gifford. R C Longsworth. Pulse tube refrigeration. Trans ASME, J Eng Ind,1964,86 (03):264-270
    [9]W E Gifford. R C Longsworth. Surface heat pumping. Adv Cryo Eng,1966,11 (03):171-179
    [10]R L Chen, S L Garrett, Solar/heat-driven thermoacoustic engine. J Acoust Soc Am,1998:103(5) Pt 2:2841
    [11]J A Adeff, T J Hofler. Design and construction of a solar powered, thermoacoustically driven thermoacoustic refrigerator. At web site:http:// www.physics.nps.navy.mil/hofler,2000
    [12]G W Swift. Thermoacoustic natural gas liquefier. DOE Natural Gas Conference, Houston,1997,1-5
    [13]J J Wollan, G W Swift, W V Wijngaarden. Development of a thermoacoustic natural fas liquefier. Pprceedings of Amaercan Gas Association Operations Conference, Denver,2000,1-10
    [14]S L Garrett, T J Hofler. Thermoacoustic refrigeration. ASHRAE Journal, 1992,34 (03):28-36
    [15]A A Putnam, W R Dennis. Survey of organ-pipe oscillations in combustion systems. J Acoust Soc Am,1956,28 (02):246-259
    [16]R Radebaugh. The Theory of Sound. Sections 322f-322k,1896, UK Dover Publications
    [17]K T Feldman. Review of the literature on Sondhauss thermoacoustic phenomena. J Sound Vib,1968,7 (01):71-89
    [18]R L. Carter, M. White, A. M. Steele. Personal communication of Atomics International Division of North American Aviation, Inc.,1962
    [19]J Wheatley, A Cox. Natural engines[J]. Physics Today,1985,85 (02):50-58.
    [20]R. Raydebaugh., McDermott K. M., Swift G. W., et al. Development of a thermoacoustically driven orifice pulse tube refrigerator. In 4th Interagency Meeting on Cryocoolers.1990.
    [21]G W Swift, Analysis and performance of a large thermoacoustic engine. J. Acoust. Soc. Am,1992,92 (03):1551-1563
    [22]J R Olson,G W Swift. A loaded thermoacoustic engine. J. Acoust Soc. Am, 1995,98 (05):2690-2693
    [23]C Millet, X. H Deng, Francois M X, et al. Acoustic work Flux measurement of a thermoacoustic prime mover. ICCR'98, Hangzhou, China,1998:518
    [24]S Zhou, Y Matsubara. Experimental research of thermoacoustic prime mover. Cryogenics,1998,38 (08):813-822
    [25]R. L. Chen, S L Garrett. Solar/heat-driven thermoacoustic engine. J. Acoust. Soc. Am,1998,220 (05):28-37
    [26]S.G.Symko, E. Abdel-Rahman, Y. S. Kwon, et al. Design and development of high-frequency thermoacoustic engines for thermal management in microelectronics. Microelectronics Journal,2004,35(2):185
    [27]J Corey,153th Proceedings of Meetings on Acoustics 2007
    [28]E M Benavides. Thermoacoustic nanotechnology:Derivation of a lower limit to the minimum reachable size. J. Appl. Phys.2007,101 (03):35-39
    [29]G B Chen, T Jin, L Zhao, et al Experimental study on a thermoacoustic engine with brass screen st ack matrix. Adv Cryo Eng,1998,43(03):713-718
    [30]汤珂,孔博,陈国邦.黄铜与不锈钢丝网板叠性能比较分析.[J]低温工程,2003,(06):5-9
    [31]利民,蒋宁, 陈国邦.丝网热声板叠的最佳填充率.[J]太阳能学报,2001,22(03):322-326
    [32]K Tang, T. Lei, T.Jin, et al. A standing-wave thermoacoustic engine with gas-liquid coupling oscillation. Applied physics letters,2009,94(03):16-19
    [33]戴巍, 罗二仓, 胡剑英, 等.改进型驻波热声发动机的实验研究[J].工程热物理学报,2005,26(03):376-378
    [34]Dai W, Yu G Y, Zhu S L, et al.300 Hz thermoa. coustically driven pulse tube cooler for temperature below 100 K. Applied Physics Letters,2007,90 (02):86-91
    [35]余国瑶,朱尚龙,戴巍,等.液氮温区高频热驱动脉管制冷机实验研究.[J]工程热物理学报.2009,30(07):1086-1088
    [36]P.. H. Ceperley.Traveling wave heat engine., U S Patent 1978, No.4,114, 380..
    [37]P. H.Ceperley, Apistonless Stirling engine-The traveling wave heat engine. J. Ac oust. Soc. Am.1979,66 (05):1508-1513.
    [38]T Yazaki, A. Iwata, T. Maekawa, et al. Traveling wave thermoacoustic engine in a loop tube. Phys. Rev. Lett.,1998,81 (15):3128.
    [39]S Backhaus. and G. W Swift., A thermoacoustic-Stirling heat engine. Nature, 1999,399 (6734):35-38.
    [40]S Backhaus. and G.W. Swift, A thermoacoustic-Stirling heat engine:Detailed study, J.Acoust. Soc.Am.,2000,107 (06):3148-3166.
    [41]罗二仓,凌虹,戴巍,等.采用锥形谐振管的高压比聚能型热声发动机.[J]科学通报.2005,50(06):65-67.
    [42]G W Swift. Thermoacoustics:A Unifying Perspective for some Engines and Refrigerators. Acoustical Society of America Publications, Sewickley. PA, 2002.
    [43]S Backhaus, GW Swift An acoustic streaming instability in thermoacoustic devices utilizing jet pumps Journal of the Acoustical Society of America,2003, 148 (09):524-535
    [44]CM Blok. Thermoacoustic system Dutch patent. International applicationnumber PCT/NL98/00515;1998.
    [45]Zhibin Yu, Artur J. Jaworski. Impact of acoustic impedance and flow resistance on the power output capacity of the regenerators in travelling-wave thermoacoustic engines. Energy Conversion and Management.2010,51 (01): 350-359
    [46]刘海东, 罗二仓.梁惊涛等.行波型热声发动机的试验研究.[J]低温工程,2000,24(03):23-28
    [47]罗二仓, 凌虹, 戴巍等.采用锥形谐振管的高压比聚能型热声发动机.[J]科学通报,2005,50(06):605-607
    [48]G.Y.Yu, E.C. Luo, W. Dai, Z.H. Wu. An energy-focused thermoacoustic-Stirling heat engine reaching a high pressure ratio above 1.40. Cryogenics,2007,47(02):132-134
    [49]李山峰, 吴张华, 罗二仓, 等.行波热声发动机中平板与丝网回热器的对比实验研究.[J]低温工程2009,83(01):16-19.
    [50]罗二仓,吴张华,戴巍,等,百瓦级行波热声发电机实验样机研究[J].科学通报,2007,52(23):2818-2820.
    [51]邱利民, 孙大明, 张武等.大型多功能热声发动机的研制及初步实验第一部分热声发动机的研制[J]低温工程,2003,15(02):5-9
    [52]Limin Qiu, Darning Sun, et al. Investigation on Gedeon streaming in a traveling wave thermoacoustic engine. In CEC-ICMC' 2005, Keystone Colorado:2005, Volume 823:1115-1122
    [53]孙大明, 邱利民, 陈国邦,等.外加扰动对热声发动机起振特性的影响.[J]太阳能学报2004,25(06):832-837.
    [54]L M Qiu., Bo Wang, Darning Sun, Yu Liu, Ted Steiner. A thermoacoustic engine capable of utilizing multi-temperature heat Sources. Energy Conversion and Management 2009, TU Berlin.
    [55]赵亮,邱利民,董绍鹏,等.燃气驱动的热声发动机初步实验.[J]低温工程2006,58(06):6-9
    [56]D L. Gardner; G. W. Swift. A cascade thermoacoustic engine. The Journal of the Acoustical Society of America.2003,114 (04):65-69
    [57]罗二仓, 戴巍, 凌虹等.串级热声系统的工作原理、分析及优化第一部分串级热声系统的基本原理.[J]低温工程2003,136(06):10-17
    [58]凌虹, 罗二仓等.串级热声发动机的机理分析及数值模拟.[J]应用声学,2005,24(02):83-88
    [59]Zhong Jun Hu, Qing Li, et al. A high frequency cascade thermoacoustic engine. Cryogenics,2006,46 (11):771-777
    [60]N. Rott. Damped and thermally driven acoustic oscillations in wide and narrow tubes. Z. Angew.Math. Phys.,1969, (20):230-243.
    [61]T. J. Hofler. Thermoacoustic refrigerator design and performance. Ph.D. dissertation, Physics Department, University of California at San Diego,1986
    [62]T. Hofler, J. Wheatley, G. W. Swift, et al. Acoustic cooling engine. U.S. Patent No.4,722,201 granted 1988.
    [63]W. P. Arnott, H.Bass, and R. Raspet. General formulation of thermoacoustics for stacks having arbitrarily shaped pore cross sections. J.Acoust. Soc. Am. 1991,90 (04):28-32
    [64]G. W. Swift, R. M. Keolian. Thermoacoustics in pin-array stacks. J. Acoust. Soc. Am.1993,94 (02):941-943
    [65]M S. Reed and T. J. Hofler, Measurements with wire mesh stacks in thermoacoustic prime movers. J. Acoust. Soc. Am.1996,99 (4):2559-2574.
    [66]Zhou S L, Matsubara Y. Experimental research of thermoacoustic prime mover. Cryogenics,1998,38 (08):813-822
    [67]S. Backhaus and G. W. Swift, Fabrication and use of parallel plate regenerators in thermoacoustic Engines. in Proceedings of the 36th Intersociety Energy Conversion Engineering Conference, Savannah, Georgia,2001.
    [68]W P Arnott, H. E. Bass, and R. Raspet, General formulation of thermoacoustics for stacks having arbitrarily shaped pore cross sections. J. Acoust. Soc. Am.1990,88 (s1):96
    [69]G. W Swift. Thermoacoustic engines. J Acoust Soc Am,1988,84 (04) 1145-1180
    [70]M. Hayden and G. W. Swift, Thermoacoustic relaxation in a pin-array stack. J. Acoust. Soc. Am., Pt.1.1997,102 (05):2714-2722
    [71]L. A.Wilen, Measurements of thermoacoustic functions for single pores. J. Acoust. Soc. Am.1998,103 (03):1406-1412
    [72]G. Petculescu and L. A. Wilen, Thermoacoustic in a single pore with an applied temperature gradient. J. Acoust. Soc. Am.1999,106 (02):688-694
    [73]A. Piccolo, G. Pistone. Estimation of heat transfer coeffcients in oscillating flows:The thermoacoustic case. International Journal of Heat and Mass Transfer 2006,49 (09):1631-1642
    [74]F Zink, H Waterer, R Archer, et al. Geometric optimization of a thermoacoustic regenerator. nternational Journal of Thermal Sciences.2009,48 (12):2309-2322
    [75]张晓青,郭方中,董凯军.热声热机回热器特性参数影响的模拟分析及优化.[J]低温工程,2000(03):7-12Q Tu, C Wu, Q Li.Influence of temperature gradient on acoustic characteristic parameters of stack in TAE.International Journal of Enginerring Science,2003,41 (02):38-45.
    [76]凌虹,罗二仓.回热器功产生的临界温度梯度研究.[J]应用声学,2003,22(02):12-16
    [77]余国瑶,戴巍,罗二仓等.回热器参数对热声发动机性能影响的理论及实验研究.[J]低温工程2006(02):15-12
    [78]金滔,王本仁,陈国邦.回热器内流动的频率依存性.[J]低温工程.2002(06):16-20
    [79]涂虬, 李青,张晓青.热声回热器频谱特性的研究——网络类比法的应 用.[J]低温工程.2003(06):17-22.
    [80]涂虬,李敏,李青等.热声回热器自激振荡特性的研究[J].真空与低温.2003,9(04):239-242.
    [81]谢秀娟,李青,陈熙.热声系统中回热器特征阻抗与传播常数的研究[J]低温工程.2005,47(01):32-35
    [82]陈熙,李青,席有民.回热器参数与热声系统动态特性的实验研究.[J]低温工程.2005,48(02):32-38
    [83]陈燕燕, 罗二仓, 戴巍.影响回热器换热的各参数讨论.[J]工程热物理学报2007,62(04):22-26
    [84]陈燕燕, 罗二仓, 戴巍.热声回热器流动、传热新模型及其性能的实验表征.[J]工程热物理学报2008,71(03):494-498
    [85]L Rayleigh. The theory of sound. UK:Dover Publications.1896, Sections 322
    [86]N Rott. Thermoacoustics. Adv Appl Mech,1980,135(20):35-36
    [87]N Rott. Damped and thermally driven acoustic oscillations in wide and narrow tubes. Z Angew Math Phys,1969,230 (20):23-28
    [88]N Rott. Thermally driven acoustic oscillations, part Ⅱ:Stability limit for helium. Z Angew Math Phys,1973,282 (24):54-59
    [89]N Rott. Thermally driven acoustic oscillations, part Ⅲ:Second-order heat flux. Z Angew Math Phys,1975,308(26):43-46
    [90]N Rott, Zouzoulas G. Thermally driven acoustic oscillations, part Ⅳ:Tubes with variable cross-section. Z Angew Math Phys,1976,321 (27):197
    [91]G Zouzoulas, N Rott. Thermally driven acoustic oscillations, part Ⅴ: Gas-liquid oscillations. Z Angew Math Phys,1976,321 (27):325
    [92]N Rott. The influence of heat conduction on acoustic streaming. Z Angew Math Phys,1974,295 (25):417
    [93]张晓青.热声热机系统的仿真优化研究——仿真软件的研制与实验验证[D]华中科技大学2001
    [94]谢秀娟,伍继浩,禹智斌等.基于DeltaE程序的行波热声热机特性研究[J]低温工程2003(02):31-35.
    [95]胡剑英,罗二仓.非线性热声理论的研究进展[J].低温与超导2005,33(03):11-18
    [96]IlinskiiYA, LipkensB, et al. Nonlinear standingwaves in an acoustical resonator. J.Acoust.Soc.Am.,1998,104 (05):2664-267
    [97]V Guesv. Asymptotic theory of nonlinear acousticwaves in a thermoacoustic Prime-mover, Acustica,2000,86 (20):25-38
    [98]ChunYoung-Doo, Kim Yang-Hann, Numerical analysis for nonlinear resonant oscillations of gas in axisymmetric closed tubes, J.Acoust.Soc.Am.,2000, 108 (06):2765-2774
    [99]韩飞,沙家正.Rijke管热声非线性不稳定性增长过程的研究.[J]声学报,1996,21(04):362-367
    [100]韩飞等.Rijke热声振荡的非线性效应.[J]声学学报,1997,22(03):249-254
    [101]刘继平等.管内受热气体层流流动热不稳定性理论研究.[J]工程热物理学报,1998,19(06):736-739
    [102]刘继平等.Rijke管内热声振荡机理的一种新解释.[J]西安交通大学学报,2001,35(03):221-224
    [103]罗二仓等.回热器非线性热声动力学模型的研究.[J]低温工程,2001,123(05):1-7
    [104]王福军.计算流体动力学分析——CFD软件原理与应用.[M]清华大学出版社.2007,4
    [105]余国瑶.热声发动机自激振荡过程及热声转换特性研究.[D]中国科学院理化技术研究所.2008
    [106]J. A. Lycklama a Nijeholt, M. E. H. Tijani, S. Spoelstra. Simulation of a traveling-wave thermoacoustic engine using computational fluid dynamics. J.Acoust.Soc.Am.2005,118 (04):2265-2270.
    [107]余国瑶,罗二仓, 胡剑英等.热声斯特林发动机热动力学特性的CFD研究第一部分:热声自激振荡演化过程.[J]低温工程2006,152(04):5-11.
    [108]余国瑶, 罗二仓, 胡剑英等.热声斯特林发动机热动力学特性的CFD研究第二部分:热声转换特性及热声声流的研究.[J]低温工程2006,153(05):11-15.
    [109]余国瑶,罗二仓, 胡剑英等.热声斯特林发动机的三维CFD数值模拟.2008年工程热力学与能源利用学术会议37-42
    [110]吴栋,董卫.行波型热声热机回热器中工质热力学特性模拟及分析.[J]中国科技信息.2008,17(03):53-54.
    [111]J Kopitz; W Polifke. CFD-based application of the Nyquist criterion to thermo-acoustic instabilities Journal of Computational Physics 2008,14 (03):33-38
    [112]C.F.Cheng, T. W. David. CFD Study of Traveling Wave within a Piston-Less Striling Heat Engine. Computational Fluid Dynamics.2009,41 (02) (02):813-814.
    [113]L. Zoontjens. Numerical study of flow and energy fields in thermoacoustic couples of non-zero thickness. International Journal of Thermal Sciences 2009,48 (04):733-746.
    [114]周远, 罗二仓.热声热机技术的研究进展.[J]机械工程学报.2009,45(03):14-29
    [115]J. H. So, G. W. Swift, and S. Backhausa. An internal streaming instability in regenerators. J. Acoust. Soc. Am.2006,120 (04):1898-1909
    [116]K Nam, S Jeong. Novel flow analysis of regenerator under oscillating flow with pulsating pressure. Cryogenics 2005,45 (05):368-379
    [117]X.B. Zhang, L.M. Qiu, Z.H. Gan. CFD study of a simple orifice pulse tube cooler. Cryogenics 2007,47 (05):315-321
    [118]Fluent 6.1 User's Guide. Fluent Inc., Lebanon, NH,2003.
    [119]B Wang., L.M Qiu., D.M. Sun, Y. Liu, Y Yu. Infrared imaging as a means of characterizing temperature distributions of thermoacoustic regenerators, Proceedings of Heat Powered Cycles 2009, TU Berlin.
    [120]Bo Wang, L.M Qiu, D.M. Sun, etal. Visualization observation of onset and damping behaviors in a traveling-wave thermoacoustic engine by infrared imaging. International Journal of Heat and Mass Transfer.2009-12-28投稿
    [121]于波, 戴巍, 罗二仓, 等.采用正弦型谐振管的高频驻波热声发动机.[J]低温工程,2009,230(01):1-4.
    [122]张晓东, 余国瑶,朱尚龙, 等.高频热声驻波发动机性能的实验研究.[J]低温与超导.2008,159(04):40-44.
    [123]胡剑英.液氮至液氢温区的热声驱动低温制冷机的研究.[D]中国科学院理化技术研究所.2007
    [124]邱利民,孙大明,张武等.热声发动机加热器.中国,02295055[P].2003年12月17日.
    [125]刘迎文, 何雅玲, 沈超等.热声系统中振荡滞后特性的实验研究.[J]工程热物理学报,2007,28(03):376-378.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.