北京北部水源地水化学特征及硫同位素变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文选取北京北部水源地(密云水库库区及其上游两大主要支流潮河、白河)作为研究对象,对照野鸭湖湿地、温榆河和北运河,利用该地区的水化学特征和硫同位素组成的变化来分析河水中溶解质的来源,计算岩石风化对硫元素的相对贡献率,以期反映该地区受自然和人为因素的影响,进而反映北京北部水源地对全球环境变化在一定时期内的响应。本文对研究区分丰水期和枯水期(2009年)进行水化学特征和硫同位素组成变化的分析后,可以得到如下主要结论:
     1、北京北部水源地水体的主要离子组成中,Ca2+和HCO3-是占绝对优势的离子,分别占阳离子和阴离子总量的52.2%和86.3%,其次是Mg2+和SO42-,分别占阳离子和阴离子总量的23.7%和7.7%。
     2、北京北部水源地水体主要阴离子和阳离子Piper图和Ca2++Mg2与HCO3-的当量曲线图都显示出北京该地区主离子组成主要受碳酸盐岩化学风化作用影响。
     3、根据Gibbs图分析,北京北部水源地水体属于“岩石风化类型”,有向“蒸发-浓缩类型”过渡的趋势。该流域离子组成受岩石风化作用的影响十分强烈而受大气降水的输入和蒸发-浓缩作用的影响相对较少。
     4、根据质量守恒原理,计算出大气输入对本研究区河水主要离子的直接贡献率分别为:Na+的10.63%,K+的46.76%,Mg2+的3.05%,Ca2+的7.76%,SO42-的35.77%。
     5、研究区丰水期δ34S特征值在4.9~10.7‰之间,平均值为7.9‰,其中密云水库库区及潮河、白河的δ34S特征值平均值分别为8.7‰、6.0‰、8.2‰,库区的δ34S特征值最高,潮河干流的δ34S特征值最小。根据质量守恒原理,计算出硫元素来源于硫酸盐岩的溶解比例为30.72%~42.47%;来源于硫化物氧化的比例为21.74%~33.49%;来源于大气输入的为35.77%。
In this paper we choose the water source area (Miyun Reservoir and its two tributary rivers of Chao River and Bai River) of northern Beijing as the research object,controlled with Yeyahu Lake Wetland,Wenyuhe River and Beiyunhe River,according to the hydro-chemistry characteristics of the research area and changes of sulfur isotopic composition characteristic values,we analyze the dissolved load sources, then calculate the rocks weathering and the relative contribution to sulfur, in order to reflect natural and regional effects on the research area, furtherly, to explain Miyun Reservoir's response to the global environmental change during a certain period of time. For time being of 2009, hydro-chemical and sulfur isotopic characteristics of wet and dry seasons are analysed to draw the conclusions below:
     1 Ca2+ and HCO3- are the dominant ions in northern Beijing's water source area, accounting for 52.2% and 86.3% of total cations and anions, following with Mg2+ and SO42- occupying 23.7% and 7.7% respectively.
     2.Piper diagram of anions and cations and equivalent curves of Ca2+ + Mg+ and HCO3- in the water source area of northern Beijing's water supply show that primary ions in the region is mainly affected by chemical weathering of carbonate rocks.
     3.According to Gibbs chart, the surface water in Beijing's water source area is "the type of rock weathering",it shows a transition trend to turn to "evaporate-concentrated type". Ionic composition of the river basin is effected by the weathering of rocks strongly and on the other hand, the effects of the input by precipitation and evaporation are relatively small.
     4.According to mass conservation principle, the direct contributions to the major ions in the river from the atmospheric input in the study area are Na+:10.63%;K+:46.76%;Mg2+ 3.05%; Ca2+:7.76%; SO42-:35.77%.
     5. Values of 834S ranged from 4.9‰to 10.7‰, with an average of 7.9‰in wet period..Average values ofδ34S in the study area,Chao River and Bai River are 8.7‰,6.0‰and 8.2‰,respectively. Miyun Reservoir has the highestδ34S values, while Chao River has the lowestδ34S values.According to the mass conservation principle, we know that 30.72% 42.47% sulfur comes form the sulfate dissolved rock,and 21.74%~33.49% sulfur comes from sulfide oxidation; 35.77% sulfur comes from the atmosphere input.
引文
Agnes Brenot, Jean Carignan, Christian France-Lanord, Marc Benoit.Geological and land use control on δ34S and δ18O of river dissolvedsulfate:The Moselle river basin, France. Chemical Geology,244 (2007) 25-41.
    Bruchert V. Physiological and ecological aspects of sulfur isotope fractionation during bacterial sufate reduction [J].Geological Society of America.Sulfur Biogeochemistry-Past and Present (Special Paper 379).Washington D C:Geological Society of America,2004,379:1-16.
    Claypool G.E., Holser W.T,,Kaplan I.R.,et al. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation [J].Chemical Geology,1980,28:199-260.
    Dominika Lewicka-Szczebak, Adriana Trojanowska, Wojciech Drzewicki, Maciej Gorka,Mariusz-Orion Je. drysek, Piotr Jezierski, Marta Kurasiewicz, Janusz Krajniak.Sources and sinks of sulphate dissolved in lake water of a dam reservoir:S and O isotopic approach. Applied Geochemistry 24 (2009) 1941-1950.
    Elderfield H.,Upstill-Goddard R.,Sholkovitz E.R.The rare earth elements in rivers,estuaries,and coastal seas and their significance to the composition of ocean waters [J].Geochimica et Cosmochimica Acta,1990,54:971-991.
    Gaillardet J.,Dupre B.,Louvat P.,et al.Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers [J].Chemical Geology,1999,159:3-30.
    Gianni Cortecci, Enrico Dinelli, Tiziano Boschetti, Paola Arbizzani,Loredana Pompilio, Mario Mussi. The Serchio River catchment, northern Tuscany:Geochemistry of stream waters and sediments,and isotopic composition of dissolved sulfate. Applied Geochemistry 23 (2008)1513-1543.
    Gibbs R.J.Mechanisms controlling world water chemistry [J].Geochimica et Cosmochimica Acta,1992,56:2099-2111.
    Gibbs R.J.Water chemistry of the Amazon River [J].Geochimica et Cosmochimica Acta,1972,36(9):1061-1066.
    Gordeev V.V.,Sidorov I.S.Concentrations of major elements and their outflow into the Laptev Sea by the Lena River [J].Marine Chemistry,1993,43:33-45.
    Goldstein S.J.,Jacobsen S.B.The Nd and Sr isotopic systematics of river-water dissolved material: Implications for the sources of Nd and Sr in seawater [J]. Chemical Geology,1987,66: 245-272.
    Hu M.,Stallard R.F.,Edmond J.M.Major ion chemistry of some large Chinese rivers [J].Nature,1982,298:550-553.
    Huh Y.,Panteleyev G.,Babich D,et al.The fluvial geochemistry of the rivers of Eastern Siberia:Ⅱ.Tributaries of the Lena,Omoloy,Yana,Indigirka,Kolyma,and Anadyr draining the collisional/accretionary zone of the Verkhoyansk and Cherskiy ranges [J].Geochimica et Cosmochimica Acta,1998,62:2053-2075.
    Huh Y.,Tsoi M Y,Zaitsev A.,et al. The fluvial geochemistry of the rivers of Eastern Siberia:Ⅰ.Tributaries of the Lena River draining the sedimentary platform of the Siberian Craton [J].Geochimica et Cosmochimica Acta,1998,62:1657-1676.
    Ivanov M V, Grinenko V A.1983.The Global Biogeochemical Sulphur Cycle.New York:John Wiley&Sons.470.
    Krouse H R, Grinenko V A.1991.Stable isotopes:natural and anthropogenic sulphur in the environment.Chichester:John Wiley&Sons.440.
    Longinelli A,Edmond J M.1983.Isotope geochemistry of the Amazon Basin-a reconnaissance.Journal of Geophysical Research,88:3703-3717.
    Meybeck M.Riverine quality at the Anthropocene:Propositions for global space and time analysis,illustrated by the Seine River [J].Aquatic Sciences,2002,64:376-393.
    Negrel P.,Allegre C.J.,Dupre B.,et al.Erosion sources determined by inversion of major and trace element ratios and strontium isotopic ratios in river water:The Congo Basin Case [J].Earth and Planetary Science Letters,1993,120:59-76.
    Palmer M.R.,Edmond J.M.Controls over the strontium isotope composition of river water [J].Geochimica et Cosmochimica Acta,1992,56:2099-2111.
    Reeder S.W.,Hitchon B.,Levinston A.A.Hydrogeochemistry of the surface waters of the Mackenzie river drainage basin,Canada:Ⅰ.Factors controlling inorganic composition [J].Geochimica et Cosmochimica Acta,1972,36:825-865.
    Sarin M.M.,Krishnaswami S.,Dili K.,et al.Majorion chemistry of the Ganga-Brahmaputra river system:Weathering processes and fluxes to the Bay of Bengal [J].Geochimica et Cosmochimica Acta,1989,53:997-1009.
    Spence J.,Telmer K.The role of sulfur in chemical weathering and atmospheric CO2 fluxes:Evidence from major ions,δ13CDIC,and δ34SSO4 in rivers of the Canadian Cordillera[J].Geochimica Cosmochimica Acta,2005,69(23):5441-5458.
    Stallard R.F., Edmond J.M. Geochemistry of the Amazon 1.Precipitation chemistry and the marine contribution to the dissolved load at the time of peak discharge [J].Journal of Geophysical Research,1981,86:9844-9858.
    Stallard R.F.,Edmond J.M. Geochemistry of the Amazon 2.The Influence of geology and weathering environment on the dissolved load [J].Journal of Geophysical Research,1983,88: 9671-9688.
    Tuli J K.2000.Nuclear wallet cards.Natural Nuclear Data Center.New York:Brookhaven National Laboratory.
    Xiao-dong LI,Harue M.,Masako O.,Minoru K.,Fumitaka Y. and Hai-ao ZENG.Contribution of atmospheric pollutants into groundwater in the northern Sichuan Basin,China.Geochemical Journal,2006(40):103-119.
    Yang C,Telmer K,Veizer J.1996.Chemical dynamics of the "St Lawrence" riverine system:δDH2O, δ18OH2O,δ13CDIC, δ34Ssulfate,and dissolved 87Sr/86Sr.Geochimica et Cosmochimica Acta,60:851-866.
    Zhang J.,Takahash K.,Wushiki H.,et al.Water geochemistry of the rivers around the Taklimakan Desert (NW China):Crustal weathering and evaporation processes in arid land [J].Chemical Geology,1995,119:225-237.
    北京市潮白河管理处.潮白河水旱灾害[M].北京:中国水利水电出版社,2004.5-14.
    陈静生.河流水质原理及中国河流水质[M].科学出版社,2006.16-17.
    陈静生,陶澎,邓宝山,等.水环境化学[M].北京:高等教育出版社,1987.69-76.
    陈静生,夏星辉,张利田,等.长江、黄河、松花江60—80年代水质变化趋势与社会经济发展的关系[J].环境科学学报,1999,19(5):500-505.
    陈骏,杨杰东,李春雷.大陆风化与全球气候变化[J].地球科学进展,2001,16(3):399-405.
    陈卫,胡东,付必谦.北京湿地生物多样性研究[M].北京:科学出版社,2007.
    陈圆,马钦彦,王玉涛等.北京密云水库及入库径流水化学特征分析[J].北京林业大学学报,2007,29(3):105-111.
    陈元君.北京市野鸭湖自然保护区湿地维管束植物多样性及其保护研究[D].北京林业大学硕士论文,2008.
    储雪蕾.北京地区地表水的硫同位素组成与环境地球化学[J].第四纪研究,2000,20(1):87-97.
    董文福,李秀彬.潮白河密云水库流域水资源问题分析[J].环境科学与技术,2006,29(2):58-60.
    方芳.城市湿地公园景观规划初探——以野鸭湖国家湿地公园总体规划为例[D].河南农业大学硕士论文,2009.
    高善明,张义丰.北京自然环境与都城变迁[M].北京气象出版社,2007.89-110.
    郭正鑫.基于GIS流域水质水量联合调控系统的实现与应用——以北京市温榆河为例[D].山东大学硕士论文,2009.
    韩贵琳,刘丛强.贵州乌江水系的水文地球化学研究[J].中国岩溶,2000,19(1):35-43.
    洪业汤,顾爱民,王宏卫,等.黄河硫同位素组成与青藏高原隆起[J].第四纪研究,1995,15(4):360-366.
    洪业汤,张鸿斌,朱泳煊,等,中国大气降水的硫同位素组成特征[J].自然科学进展,1994,4:741-745.
    洪业汤,张鸿斌,朱咏煊,等.中国煤的硫同位素组成特征及燃煤过程硫同位素的分馏[J].中国科学(B辑),1992,22(8):868-873.
    霍夫斯J.稳定同位素地球化学[M].北京:科学出版社,1976.108-109.
    蒋颖魁,刘丛强,陶发祥.贵州乌江水系河水硫同位素组成特征研究[J].水科学进展,2007,18(4):558-565.
    蒋颖魁,刘丛强,陶发祥.贵州乌江水系枯水期河水硫同位素组成特征研究[J].地球化学,2006,35(6):623-628.
    刘丛强,等.生物地球化学过程与地表物质循环—西南喀斯特流域侵蚀与生源要素循环[M].北京:科学出版社,2007.127-194.
    刘萍.北京野鸭湖湿地自然保护区膜翅目群落多样性及其动态分布的研究[D].首都师范大学硕士论文,2008.
    穆森.野鸭湖湿地信息系统的设计与实现[D].首都师范大学硕士论文,2008.
    童保铭.北运河水系河流水质时空变化及驱动力研究[D].首都师范大学硕士论文,2009.
    王宝娟,胡东,刘晓燕,陈卫.北京市野鸭湖湿地植物区系分析[J].首都师范大学学报(自然科学版),2004,25:53-54.
    王庆锁,梅旭荣,张燕卿等.密云水库水质研究综述[J].中国农业科技导报,2009,11(1):45-50.
    王颖,宫辉力,赵文吉,等.北京野鸭湖湿地资源变化特征[J].地理学报,2005,60(4):656-664.
    夏学齐,杨忠芳,王亚平,等.长江水系河水主要离子化学特征[J].地学前缘,2008,15(5):194-202.
    徐志方.西江流域环境河水地球化学研究[D].中国科学院地质与地球物理研究所博士论文,2002.
    薛彦山,季宏兵,江用彬.黔中小流域水体C、S同位素特征及主要风化过程.[J].地球化学,2009,38:262-272.
    乐嘉祥,王德春.中国河流水化学特征[J].地理学报,1963,29:1-12.
    叶宏萌,袁旭音,葛敏霞,等.太湖北部流域水化学特征及其控制因素[J].生态环境学报,2010,19(1):23-27.
    于一雷,王庆锁.密云水库及其主要河流入库河段水质的季节变化[J].中国农业气象,2008,29(4):432-435.
    章丽萍.温榆河微污染水水质改善技术研究[D].北京矿业大学博士论文,2009.
    张志锋,宫辉力,赵微,张铁楼.基于3S技术的北京野鸭湖湿地资源的动态变化研究[J].遥感技术与应用,2003,18(5):291-296.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.