脑淋巴引流阻滞对SAH继发性脑缺血损伤的影响及吡哆醇的缓解作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     急性脑血管病是人类三大致死性疾病之一,其中蛛网膜下腔出血(subarachnoid hemorrhage, SAH)的发病率仅次于脑梗塞和脑出血,位居第三位。绝大多数SAH系脑动脉瘤破裂所致,其病死率高达25%以上,存活下来的患者约1/3因神经功能缺损而需依赖他人生活,给社会和家庭带来沉重负担。再出血和继发脑缺血是导致SAH患者严重预后的两个主要并发症。目前对脑动脉瘤的闭塞术和血管内栓塞术取得了很大的进步,SAH后再出血率已显著降低,但其总体预后并没有显著改善。因此,深入探讨SAH后继发脑缺血损伤的机制,寻找有效防治措施是改善SAH预后的关键环节,具有十分重要的现实意义。
     数十年来,SAH后脑部主要动脉血管发生的痉挛和管腔狭窄,即所谓脑血管痉挛(cerebral vasospasm, CVS)一直是研究的焦点问题。近年来发现SAH后CVS出现的时程和严重程度与继发性脑缺血损伤并不呈完全平行的关系,除CVS外,SAH后脑微血管痉挛和微循环调节功能异常等因素也与继发性脑缺血的发生有关。神经元的死亡可通过坏死(necrosis)和凋亡(apoptosis)两种不同形式发生。哺乳动物细胞凋亡是受Bcl-2蛋白家族、凋亡蛋白活化因子1(apoptosis protein activating factor, Apaf-1)、caspase(胱冬肽酶)蛋白家族等调控的。caspase家族成员归居于不同的凋亡通路,其中caspase-3与凋亡密切相关。在线粒体对细胞凋亡的调控中,Bcl-2家族的蛋白质对线粒体内一些促凋亡因子的释放具有调控功能,因此在决定细胞生死中也具有十分重要的作用。
     通过大分子物质示踪等技术在不同种属动物包括人类的研究已经证实,脑内和蛛网膜下腔中的大分子物质可以被引流入颅外淋巴管和淋巴结。吡哆醇为维生素B族化合物,是机体内一种重要辅酶,它以5′-磷酸吡哆醛的形式参与了氨基酸、脂类等代谢和免疫反应等过程。临床上对淋巴滞留性脑病患者采用大剂量吡哆醇或泛酸治疗能明显减轻患者症状,说明吡哆醇能够改善大分子物质引流,但其机理不清。SAH继发脑缺血发生后,大量血浆蛋白等大分子物质可通过受损的血脑屏障进入脑组织中;由细胞受损而产生的细胞裂解产物和缺血代谢瀑布产生的大量肽类等大分子物质在脑组织中急剧增加。上述大分子物质在脑组织中的积聚直接使神经细胞进一步受损,或通过脑组织渗透压升高而引起脑水肿甚至脑疝,导致患者神经功能缺损乃至死亡。这些在蛛网膜下腔和脑组织内积聚的大分子物质被清除的程度如何,将对SAH的最终结局产生极为重要的影响。然而,目前国内外其他学者对SAH继发脑缺血损伤的研究尚没有涉及大分子物质清除这一重要问题。
     研究目的:
     1、进一步阐明脑淋巴引流途径在病理条件下脑组织大分子物质引流和维持脑组织内环境稳定中的重要作用。
     2、明确SAH后脑淋巴引流途径变化特征,阐明脑淋巴引流途径在SAH继发脑缺血损伤中起到的内源性保护作用。
     3、从改善脑内物质的淋巴引流角度寻找有效防治SAH继发脑缺血损伤的药物。
     研究方法:
     1、选用健康成年Wistar大鼠,雌雄不拘,随机分为正常对照组、SAH组、SAH+CLB组、SAH+CLB+吡哆醇组、SAH+CLB+生理盐水组。采用颈淋巴管结扎和淋巴结摘除法制作大鼠脑淋巴引流阻滞(CLB)模型,应用枕大池二次注血法建立大鼠SAH模型。于模型制作结束后12h内,监测有关生理指标等变化。于第二次注血后48h在体观察基底动脉(BA)管径变化,测定BA对乙酰胆碱(Ach)的反应性,同时行组织病理学观察基底动脉形态和管径,并对脑膜微循环的动态变化进行观察。
     2、对上述分组动物,于术后48h,HE染色观察大脑皮层和海马的形态结构变化;PI染色观察大脑皮层和海马细胞核的形态结构变化,采用TUNEL荧光标记法检测大脑皮层和海马原位凋亡。取新鲜大脑皮层和海马,采用SABC免疫荧光技术检测caspase-3和Bcl-2的蛋白表达;利用RT-PCR技术检测caspase-3和Bcl-2的mRNA表达。
     研究结果:
     1、脑池注血的动物除血压一过性升高外,动脉血气等生理指标维持在正常范围内;SAH组、SAH+CLB组、SAH+CLB+生理盐水组出现ICP升高和脑灌注压(CPP)下降;BA管腔明显痉挛缩窄,管壁增厚,且对Ach反应性降低;脑膜微动、静脉明显痉挛,血流多呈泥沙样流动,甚至可见血流郁滞、摆动等明显异常,以SAH+CLB组、SAH+CLB+溶媒组更为严重。吡哆醇可减轻CLB对SAH所致ICP升高、CPP下降、BA痉挛和脑膜微循环异常的变化。
     2、(1)HE染色可见SAH组大鼠部分神经元脱失,皱缩,核固缩、深染,SAH+CLB组脑组织及毛细血管壁明显水肿,组织间隙增宽,内含大量水肿液,脑血管壁水肿,神经元分部稀疏,细胞皱缩、变形,核染色质致密浓缩、边集,部分核碎裂,部分神经元周围有空泡形成。吡哆醇组上述表现较SAH+CLB组有一定程度的减轻。(2)PI染色可见SAH组细胞部分凋亡,细胞核呈波纹状或折缝样,部分染色质出现浓缩状态,个别细胞核的染色质高度凝聚、边缘化,皇新月形,SAH+CLB组大鼠有大量细胞凋亡,且多属于凋亡晚期:染色质高度凝聚、边缘化,新月形,核碎裂,产生凋亡小体。吡哆醇组凋亡细胞明显减少。(3)TUNEL法原位细胞凋亡检测显示SAH组散在较多的TUNEL阳性细胞,SAH+CLB组可见大量TUNEL阳性细胞,凋亡细胞多集中在大脑皮层、海马、基底节区、脉络丛、室管膜等部位,而以海马、室管膜更为明显。吡哆醇组可见散在TUNEL阳性细胞。(4)免疫荧光技术检测到SAH组有较多的caspase-3免疫阳性细胞,SAH+CLB组有大量caspase-3免疫阳性细胞分布,吡哆醇组caspase-3免疫阳性细胞表达较SAH+CLB组减少。SAH组可见较多的Bcl-2免疫阳性细胞,SAH+CLB组可见少量Bcl-2免疫阳性细胞分布,吡哆醇组Bcl-2免疫阳性细胞表达较SAH+CLB组明显增多。(5) RT-PCR检测结果显示SAH组大脑皮层和海马caspase-3基因mRNA表达明显高于正常对照组,SAH+CLB组caspase-3基因mRNA表达更高,吡哆醇组caspase-3基因的mRNA表达则较SAH+CLB组明显减少。SAH组Bcl-2基因mRNA表达明显低于正常对照组,SAH+CLB组Bcl-2基因mRNA表达则更低,吡哆醇组caspase-3基因的mRNA表达则较SAH+CLB组明显增高。
     研究结论:1、阻断脑淋巴引流途径可加重SAH后脑血管痉挛和基底动脉的病理变化。
     2、阻断脑淋巴引流途径可降低SAH后脑部微循环灌流量,加重微血管痉挛,降低脑微血管流速。
     3、吡哆醇干预对脑淋巴引流阻断所致的SAH后脑血管痉挛和微循环异常具有一定缓解作用。
     4、阻断脑淋巴引流途径将加重SAH所致脑水肿。
     5、阻断脑淋巴引流途径可以通过下调Bcl-2表达,上调caspase-3表达来加重SAH继发性脑缺血损伤。
     6、吡哆醇干预对脑淋巴引流阻断所致的SAH继发性脑缺血损伤具有一定缓解作用。
BACKGROUD:
     Emergent cerebrovascular dissease is one of the three death causes in the world. Among the total, the incidence of subarachnoid hemorrhage is second only than brain infarction and cerebral hemorrhage. Majority of SAH is caused by brain rupture of aneurysm. Case fatality is above of 25%, about of 1/3 survivals's existence depend on other because of neurologic impairment, which bring albatross to family and society rehaemorrhagia and secondary cerebral ischema are the main complications of SAH and contributes to the mal-prognosis. In spite of the fact that there is a drastic drop in rebleeding due to the progress of the surgical management of cerebral aneurism, the outcome of SAH dose not improve because of a concurrent increase in the occurrence of secondary cerebral ischemia. Thus, understanding of the pathogenesis, preventionand management of secondary cerebral ischemia is of great importance in improving the outcome of patients with SAH.
     Over the past several decades, the main cerebral arteril spasm, namely cerebral vasospasn(CVS), has become a focus. In recent years, scientists discovered that the time course and severity of CVS are not completely parallel relation with secondary cerebral ischemia. In spite of CVS, the factor (such as cerebral micrangium vasospasm and abnormal regulate function of microcirculation etc.) are concerned with development of secondary cerebral ischemia. Neuronic death include apoptosis and necrosis. Mammalian cell apoptosis is regulated by Bcl-2 and caspase proteins, apoptosis protein activating factor(Apaf-1). The member of caspase family is belong to different apoptosis pathway, of the total, caspase-3 closely related to Apoptosis. In regulation of mitochondria in apoptosis, the protein of Bcl-2 family can regulate, the liberation of some apoptosis factor, thus it's important in determination on life-and-death of cell.
     It has been proved that macromolecular substance in brain and subarachnoid space could be drainage into extracranial lymphatic vessels and lymph nodes, by technique of macromolecular substance tracing in any kind of animals including of human. Pyridoxol is chemical compound of B vitamins, and important coenzyme in vivo. It participates in metabolism of amino acid and lipids and immune response. In clinic, the symptoms of the lymphostatic encephalopathy(LE) patients obviously relieved by using of high-dose Pyridoxol or bepanthen, which explain that pyridoxol can improve drainage of macromolecular substance. But the mechanism is unclear. After occurrence of secondary cerebral ischema following SAH, mass macromolecular substance (such as plasma protein etc.) can pass through the impaired blood-brain barrier into brain tissue.
     Because of damaged cell or ischemia metabolism fall, mass cell cleaved product and peptides are producd and rapidly increased in brain tissue. Accumulation of above macromolecular substance can damage directly, or induce the brain edema by osmotic pressure of brain tissue rising, even cerebral hernia, which lead to neurologic impairment or die. It's important to final termination that how the macromolecular substance are pellated. Nevertheless, other scholars have not refered to the inportant problem of macromolecular substance cleaning on secondary cerebral ischema following SAH at home and abroad at present.
     OBJECTIVE:
     Firstly, to investigate the important role of the cerebral lymphatic drainage pathway on the drainage of macromolecular substance and homeostatic equilibrium in brain tissue under pathological conditions.
     Sencondly, to determine the variability features of the cerebral lymphatic drainage pathway, and to investigate the endogenous influence of cerebral lymphatic drainage pathway on the development of secondary cerebral ischema following SAH.
     Thirdly, to search for the drug to prevent secondary cerebral ischema following SAH effectively, by improving cerebral lymphatic drainage of macromolecular substance in brain.
     MOTHODS:
     1. The healthy Wister rats were randomly divided into five groups:normal control, SAH group, SAH+CLB group, SAH+CLB+ pyridoxo group, SAH+CLB+ normal sodium group. Rat SAH model was established by the cisteme magna double injection of autologus arterial hemolysates. Rat cervical lymphatic blocked(CLB) model was established by occlusion of cervical lymphatic tubes and removal of lymphatic nodes. Dynamic alteration of physiological parameters, intracranial pressure(ICP), and pial microcirculation were determined within 12 hours. In vivo BA and responsiveness of BA to Ach measurement was performed after 48 hours.
     2.48 hours after induction, changes of the structure and form of cerebral cortex and hippocampal were detected by haematine eosin stain and PI stain. Apoptosis and cell injury in the cerebral cortex and hippocampal were detected by TUNEL method. The protein expressions of Bcl-2 and caspase-3 were assessed by SABC immmunohistochemistry. The expression of mRNA was assessed by technic of RT-PCR.
     RESULT:
     1. The physiological parameters remained within normal range with the exception of a temporary increase in arterial blood pressure(BP). Rats in SAH, SAH+CLB and SAH+CLB+normal sodium groups showed depressed EEG, increased ICP and a drop in cerebral perfusion pressure(CCP) arid rCBF. BA diameters and BA responsiveness to Ach were decreased. Disturbances of pial microcirculation were obviously abnormal, blood flow much presented flow of sediment, even could be found blood flow stasis and movement. Among the total, Rats in SAH+CLB and SAH+CLB+normal sodium groups were more serious. Pyridoxol may relieve the symptom mentioned above of CLB after SAH.
     2. (1) By HE stain, the loss of neurons, karyopyknosis in partial neurons and anachromasis were found in SAH group. In SAH+CLB group, the edema of brain tisssue and capillary wall, wider tissue space, edema of vessel wall was found. The number of neurons decreased and the arrangement were out of order. The nuclei were deep stained and in shape of triangle, strip or abnormity, and fartly found nuclear fragmentation. Pyridoxol may relieve the above symptome of CLB after SAH.
     (2) By PI stain, some neurons showed apoptotic conformation. Cell nucleus were in shape of ripple or crease, part of caryotins were pyknotic, individual caryotin were high agglutinated, marginalizated, and in crescent-shaped in SAH group. A great of neurons showed apoptotic conformation, and belong to advanced stage:caryotin were high agglutinated, marginalizated, and in crescent-shaped, and found nuclear fragmentation and apoptotic body in SAH+CLB group. Apoptosis were obviously decreased in pyridoxol group.
     (3) Scattered apoptotic cells were observed in SAH group, and a devil of apoptotic cells were observed in SAH+CLB group. Apoptotic cells were centralized in cerebral cortex, hippocamp, basal ganglia, choroid plexus and endyma etc. Of the total, hippocamp, endyma were more visible. In pyridoxol group, scattered apoptotic cells were observed.
     (4) By immunofluorescence technic, some expression of caspase-3 and Bcl-2 were observed in SAH group.In SAH+CLB group, the expression of caspase-3 was more than SAH group. However, the expression of Bcl-2 was less. In pyridoxol group, the result of expression of caspase-3 and Bcl-2 were opposite to SAH+CLB group.
     (5) By RT-PCR, the mRNA expression of caspase-3 in SAH group was more than normal control, and in SAH+CLB group was the most. In pyridoxol group, the mRNA expression of caspase-3 was less than SAH+CLB group. The mRNA expression of Bcl-2 in SAH group was less than normal control, and in SAH+CLB group was the least. In pyridoxol group, the mRNA expression of Bcl-2 was more than SAH+CLB group.
     CONCLUSION:
     1. Pathological change of CVS after SAH was aggravated by blockage of cervical lymphatic drainage.
     2. Blood flow rate of microcirculation was degraded, and capillary vessel vasospasm was aggravated by blockage of cervical lymphatic drainage after SAH.
     3. Pyridoxol can partly relieve CVS and abnormality of microcirculation by blockage of cervical lymphatic drainage after SAH.
     4. Brain edema after SAH was aggravated by blockage of cervical lymphatic drainage.
     5. Blockage of cervical lymphatic drainage can aggravated cerebral ischemic injury following SAH by down-regulation of Bcl-2 and up-regulation caspase-3.
     6. Pyridoxol can partly relieve the cerebral ischemic injury following SAH by blockage of cervical lymphatic drainage.
引文
1. Hijdra Avan, Gijn J, Stefanko S, et al. Delayed cerebral ischerriia after anurysmal subarachnoid hemorrhage:clinical anatomic relations.[J] Neurology,1986,36(3): 329-333.
    2. Erdo F, Erdo SL. Bimoclomol protects against vascular consequences of experimental subarachnoid hemorrhage in rats[J]. Brain Res Bull,1998,45(2): 163-166.
    3. Imperatore C, Germano A, d'Avella D, et al. Effects of the radical scavenger AVS on behavioral and BBB changes after experimental subarachnoid hemorrhage [J]. Life Sci,2000,66(9):779-790.
    4. Xia ZL, Xu CQ, Kang SJ. Alteration of morphology, micro-region cerebral blood flow and SEP following cerebral lymphatic blockage in rats. In:Xiu RJ (Eds). The frontiers of microcirculation research, Asian Press,1997:193-198.
    5. Roux S, et al. The role of endothelin in experimental cerebral vasospasm[J]. Neurosurgery.1995:37-78.
    6. 安蔚,孙保亮,杨明峰.经斜坡法大鼠基底动脉在体观测方法的建立[J].泰山医学院学报,2005,26:278-280.
    7. 王伯沄,李玉松,黄高异等病理学技术[M]第一版北京:人民卫生出版社2000,88~134.
    8. 田牛.微循环学[M].第1版.北京:原子能出版社,2004:74-77.
    9. Kawamata T, Peterson JW, Bun T, et al. Augmentation of both hemolysate-induced contraction and activation of protein kinase C by submaximum activation in canine cerebral arteries in vitro. J Neurosurg,1997,87:908-915.
    10. Pasqualin A. Epidemiology and pathophysiology of cerebral vasospasm following subarachnoid hemorrhage. J Neurosurg Sci,1998,42:15-21.
    11. Fujii Y, Takahashi A, Yoshimoto T. Percutaneous transluminal angioplasty in aca-nine model of cerebral vasospasm:angiographic, histologic, and pharmaco-logic evaluation. Surg Neurol,1995,44:163-170.
    12. Warnell P. Advanced concepts in the management of cerebral vasospasm associat- ed with aneurysmal subarachnoid hemorrhage. Arone,1996,17:86-92.
    13. Flamm ES. History of diagnosis and treatment of aneurysmal subarachnoid hemor--rhage. Neurosurg Clin N Am,2001,12(1):23-35.
    14. Megyesi JF, Vollrath B, Cook DA and Findlay JM. In vivo animal models of cerebral vasospasm:a review. Neurosurgery,2000,46(2):448-461.
    15.林志国,刘恩重,戴钦舜.脑血管注挛动物模型的制作.[J]国外医学·脑血管疾病分册,1997,5(7):701.
    16. Joshua BB, Isabelle MG, Lorraine G, et al. Cortical blood flow and cerebral perfusion pressure in a new noncraniotomy model of subarachnoid hemorrhage in the rat. Stroke,1995,26:1089-1091.
    17. Luo Z, Harada T, London S, et al. Antioxidant and ironchelating agents in cerebral Vasospasm. Neurosurgery.1995,37:1154-1159.
    18. Otsuji T, Endo S, Hirashima Y, et al. An experimental model of symptomatic Vas-ospasm induced by oxyhemoglobin in rabbits. Stroke,1994,25:657-662.
    19. Veelken JA, Laing RJC, Takubouski J.The Sheffield model of subarachnoid hemo--rrhage in the rat. Strok,1995,26(7):1279-1283.
    20. Chandy D, Sy R, Aronow WS, et al. Hyponatremia and cerebrovascular spasm in aneurysmal subarachnoid hemorrhage. Neurol India[J].2006,54:273-275.
    21. Hansen-Schwartz J. Cerebral vasospasm:A consideration of the various cellularmechanisms involved in the pathophysiology[J]. Neurocrit Care.2004, 1:235-246.
    22. Wang C, Zhao X, Mao S, Wang Y, et al. Management of sah with traditional chinese medicine in china. Neurol Res[J].2006,28:436-444.
    23. Findlay JM, Macdonald RL, Weir BKA. Current concepts of pathophysiology and management of cerebral vasospasm following aneurysmal subarachnoid hemorrhage. Cerebrovasc Brain Metab Rev,1991,3:336-361.
    24. Wickman G, Lan C, Vollrath B. Functional roles of the rho/rho kinase pathway and protein kinase C in the regulation of cerebrovascular constriction mediated by hemoglobin:relevance to subarachnoid hemorrhage and vasospasm [J]. Circ Res, 2003,92(7):809-816.
    25. Yamaguchi M, ZhouC, NandaA, et al. Ras protein contributes to cerebral vasospasm in acanine double-hemorrhage model[J]. Stroke,2004,35:1750-1755.
    26. Kamezaki T, Yanaka K, Nagase S et al, Increased levels of lipid peroxides as predictive of symptomatic vasospasm and poor outcome after aneurysmal subarachnoid hemorrhage [J] Neurosurg 2002,97(6):1302-1305.
    27. Sun BL, Zhang SM, Xia ZL, et al. L-arginine improves cerebral blood perfusion and vasomotion of microvessels following subarachnoid hemorrhage in rats [J]. Clin Hemorheol Microcirc,2003,29:391-400.
    28. Kessler,IM; Pacheco, et al, Endothelin-1 levels in plasma and cerebrospinal fluid of patients with cerebral vasospasm after aneurysmal subarach-noid hemorrhage [J]. Surg Neurol,2005,64:2-5.
    29. Kwan AL, Lin CL, Wu Cs, et al. Delayed administration of the K+ channel activat--or cromakalim attenuates cerebral vasospasm after experimental subarachnoid hemorrhage[J]. Acta Neutochir (wien),2000,142(2):193-197.
    30. Inoha S, Inamura T, Ikezaki et al. Type V phosphodiesterase expression in cerebral arteries with vasospasm after subarachnoid hemorrhage in a canine model [J]. Neur-ol Res,2002,24:607-612.
    31. Bayram Cirak, Nejmi Kiymaz et al, The effects of endothelin antagonist BQ-610 on cerebral vascular wall following experimental subarachnoid hemorrhage and cerebral vasospasm [J]. Clin Auton Res,2004,14:197-201.
    32. Jain K K. Nicaraven for thetreatment of cerebral vasospasm in subarachnoid hemorrhage [J]. Expert Opin InvestigDrugs 2000,9(4):859.
    33. Shinichi Tamatani, Osamu Sasaki. Detection of delayed cerebral vasospasm, after rupture of intracranial aneurysm, by magnetic resonance angiography. Neurosurgey 1997,40:748-753.
    34. Keogh AJ, Vhora S. The usefulness of magnetic resonance angiography in surgery for intracrinial aneurysm that have bled. Surg Neurol,1998,50:122-127.
    35. Nishizawa S, Yamamoto S, Yokoyama T, et al. Chronological Changes of Diame-ter, cGMP, and protein Kinase C in the Development of Vasospasm. Stroke. Nish-izawa S,1995,26:1916-1920.
    36. Bowman G, Dixit S, Bonneau RH, et al. Neutralizing antibody against interleukin-6 attenuates posthemorrhagic vasospasm in the rat femoral artery model [J]. Neurosurgery,2004,54(3):719-26.
    37. Krupinski J, Striemer P, Slevin M, et al. Three-dimensional structure and survival of newly formed blood vessels after focal cerebral ischemia[J]. Neuroreport, 2003,14(8):1171-6.
    38. Van Gijn J, Rinkel GJ. Subarachnoid haemorrhage:diagnosis, causes and manage-ment. Brain,2001,124(Pt 2):249-278.
    39. Gregory J. del Zoppo and Takuma Mabuchi. Cerebral Microvessel Responses to Focal Ischemia[J]. Journal of Cerebral Blood Flow & Metabolism.2003,23:879-894.
    40. Perkins E, Kimura H, Parent AD, et al. Evaluation of the microvasculature and cerebral ischemia after experimental subarachnoid hemorrhage in dogs[J]. Neurosurg.2002 Oct 97(4):896-904.
    41. Nihei H, Kassell NF, Dougherty DA, Sasaki T. Does vasospasm occur in small pial arteries and arterioles of rabbits [J]. Stroke.1991,22(11):1419-25.
    42. Akopov S, Sercombe R, Seylaz J. Cerebrovascular reactivity:Role of endothelium/ platelet/leukocyte interactions. Cerebrovasc Brain Metab Rev,1996,8(1):11-94.
    43. Yang MF, Sun BL, Xia ZL, et al. Alleviation of brain edema by L-arginine follow-ing experimental subarachnoid hemorrhage in a rat model. Clin Hemorheol Micr-ocirc,2003,29(3-4):437-443.
    44. Mayberg MR, Houser OW, Sundt TM Jr. Ultrastructural changes in feline arterial endothelium following subarachnoid hemorrhage. J Neurosurg,1978,48(1):49-57.
    45.刘执玉.淋巴学.北京:中国医药科技出版社,1996,186-187.
    46. Brightman MW, Klatzo I, Olsson Y, et al. The blood brain to proteins. J Neurol Sci,1970,10:215-239.
    47. Foldi M.The brain and the lymphatic system. Lymphology 1996,29:1-9.
    48. Sun BL, Xia ZL, Yan ZW, Chen YS, Yang MF. Effects of blockade of cerebral lymphatic drainage on cerebral ischemia after middle cerebral artery occlusion in rats. Clin Hemorheol Microcirc.2000,23(2-4):321-325.
    49. Weller RO, Massey A, Kuo YM and Roher AE. Cerebral amyloid angiopathy: accumulation of A beta in interstitial fluid drainage pathways in Alzheimer's disease. Ann N Y Acad Sci,2000,903:110-117.
    50. Foldi M, Csillik B,Varkonyi,et al. Lymphostatic cerebral hemangiopathy. Vasc Surg,1968,2:214-222.
    51. Zakharov A, Papaiconomou C, Koh L,et al. Integrating the roles of extracranial lymphatics and intracranial veins in cerebrospinal fluid absorption in sheep. Microvasc Res.2004,67(1):96-104.
    52. Zhang ET, Richards HK, Kida S, et al. Directional and compartmentalished drain--age of interstitial fluid and cerebrospinal fluid from the rat brain. Acta Neuropath-ol,1992,83:233-239.
    53. Pollock H, Hutchings M, Weller RO and Zhang ET. Peri vascular spaces in the basal ganglia of the human brain:their relationship to lacunes. J Anat,1997,191 (Pt 3):337-346.
    54. Miura M, Kato S, von Ludinghausen M. Lymphatic drainage of the cerebrospinal fluid from monkey spinal meninges with special reference to the distribution of the epidural lymphatics. Arch Histol Cytol,1998,61(3):277-86.
    55. Wang HJ, Casley-Smith JR. Drainage of the prelymphatics of the brain via the adventitia of the vertebral artery. Acta Anat (Basel),1989,134(1):67-71.
    56. Foldi M. The brain and the lymphatic system(2):Morphologic effects of cervical lymphatic blockade. Lymphology,1996,29:10-14.
    57.陈连壁,夏作理,魏丽虹.实验性脑淋巴引流阻断后对大鼠心血管调节功能的影响.见:夏作理,主编.脑微循环研究.北京:中国科学技术出版社,1994,24-30.
    58. Juvela S, Siironen J, Varis J,et al. Risk factors for ischemic lesions following aneurysmal subarachnoid hemorrhage [J]. Neurosurg,2005,102:194-201.
    59. Uhl E, Lehmberg J,Steiger HJ, et al.Intraoperative detection of early microv asospasm in patients with Subarachnoid hemorrhage by using orthogonal polarization spectral imaging. Neurosurgery,2003,52(6):1307-17.
    60. Sarrafzadeh AS, Haux D, Ludemann L,et al. Cerebral ischemia in aneurysmal sub- arachnoid hemorrhage:a correlative microdialysis-PET Study. Stroke,2004,35 (3):638-643.
    61. Gules I, Satoh M, Nanda A, et al. Apoptosis, blood-brain barrier, and subarachnoid hemorrhage. Acta Neurochir Suppl,2003,86:483-487.
    62. Weller RO. Pathology of cerebrospinal fluid and interstitial fluid of the CNS:sign-ificance for Alzheimer disease, prion disorders and multiple sclerosis. J Neuropath-ol Exp Neurol,1998,57(10):885-894.
    63. Betlejewski S, Mackiewicz-Nartowicz H, Burduk D, Rudy J. The influence of neck-dissection operations on cervical and cerebral blood circulation. Otolaryngol Pol, 2000,54(Suppl 31):79-81.
    64. McCormick DB, Chen H. Update on interconversions of vitamin B-6 with its coen-zyme. J Nutr,1999,129(2):325-327.
    65. Clarke R, Armitage J. Vitamin supplements and cardiovascular risk:review of the randomized trials of homocysteine-lowering vitamin supplements. Semin Thromb Hemost,2000,26(3):341-348.
    66. Ubbink JB. Vitamin nutrition status and homocysteine:an atherogenic risk factor. Nutr Rev,1994,52(11):383-387.
    67. Diaz J, Sempere AP. Cerebral ischemia:new risk factors. Cerebrovasc Dis,2004, 17 (Suppl 1):43-50.
    68.关丽,贾光宏,邵菊芳.同型半胧氨酸促血管平滑肌细胞增殖的机制.中国心血管杂志,2002,7(3):161-162.
    69.朱建华,张力.同型半胱氨酸对血管平滑肌细胞白细胞介素6表达和核转录因子-κB活性的影响.中华心血管病杂志,2002,30(9):554-558.
    70. Yang EY, Campbell A, Bondy SC. Configuration of thiols dictates their ability to promote iron-induced reactive oxygen species generation. Redox Rep,2000,5(6): 371-375.
    71.陈宇,王士雯,李军,等.同型半耽氨酸对大鼠血管钙化模型的影响.中华老年心脑血管病杂志,2002,4(6):400-403.
    72. Chao CL, Lee YT. Impairment of cerebrovascular reactivity by methionine induced hyperhomocysteinemia and amelioration by quinapril treatment. Stroke,2000,31 (12):2907-2911.
    73. Cook JW, Taylor LM, Orloff SL, et al. Homocysteine and arterial disease. Experi-mental mechanisms. Vascul Pharmacol,2002,38(5):293-300.
    74. McEvoy AW, Marras C, Kitchen ND, Briddon A. Plasma total homocysteine and subarachnoid haemorrhage in a co-factor replete population. Amino Acids,2001,21 (3):237-241.
    75. Brattstron L, Sstavenow L, Galvard H, et al. Pyridoxine reduces cholesterol and Lowdensity lipoprotein and increases antithroinbin III:activity in 80-year-old men with lowplasma pyridoxal 5-phosphate.Scan J Clin Lad Invest,1990,50(8):873-894.
    1 Van Gijn J, Rinkel GJ. Subarachnoid haemorrhage:diagnosis, causes and management[J]. Brain,2001,124(Pt 2):249-278.
    2 Kerr JFR, Wyllie AH, Currie AR. Apoptosis:a basic biological phenomenon with wide ranging implications in tissue kinetics[J]. Br J cancer,1972,26(2):239-245.
    3 Abe K, Aoki M, Kawagoe J et al. Ischemic delayed neuronal death:a mitochondrial hypothesis[J]. Stroke,1995,26(8):1478-1489.
    4 Yuan J,Yankner BA. Apoptosis in the nervous system[J]. Nature,2000,407:802-809
    5 William CE, Luis MM, Scott HK,et al. Mammlian caspases, structure, activation,substractes and functlons during apoptosis[J]. Annu Rev Biochem,1999, 68:383-424.
    6 Assefa Z,Wantieghem A,Garmyn M,et al. P38 mitogen-activated protein kinase regulates a novel caspase independent pathway for the mitochondrlal cytochrome c release in ultraviolet radiation induced apoptosis[J]. Biol Chem,2000,275: 21416-21421.
    7 Sun BL, Xia ZL, Yan ZW, et al. Effects of blockade of cerebral lymphatic drainage on cerebral ischemia after middle cerebral artery occlusion in rats[J]. Clin Hemorheol Microcirc.2000,23:321-325.
    8 Xia ZL, Xu CQ, Kang SJ. Alteration of morphology, micro-region cerebral blood flow and SEP following cerebral lymphatic blockage in rats. In:Xiu RJ(Eds). The frontiers of microcirculation research, Asian Press,1997:193-198.
    9 Roux S, et al. The role of endothelin in experimental cerebral vasospasm[J]. Neur-osurgery.1995,37:78.
    10 Reeder RF, Nattie EE, North WG. Effect of vasopressin on cold-induced brain ede-ma in cats[J]. Neurosurg,1986,64(6):941-950.
    11 王伯沄,李玉松,黄高异等病理学技术[M]第一版北京,人民卫生出版社2000,88-134.
    12 Hansen-Schwartz J. Cerebral vasospasm:a consideration of the various cellular mechanisms involved in the pathophysiology[J]. Neurocrit Care,2004,1:235-246.
    13 Sun BL, Xia ZL, Yang MF, et al. Effects of Ginkgo biloba extract on somatosensory evoked potential, nitric oxide levels in serum and brain tissue in rats with cerebral vasospasm after subarachnoid hemorrhage[J]. Clin Hemorheol Microcirc.2000, 23:139-144.
    14 郭新宾,赵丛海,田宇.蛛网膜下腔出血后脑血管痉挛的发病机制和治疗[J].国外医学脑血管疾病分册,2004,12(11):842-845.
    15 Sen J, Belli A, Albon H, et al. Triple-H therapy in the management of aneurysmal subarachnoid haemorrhage [J]. Lancet Neurol,2003,2:614-621.
    16 Juvela S, Siironen J, Varis J,et al. Risk factors for ischemic lesions following aneurysmal subarachnoid hemorrhage [J]. Neurosurg,2005,102:194-201.
    17 Perkins E, Kimura H, Parent AD, et al. Evaluation of the microvasculature and cerebral ischemia after experimental subarachnoid hemorrhage in dogs[J]. J Neurosurg,2002,97:896-904.
    18 Yin W, Tibbs R, Tang J, et al. Haemoglobin and ATP levels in CSF from a dog model of vasospasm[J]. Clin Neurosci,2002,9:425-428.
    19 Xi G, Keep RF, Hoff JT. Pathophysiology of brain edema formation. [J]Neurosurg Clin N Am,2002,13:371-383.
    20 Maramarou A. Pathophysioligy of traumatic brain edema:current concepts. [J] Acta Neurochir Suppl,2003,86:7-10.
    21 Hoff JT, Xi G. Brain edema form intracerebral hemorrhage. [J] Acta Neurochir Suppl,2003,86:11-15.
    22 Davies DC. Blood-brain barrier breakdown in septic encephalopathy and brain tumours. [J] Anat,2002,200:639-646.
    23 Josko J, Knefel. The role of vascular endothelial growth factor in cerebral oedema formation. [J]Folia Neuropathol,2003,41:161-166.
    24 Yao D, Chen Y, Kuwajima M, Shiota M, ET AL. Accumulation of mini-plasmin in the cerebral capillaries causes vascular invasion of the murine brain by a pneumo-tropic influenza A virus:implications for influenza-associated encephalopathy. [J] Biol Chem,2004,385:487-492.
    25 Arriagade C, Paris I, Sanchez de las Matas MJ, et al. On the neurotoxicity mecha- nism of leukoaminochrome osemiquinone radical derived from dopamine oxidation: mitochondria damagem, necrosis, and hydroxyl radical formation. [J] Neurobiol Dis, 2004,16:468-477.
    26 Massieu L, Monriel T, Robles G, et al. Brain amino acids during hyponatremia in vivo:clinical observations and wxperimental studies.[J] Neurichem Res,2004,29: 73-81.
    27 Racette BA, Esper GJ, Antentor J, et al. Pathophysiology of parkinsonism due to hydrocepha;us.[J] Neurosurg Psychiatry,2004,75:1617-1619.
    28 Park S, Yamaguchi M, Zhou C, et al. Neurivascular protection reduces early brain injury after subarachnoid hemorrhage. [J] Stroke,2004,35:2412-2417.
    29 Ludwig HC,Feiz Erfan I,Bockermann V, et al. Expression of nitric oxide synthase isozymes(NOS-Ⅱ) by immunohistochemistry and DBA in situ hybridization. Correlation with macrophage presence,vascular endothelial growth factor (VEGE) and edema volumetric data in 220 glioblastomas. Anticancer Res,2000r20:299-304.
    30 Castillo J. Physiopathology of cerebral ischemia. [J] Riv Neurol,2000,30:459-464.
    31 Gregory J. del Zoppo and Takuma Mabuchi. Cerebral Microvessel Responses to Focal Ischemia[J]. Journal of Cerebral Blood Flow & Metabolism.
    32 Nihei H, Kassell NF, Dougherty DA, Sasaki T. Does vasospasm occur in small pialarteries and arterioles of rabbits?[J]. Stroke.1991,22(11):1419-25.
    33 Sarrafzadeh AS, Haux D, Ludemann L,et al. Cerebral ischemia in aneurysmal suba-rachnoid hemorrhage:a correlative microdialysis-PET Study[J]. Stroke,2004,35 (3): 638-643.
    34 Erdo F, Erdo SL. Bimoclomol protects against vascular consequences of experi-mental subarachnoid hemorrhage in rats[J]. Brain Res Bull,1998,45(2):163-166.
    35 Imperatore C, Germano A, d'Avella D, et al. effects of the radical scavenger AVS on behavioral and BBB changes afteter experimental subarachnoid hemorrhage [J]. Life Sci,2000,66(9):779-790.
    36 Gules I, Satoh M, Nanda A,et al. Apoptosis, blood-brain barrier, and subarachnoid hemorrhage[J]. Acta Neurochir Suppl,2003,86:483-487.
    37 赵卫红,寿好长,门福岭,等主编.细胞凋亡.郑州:河南医科大学出版社,1997.7-11.
    38 Linnik MD, Miller JA, Sprinkle-Cavallo J, et al. Apoptotic DNA fragmentation in the rat cerebral cotter induced by permanent middle cerebral artery occlusion [J]. Brain Res Mol Brain Res.1995,32(1):116-24.
    39 Kimura K, Sasano H, Shimosegawa T, et al.Ultrastructural and confocal laser scanning microscopic examination of TUNEL-positive cells[J]. Pathol.1997,181 (2):235-12.
    40 Bossy-WetZel E, Green DR. Apoptosis; checkpoint at the mitoctlonorlal frontier. Mvtation research[J].1999,434:243-251.
    41 Nakagawa T, Zbu H, Morishima N, et al. caspase 12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amylodibeta[J]. Nature,2000,403: 987-1003.
    42 Kim GW, Sugawara T, Chan PH. Involvement of oxidative stress and Caspase-3 in cortical infarction after photothrombotic ischemia in mice[J]. Cereb Blood Flow Metab.2000,20(12):1690-701.
    43 Du Y, Bales KR, Dodel RC, et al. Activation of a Caspase-3 related cysteine protease is required for glutamate-mediated apoptosis of cultured cerebellar granule neurons[J]. Proc Natl Acad Sci USA.1997,94:11657-11662.
    44 Velier JJ, Ellison JA, Kikly KK, et aL. Caspase-8 and Caspase-3 are expressed by different populations of cortical neurons undergoing delayed, cell death after focal stroke in the rat[J]. Neurosci.1999,19(14):5932-41.
    45 Li Y, Chopp M, Jiang N and Zaloga C. In situ detection of DNA fragmentation after focal cerebral ischemia in mice[J], Brain Res Mo1,1995,28:164-168.
    46 Kawarmura M,Nakajima W,Ishida A,et al. Calpain inhibitor MDL 28170 protects hypoxic-ischemic brain injury in neonatal rats by inhibition of both apoptosis and necrosis[J]. Brain Res,2005,1037:59-69.
    47 Tsujimoto Y,shimizu S. Bcl-2 family; Life or death switch[J]. FEBS Lett,2000, 466:6-10.
    48 Ji HB Zhai QW,Liu XY,Zheng ZC Transcription regulation of bcl-2 gene[J]. Acta Biochimecaet Biophysica Sinica,2000,32:95-99.
    49 Tsujimoto Y, Gorham-J, Cossman-J, et al. The t(14,18) chromosome translocations involved in B-cell neoplasms results from mistakes in VDJ joining[J]. Science 1985, 229:1390-1396.
    50 Uaux D, Cory S, Adams J, et al. Bcl-2 gene promotes haemopoitic cell survival and cooperates with c-myc to immotalize pre-B cell[J]. Nature 1988,335:440-442.
    51 Yin XM, Ottvai ZN, Koesmeyer SJ. BH1 and BH2 dimains of Bcl-2 are required for inhibition of apoptosis and heterodimerization with BAX.[J]. Nature 1994,369: 321-323.
    52 Shi YH,Tang XM. Transporting pathway of apoptosis and its regulation[J]. Chin J Cell Biol,1999,1:49-53.
    53 Yang J,Liu X,Bhalla K,et al. Prevention of apoptosis by Bcl-2 release of cyto-chromec from mitochondria blocked[J]. Science,1997,275:1129-1132.
    54 Schwarz CS,Evert BO,Seyfried J,et al. Over expression of bcl-2 results in reduction of cytochrom c content and inhibition of complex I activity [J]. Biochem Biophys Res Commun,2001,280:1021-1027.
    55 Bossy-Wetzel E,Green DR. caspases induce cytochrome c release from mitochodria by activating cytosolic factors[J]. J Biol Chem,1999,274:17484-17490.
    56 Cosulich SC,Savory PJ,Clarke PR. Bcl-2 fegulates mpliflcation of caspase activa-tion by cytochrome c[J]. Curr Biol,1999,9;147-150.
    57 Krebs JF, Armstrong RC,Srinivasan A, et al. Activation of membrane associated pro-caspase 3 is regulated by Bcl-2[J]. J cell Biol,1999,144:915-926.
    58 Vander-Heiden MG,Chandel NS,Schumacker Pt, et al. Bcl-xL prevent cell death following growth factor withdrawal by facilitating mitochondrial ATP/ADP exchange[J]. Mol Cell,1999,3:159-167.
    59 Luo X, Budihardjo I, Zou H, et al. Bid,a Bcl-2 interacting protein, mediates cyto-chrome c release in response to activation of cell surface death receptors[J]. Cell, 1998,94:481-490.
    60 Li H, Zhu H, Xu C, et al. Cleavage of Bid by caspase 8 mediates the mitochondria damage in the Fas pathway of apoptosis [J]. Cell,1998,94:491-501.
    61 Esposti MD, Erler JT, Hickman JA, et al. Bid a widely expressed proapoptotic protein of the bcl-2 famil, displays transfer activity[J]. Mol Cell Biol,2001,21: 7268-7276.
    62 Fulda S,Meyer E,Friesen C, et al. Cell type specific involvement of death receptor and mitochodria pathways in drug induced apoptosis [J]. Oncogene,2001,20: 1063-1075.
    63 Buss RR, Oppenheim RW. Role of programmed cell death in normal neuronal development and function[J]. Anat Sci Int,2004,79:191-197.
    64 Zanjani HS,Vogel MW, Martinou JC, et al. Postnatal expression of Hu-bcl-2 gene inlurcher mutant mice fails to rescue purkinje cells but protects inferior olivary neurons from target-related cell death[J]. Neurosci,1998,18:319-327.
    65 Zhang Z, Sobel RA, Cheng D, Mild hypothermia increases bcl-2 protein expression following global cerebral ischemia[J]. Brain Res Mol Brain Res 2001,95(1-2):75-85
    66 Matsushita K, Matsuyama T, Kitagawa K, et al. Alterations of bcl-2 family proteins procede cytoskeletal proteolysis in the penumbra, but not in infarct centers following focal cerebral ischemia in mice[J]. Neuroscience,1998,83:439-448.
    67 Antonawich FJ, Krajewski S, Reed JC, et al. Bcl-x and bax interaction after transient global ischemia[J]. Cereb Blood Flow Metab,1998,18:882-886.
    68 Lawrence MS, McLaughlin JR, Sun GH, Herpes simplex viral vectors expressing bcl-2 are neuroprotective when delivered after a stroke. [J] Cereb Blood Flow Metab.1998,17(7):740-744.
    69 Raff MC, Whimore AV, Whimore AV, Finn JT. Axonal self-destruction and neurodegeneration[J]. Science,2002,296;868-871.
    70 SchabitZ WR, Sommer C, Zoder W, et al. Intravenous brain-derived neurotrophic factor reduces infarct size and counter regulates Bax and Bcl-2 expression after temporary focal cerebral ischemia[J]. Stroke,2000,31:2212-2127.
    71 Njhawan D, Honarpour N and Wang X. Apoptosis in Neural Development and Disease[J].Neurosci,2000,23;73-87.
    72 Foldi M. The brain and the lymphatic system(2):Morphologic effects of cervical lymphatic blockade. Lymphology[J].1996,29:10-14.
    73 Caversaccio M, Peschel O, Arnold W. The drainage of cerebrospinal fluid into the lymphatic system of the neck in humans[J]. ORL J Otorhinolaryngol Relat Spec, 1996,58:164-166.
    74 陈玉社,牛敬忠,夏作理,等.大鼠淋巴滞留性脑水肿的病理学研究[J].临床与实验病理学杂志,2000,16:495-497.
    75 Sun BL, Xia ZL, Yan ZW, Chen YS, Yang MF. Effects of blockade of cerebral lym-phatic drainage on cerebral ischemia after middle cerebral artery occlusion in rats[J]. Clin Hemorheol Microcirc.2000,23(2-4):321-325.
    76 Weller RO. Pathology of cerebrospinal fluid and interstitial fluid of the CNS:signi-ficance for Alzheimer disease, prion disorders and multiple sclerosis[J]. J Neuro-pathol Exp Neurol,1998,57(10):885-894.
    77 Betlejewski S, Mackiewicz-Nartowicz H, Burduk D, Rudy J. The influence of neck-dissection operations on cervical and cerebral blood circulation. [J] Otolaryngol Pol, 2000,54(Suppl 31):79-81.
    78 Brattstron L, Sstavenow L, Galvard H, et al. Pyridoxine reduces cholesterol and Lowdensity lipoprotein and increases antithroinbin Ⅲ:activity in 80-year-old men with lowplasma pyridoxal 5-phosphate[J].Scan J Clin Lad Invest,1990,50(8): 873-894.
    1 Chandy D, Sy R, Aronow WS, et al. Hyponatremia and cerebrovascular spasm in aneurysmal subarachnoid hemorrhage [J]. Neurol India.2006,54:273-275.
    2 Hansen-Schwartz J. Cerebral vasospasm:A consideration of the various cellular mechanisms involved in the pathophysiology[J]. Neurocrit Care.2004,1:235-246.
    3 孙保亮,张苏明,夏作理等.L-精氨酸改善实验性蛛网膜下腔出血后脑组织血供[J].中国微循环.2002,6:304.
    4 Wickman G, Lan C, Vollrath B. Functional roles of the rho/rho kinase pathway and protein kinase C in the regulation of cerebrovascular constriction mediated by hemoglobin:relevance to subarachnoid hemorrhage and vasospasm [J]. Circ Res. 2003,92(7):809-816.
    5 Sun BL, Zhang SM, Xia ZL, et al. L-arginine improves cerebral blood perfusion and vasomotion of microvessels following subarachnoid hemorrhage in rats [J]. Clin Hemorheol Microcirc.2003,29:391-400.
    6 Kessler, IM; Pacheco, et al, Endothelin-1 levels in plasma and cerebrospinal fluid of patients with cerebral vasospasm after aneurysmal subarach- noid hemorrhage [J]. Surg Neurol.2005,64:2-5.
    7 McGirt MJ, Lynch JR Parra A et al. Simtvastatin increases endothelial nitric oxide synthase and ameliorates cerebral vasospasm resulting from subarachnoid hemorrhage[J]. Stroke.2002,33:2950-2956.
    8 Lin, CL, Jeng AY, Howng SL, et al, Endothelin and subarachnoid hemorrhage induced cerebral vasospasm:pathogenesis and treatment[J]. Curr Med Chem. 2004,11(13):1779-1791.
    9 Kwan AL, Lin CL, Wu Cs, et al. Delayed administration of the K+ channel activator cromakalim attenuates cerebral vasospasm after experimental subarachnoid hemorrhage[J]. Acta Neutochir (wien).2000,142(2):193-197.
    10 Inoha S, Inamura T, Ikezaki et al. Type V phosphodiesterase expression in cerebral arteries with vasospasm after subarachnoid hemorrhage in a canine model[J]. Neurol Res.2002,24:607-612.
    11 Wkkman G, Lan C, Vollrath B. Functional roles of the rho/rho kinose pathway and protein kinase C in the regulation of cerebrovas-color constriction mediated by hemogloba:relevance to subarachnoid hemorrhage and vasospasm[J]. Circ Res. 2003,92:809-816.
    12 Yamaguchi M, ZhouC, NandaA, et al. Ras protein contributes to cerebral vasospasm in acanine double-hemorrhage model[J]. Stroke.2004,35:1750-1755.
    13 Kamezaki T, Yanaka K, Nagase S et al, Increased levels of lipid peroxides as predictive of symptomatic vasospasm and poor outcome after aneurysmal subarachnoid hemorrhage [J] Neurosurg.2002,97(6):1302-1305.
    14 Bayram Cirak, Nejmi Kiymaz et al, The effects of endothelin antagonist BQ-610 on cerebral vascular wall following experimental subarachnoid hemorrhage and cerebral vasospasm [J]. Clin Auton Res.2004,14:197-201.
    15 Jain K K. Nicaraven for thetreatment of cerebral vasospasm in subarachnoid hemorrhage [J]. Expert Opin InvestigDrugs.2000,9(4):859.
    16 Trandafir CC, Nishihashi T, Wang A, et al. Participation of vasopressin in the development of cerebral vasospasm in a rat model of subarachnoid haemorrhage [J]. Clin Exp Pharmacol Physiol.2004,31:261-266.
    1 Johanson CE.Ventricles and cerebrospinal fluid.In:Neuroscience in Medicine, edicined by Conn PM. Philadelphia:J.B Lippincott,1995,P.171-196.
    2 Bradbury MWB and Cserr HF. Drainage of cerebral interstitial fluid and of cerebralspinal fluid into lymphastics.In:Experimental Biology of the Lymphatic Circulation, Elsevier Science,1985,p.355-394.
    3 Fox RJ, Waiji AH, Mielke B, Petruk KC, and Aronyk KE. Anatomic details of intradural channels in the parasagittal dura:a possible pathway for flow of cerebrospinal fluid. Neurosurgery 1996,39:84-91.
    4 Comez DG, Ehrmann JE, Potts DG, Pavese AM, and Gilanian A.The arachnoid granulation of the newborn human:an ultrastructural study. Int J Dev Neurosci 1983(1):139-147.
    5 Casley-smith JR. Fine structur estudies of the prelymphatic system of The brain and eye [J]. Progressin Lympholbgy,1988,207-211.
    6 Foldi M. The brain and the lymphatic system. Lymphology.1996,29:1.
    7 Brightman MW, klatzo I, Olsson Y, et al. The blood brain to proteins. J Neurol Sci. 1970,10:215.
    8 Broutton M, Yong A, Hay J,et al. Drainage of CSF through lymphatic pathways and arachnoid villi in sheep:measurement of 1251-albumin clearance. Neuropathol Appl Neurobiol.1996,22:325.
    9 Yamada S, De Patiak CS, et al. Albumin outflow into deep cervical lymph from different regions of rabbit brain. Am J Paysiol(Heart Circ Physiol 30),1991,261:H1 197~H1204.
    10 Li JCH, Zhou JL, Shi YH, Scanning electron microscopy of human cerebral meningeal stomata.Ann Anat,1996,178:259~261.
    11 Reulen HJ, Tsuyumu M, Tack A, et al. Clearance of edema fluid into cerebrospinal fluid .J Neurosurg,1978,48:754~764.
    12 Kida S, Pantazis A, and Weller RO.CSF drains directly from the subarachnoid space into nasal lymphatics in the rat. Anatomy, histology and immunological significance. Neutopathol Appl Neurobiol 19:480~488,1993.
    13 Mollanji R Bozanovic-Sosic R, Silver I, Li P, Kim C, Midha R, and Johnston MG. Intracranial pressure accommodation is impaired by blocking pathways leading to extracrainal lumphaatics. An J Physiol Regul Integr Comp Physiol 280:R1 573~ R1 581,2001.
    14 Andres KH, von During M, Muszynski K, Schmidi RF:Never fibers and their terminals of the dura mater encephali of the rat.Anot Embryol (Berl) 1987.175:289-301.
    15 Fodi M, Gellert A, Kozma M,Poberai M, Zoltan OT, Csanda E:New contributions to the anatomical connection of the brain and the lumphatic system. Acta Anata(Basel)1966,64:498~505.
    16 Holtz E, Michelet AA, Jacobsen T:Absorption after subarachnoid and subdural administration of iohexol,51 Cr-EDTA, and 1251-albumin to rabbits.Am J Neurorodiol 1983,4:338-341.
    17 王怀经,Casley-Smith JR.经椎动脉的小脑淋巴前系统,解剖学报1990,21:225
    18 Casley Smith J R. Fine structural studies of the prelymphatic system of the brain and eye. Progressin lymphology, XI. International:Springel,1988.207~210.
    19 Brad bury M WB,Cserr HF,Westrop R J. Drainage of cerebral interstitial fluid into deep cervical lymph of the rabbit.Am J Paysiol,1981,240:F3 29-F3 36.
    20 Bouton M,Flessner M,Armstrong D,et al.Lymphatic drainage of the CNS :effects of lymphatic diversion/ligation on CSF protein transport to plasma.Am J Physiol,1997,272:R1 613-R1 619.
    21 Foldi M. Prelymphatic-lymphatic drainage of the brain. Am Heart J,1977,93:121~124.
    22 Brierley JB,Field EJ:The connexion of the spinal sub-arachnoid space with the lymphatic system. J Anot 1948,82:153-166.
    23 Kida S.Pantazis A.Weller RO:CSF drains directly from the subarachnoid space into nasal lymphatics in the rat.Anatomy, histology and immunological significance. Neuropathol Appl Neurobiol 1993,19:480-488.
    24 Miura M, Kato S, von Ludinghausen M:Lymohatic drainage of the cerebrospinal fluid from monkey spinal meninges with special reference to the distribution of the epidural lymphatics. Arch Histol Cytol 1998,61:277~286.
    25 Bozanovic-Sosic R. Mollanji R, Johnston MG:Spinal and cranial contributions to total cerebrospinal fluid transport. Am J Physiol Regul Integr Comp Physiol 2001, 281:R909-R916.
    26 Bouton M, Flessner M, Armstrong D, et al. Lymphatic drainage of the CNS effects of lymphatic diversion/ligationon CSF protein transport to plasma. Am J Physiol,1997,272:R1 613-R1 619.
    27 Cserr HF. Convection of brain interstitial fluid. In:Shapiro K, Marmarou A ed.Hydrocephalus. New York:Raven,1984.59-68.
    28 Boulton M, Armstrong D, Mohamed R, Flessner MF, Hay JB, and Johnston MG.Raised intracranial pressure increase CSF drainage through arachnoid villi and extracranial lymphatics.Am J Physiol Regul Integr Comp Physiol 275:R889-R896,1998.
    29 29. Silver I, Li B, Szalai JP, and Johnston MG. Relationship between intracranial pressure and cervical lymphatic pressure and flow rates in sheep. Am J Physiol Regul Integr Comp Physiol 277:R1 712~R1 717,1999.
    30 Weller RO, Engelhardt B, Phillips MJ. Lymphocyte targeting of the central nervous system:a review of afferent and efferent CNS immune pathways[J] Brain pathol.1996,6(3):275~288.
    31 Widner H, Moller G, Johansson BB:Immune response in deep cervical lymph nodes and spleen in the mouse after antigen deposition in different intracerebral site. Scand J Immunol 1988,28:563~571.
    32 Harling-Berg C, Knopf PM, Merriam J, Cserr HF:Role of cervical lymph nodes in the systemic humoral immune response to human serum albumin microinfused into rat cerebrospinal fluid. J Neuroimmunol 1989,25:185~193.
    33 Pillops MJ, Needham M, Weller RO:Role of cervical lymph nodes in autoimmune encephalomyelitis in the Lewis rat. J Pothol 1997,182:457~464.
    34 Weller RO:Pthology of cerebrospinal fluid and interstitial fluid of the CNS: significance for Alzheimer disease, Prion disorders and multiple sclerosis. J Neuropathol Exp Neurol 1998,57:885~894.
    35 Foldi M. The brain and the lymphatic system (2):morphologic effects of cervical lymphatic blockade [J]. Lymphology,1996,29:10~14.
    36 Foldi M. Pseudotumor cerebri [A]. Progress in Lymphology. Thiem Stuttgart,1966. 266-268.
    37 刘执玉,淋巴学[M].北京:中国医药科技出版社,1996.186-187.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.