连栽桉树人工林植物多样性与生态系统功能关系的长期实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桉树是桃金娘科(Myrtaceae)桉属(Eucalyptus)树种总称,有795种(其中变种和亚种114种),它具有种类多、干形好、生长快、产量高、耐瘠薄、抗性强、适应性广、用途多、经济价值高等优良特性,至今有96个国家引种桉树,桉树人工林面积已突破2000万hm~2,成为热带亚热带地区极为重要的速生造林树种。
     中国引种桉树有110多年的历史,全国种植桉树的省(区)有17个,涉及600多个县,成为我国南方最重要的速生造林树种之一。全国桉树人工林面积在200万hm~2以上,在华南地区,有60-70%的桉树人工林属于短周期人工林,其中50-60%的林地采取连栽方式。随着桉树人工林的大发展和连栽制度的全面推行,桉树人工林的生态脆弱性进一步凸现,“桉树争论”愈演愈烈,桉树发展已成为社会广泛关注的焦点。要做到人工林既有高生产力,又维持生物多样性,是当代生态学所要解决的迫切任务,也是一个重大的科学难题。
     生物多样性与生态系统功能是国际生态学界关注的重大科学问题,也是桉树人工林发展过程中出现的突出问题中的核心和关键,至关桉树人工林的可持续经营和生态环境的可持续发展。国际国内林学和生态学界对此开展了大量的研究,然而,对于桉树人工林生态系统中生物多样性与生态系统功能关系尚缺乏长期实验研究。本项目从1998年开始立项研究,旨在通过对尾巨桉不同连栽代数的林地上开展生物多样性与生态系统功能的长期实验研究,揭示桉树人工林植物物种多样性与生态系统中林木生长、生产力、养分循环、养分利用效率、地力保持、群落稳定性和可持续性之间的关系,为解决桉树人工林高生产力与高多样性维持之间的矛盾提供科学理论依据,为桉树人工林持续经营提供指导。毫无疑问,本项目的开展对推动我国生物多样性与生态系统功能关系研究的发展以及桉树人工林基地的生产经营从理论和生产实践上均有重要的指导作用;对生态环境建设和区域经济发展亦有重要的意义。
     在1998至2005的长期实验研究的基础上,本研究的主要结果和结论如下:
     采用长期定位研究方法,对不同连栽代数尾巨桉人工林的生长发育规律和结构特点进行了8年的研究,结果表明:在一个经营周期内(1-7年),尾巨桉林木胸径生长和材积生长具有两次生长高峰,第1次高峰出现在第2年,第2次高峰出现在第5年,胸径生长以第1峰为主,而材积却以第2峰为主,胸径生长和材积生长存在明显的“峰一峪”变化;树高生长仅表现出一次生长高峰(在第2年);材积的平均生长量与连年生长量曲线相交于第5年。提出了将尾巨桉人工林分为幼树阶段、幼龄林阶段、中龄林阶段和成熟林阶段共四个发育阶段的理论和标准。尾巨桉人工林的直径和树高结构随年龄的变化遵循人工纯林的一般规律,但其幼龄林的直径和树高分布曲线的偏度存在明显的右偏,表明尾巨桉具有显著的早期速生特性;尾巨桉人工林冠层结构单一,叶面积指数低,1代林低于2代林。经对实验结果的差异显著性分析,得出1代林和2代林的直径生长、树高生长和材积生长均无显著差异而树冠结构存在显著差异的结论。连栽对尾巨桉2代林生长无显著影响。
     长期定位实验研究表明,尾巨桉成熟林分(7.3年)的蓄积生产力水平为20-21m~3/hm~2·a,生物生产力水平约为19t/hm~2·a。对1代林和2代林的生物量和生产力进行差异显著性检验表明,连栽对2代林的生物量和生产力没有显著影响。树干、树皮、树枝和根系的生物量和生产力均随着林分年龄的增长而增加,只有树叶的生物量和生产力表现为先增加后减少的规律。林分生长后期,根系和树叶生物量增长缓慢甚至出现负增长影响了林分后期生产力的持续性。连栽具有增加树皮、树枝和树叶生物量比例的趋势。连栽导致林下植被生物量和生产力的显著下降,2代成熟林下植被生物量和生产力比1代林下降70%;从幼龄林(2-3年)到成熟林(6-7年),1代林下植被的生物量和生产力表现为缓慢的持续增长趋势,而2代林却表现为逐渐递减趋势。
     采用长期定位实验研究方法,对不同连栽代数桉树人工林的物种多样性、土壤种子库及物种多样性维持机制进行了研究。结果表明,桉树连栽导致人工林植物多样性减少,2代林的物种丰富度和Shannon-Wiener指数分别比1代林减少39.39%和17.76%。群落的β多样性中,1代林的Jaccard系数和Cody指数均显著高于2代林;代内群落的相似性系数高,为60%左右,而代间群落的相似性系数低,为30%左右,表明连栽引起大量物种丢失。桉树人工林连栽不仅导致群落物种多样性降低,而且改变了群落的物种组成及特征。对成熟林比较,不同连栽代数群落的生活型谱存在明显差异,第1代林以藤本高位芽和矮高位芽植物为主,2代林则以地上芽植物和矮高位芽植物为多;1代林的k-对策种和r-对策种分别为64.79%和35.21%,2代林则分别是51.02%和49.98%,连栽使草本植物、地上芽植物和r-对策种的数量增加,木本植物和k-对策种的数量减少。对土壤种子库的研究表明,不同连栽代数土壤种子库储量及多样性变化与地上植物多样性的变化规律基本一致。土壤中种子库和营养体对物种多样性维持有重要作用,提出了桉树人工林群落物种多样性维持机制的初始植物繁殖体组成假说。在一个经营周期内(6-7年),桉树人工林维持的植物多样性的高低取决于初始植物繁殖体组成的丰富程度,高强度干扰(如炼山和机耕全垦整地)的连栽制度使某些高竞争力的物种或仅以种子(果实)传播的物种丧失,造成下一代林地初始植物繁殖体组成多样性的降低,从而使连栽林地的物种多样性逐代减少。土壤种子库的研究结果支持了这一假说:
     采用长期实验和常规养分分析相结合的研究方法,对不同连栽代数尾巨桉人工林的植物养分元素含量、积累、分配、养分循环及地力效应进行了研究。结果表明,尾巨桉属于Ca>N>K>Mg>P型树种,有强烈的聚集Ca的作用。尾巨桉林分具有养分累积快速、养分循环存留率高(约占94%)、归还率低(约占6%)的特点,5种营养元素(N、P、K、Ca、Mg)的总循环率为40.40-41.81%;在元素的生物循环中,以N和P的生物循环率最高,其次是K和Mg,Ca的生物循环率最低。尾巨桉具有极低的养分消耗率,平均每生产1t干物质所需5种养分的数量为5kg左右,生产1t干材只需要2kg养分,可是,由于它的高产性使得它对林地土壤养分的利用和消耗又是巨大的。连栽对2代林乔木层养分的吸收和积累没有构成明显影响。但是,连栽对林下植物的养分积累构成显著影响,使2代林下灌木层和草本层植物的养分积累量减少115%和85%,造成乔木层与林下植物的养分积累比例严重失衡。连栽具有降低土壤容重,提高土壤孔隙度和通气度,增强土壤持水能力的作用,但这种作用并不能持续,一般只能维持3-4年;连栽对土壤养分存在着正效应和负效应,以负效应为主;连栽导致0-20cm土层的土壤养分全面下降,其中Ca和Mg的下降最为明显;连栽还使土壤的pH值减少,导致土壤酸化。
     在对36块100m~2实验样地中植物组成、生物量、养分等进行全面调查研究的基础上,采用3种多样性指标和4种生态系统功能指标,对植物多样性与生态系统功能关系进行了研究。结果表明,物种多样性与林木器官生物量关系较弱,只有吸收根特别例外,它与3种多样性指标均存在显著或极显著的负相关,表明随着林下植物多样性的增加林木吸收根生物量显著降低。和乔木层不同,植物多样性有利于增加林下植物的生物量和生产力。植物多样性对乔木层、灌木层和草本层植物的5种养分元素(N、P、K、Ca和Mg)的利用效率具有显著作用,3种多样性指数与乔木层N、P、K和Ca的养分利用效率呈紧密或极紧密的正相关,而与Mg元素为显著的负相关;多样性有利于提高乔木层N、P、K和Ca的养分利用效率,而降低Mg的利用效率。物种丰富度与灌木层植物的养分利用效率存在极显著的正相关,但在草本层只与K元素的养分利用效率相关紧密,与其它元素相关不紧密。物种丰富度增加养分利用效率。物种多样性高的群落,林下物种恢复力、植被盖度恢复力、植被生物量恢复力和土壤养分恢复力均较高,物种多样性有利于提高群落的抵抗力和恢复力,增强稳定性。由于连栽制度采取的强度干扰方式对群落的稳定性构成显著影响,直接威胁桉树人工林生态系统的物种多样性和土壤肥力的可持续性。在全面分析物种多样性与生态系统功能关系的基础上,提出了短周期工业人工林培育的一种新理论——资源空间分类经营理论,这将在理论上有效地解决人工林高生产力与高多样性的矛盾,实现人工林高生产力与高多样性的统一。
Eucalypts belongs to the Myrtaceae family, Eucalyptus genus, with 795 species (including 114 subspecies and varieties). Eucalyptus is the genus of trees is most planted around the world because of its large number of species, fast-growing, high-yield, the ability to adapt to many different sites, and the possibilities of producing wood for many different uses. Up to now, there are 96 countries planted eucalypt, and there are at least 20 million ha of areas of planted eucalypt. Remarkably, eucalypts have become the most widely planted hardwood species in the world.
     Eucalypts were introduced into China in 1890. Up to now, more than 300 species have been introduced in more than 600 counties of 17 provinces, among the species introduced, 200 species have been tried in afforestation, but only about 10 species were widely planted. Over 2 million of Eucalypts plantations have been established in China. Eucalypts plantation of 60-70% in Southern China belonged to short-rotation forest plantation, in which 50-60% of stand sites had been carried out continuous planting system. With the increasing areas of Eucalypts plantations established and carrying out on continuous planting throughout the country, the environmental problems of eucalypt plantations (include impacts on soil water, soil nutrients, soil erosion and biodiversity) are more and more serious, the "Eucalyptus controversy" has become an important issue in the tropics and subtropics. The developing eucalypt plantation has been a focus of the society's attention. To make high-yield and high-diversity of eucalypt plantations, it is an important task of ecology and a major scientific issue too.
     The relationship between biodiversity and ecosystem functioning has emerged as a major scientific issue today, a key problem for the sustainable management of eucalypt plantation and sustainable development of the ecological environment. Although the relationship between biodiversity and ecosystem function have been widely studied in recent decades in the world, the multi-rotation continuous planting eucalypt plantations ecosystem have not been studied. This study began at 1998, the . objectives of this study are to examine the relationship between plant species diversity with eucalypt tree growth, productivity, nutrient cycling, nutrient use efficiency, site productivity maintenance, community stability and sustainability in eucalypt plantations, by carrying out a long-term experiment in the different rotations of eucalypt plantations, and at the same time, provide a theory and guidance for high yield and high species diversity maintenance and sustainable management in eucalypt plantations. This study, without a doubt, plays an important role in the sustainable development of eucalypt plantations.
     Based on the long-term experiment research from 1998 to 2005, the study has main results and conclusions are as follows:
     By the methods of long-term experiment research, this paper studied the law of growth and development, characteristics of forest structure in Eucalyptus grandis×Eucalyptus urophylla (EGEU) plantations in different rotation stands from 1998 to 2005. The results indicated that the diameter breast height (DBH) and volume increment of eucalypt plantations have 2 growing-peak periods during a period of 1998-2005, the first is after planted 2 years, the second is after planted 5 years, the highest growing period of tree diameter and volume of the plantation was 2 years old and 5 years old, respectively. Both increment change obviously in peak and low during the period of 1998-2005. Eucalypt tree height growth has only one peak during the period of 1998-2005, at after planted 2-year. The curve of volume average increment and current increment was across at after planted 5-year. Based on the study, the growth and development of eucalypt plantation were classified a sapling stage, young stand stage, half-mature stand stage and mature stand stage. The change of diameter and tree height structure of eucalypt plantations with stands age follow the general law of pure forest, but the shewnees of curve of stand diameter distribution and tree height distribution in young stand stage were obviously to right side due to early fast growth of EGEU. The canopy structure of EGEU plantations was simple, LAI also wais low, and the first rotation stand was lower than that of second rotation stand. T-test results showed that there was significant difference in canopy structure (LAI: t=-4.348,α=0.0001; MFIA: t=-2.603,α=0.019) between first rotation and second rotation forest, but DBH increment (t=0.044,α=0.965), height increment (t=-0.280,α=0.781) and volume increment (t=-0.262,α=0.795) was not significant. It is indicated that continuous planting system was not significant effect on growth of the second rotation of eucalypt plantation.
     The study showed that EGEU is a tree of high-productivity, its average volume productivity and productivity in mature stands (7.3 years) is 20-21m~3/ha·a and 19t/ha·a, respectively. T-test results showed that there was not significant difference in biomass (t=-0.011,α=0.991) and productivity (t=0.077,α=0.940). It is indicated that continuous planting system was not significant effect on biomass and productivity of the second rotation of eucalypt plantation. Biomass and productivity of bole stem, bole bark, branch and root in eucalypt plantations increased with the increasing of stand ages, but leaf increased in the young stand stage and decreased in half-mature stand stage and mature stand stage. At the mature stand stage, the biomass of root and leaf increased slowly even though appeared negative growth that influenced the sustainability of productivity of eucalypt plantation. The biomass ratio of bole bark, branch and leaf increased tendency by influenced continuous planting. Continuous planting of Eucalyptus plantations resulted in a significant reduction in biomass and productivity of understory vegetation. The biomass and productivity of understory vegetation in second rotation stand was less 70% than that in first rotation stand. The biomass and productivity of understory vegetation in first rotation stand appeared an increasing tendency, but decreasing tendency in second rotation stand from voung stand stage (2-3 ages) to mature stand stage (6-7 ages).
     Continuous planting of Eucalyptus plantations resulted in a significant reduction in plant species diversity, species richness and Shannon-Wiener index in second rotation stand was less 39.39% and 17.76% than that of first rotation stand. Jaccard index and Cody index of first rotation stand significantly was higher than the second rotation inβ-diversity measures of the community. Coefficient of similarity in community was higher within-rotation (60%) and lower inter-rotation (30%) in eucalypt plantations. It is indicated that the continuous planting of eucalypt plantation resulted in many species loss. Continuous planting not only decreased the species diversity but also changed the composition of species, life-form, growth-form in community and plant life-history strategy. The multi-rotation continuous planting of Eucalyptus plantations is advantageous to herbaceous and r-strategy species and disadvantageous to woody plants and k-strategy species, and thus understory vegetation tends to be dominated by light-demanding grasses. With the increased stand age, woody plant cover, herbaceous cover, plant richness (S), Shannon-Wiener index (H'), Simpson index (D) in both rotations increased or recovered, but their recovering rate was obviously different. The woody plant cover, herbaceous cover, S, FT and D in first rotation stand restored more quickly than those of second rotation stand, and the early stage of stand restored faster than the late stage. Although such differences between 1st rotation and 2nd rotation stand become smaller over the stand age, the understory diversity in Eucalyptus plantations may not be sustainable because the understory vegetation in plantations can not be restored the same level of understory vegetation in the pre-rotation. The change regulation of soil seed bank in different rotations was a similar with understory vegetation. Continuous planting resulted in reduction of soil seed bank reserves and density. Soil seed bank and vegetative propagation in the soil is a basis of species diversity maintaining in industrial Eucalyptus plantation. Therefore, a new hypothesis, initial plant diaspora, on the maintaining mechanism of species diversity in eucalypt plantation was put forward. In a rotation of management, species richness in industrial plantation is determined by initial plant diaspora in the soil due to few seeds are introduced to the soil seed-bank in a rotation. The species with high-competed or only with seed (fruit) dispersal was lost by strong disturbance (e.g., the clearing site by burning, the soil preparation by mechanically ploughed) that resulted in reduction of initial plant diaspora in the next rotation stand (land). Therefore, the species richness of the continuous planting forest floor decreased in rotation by rotation.
     This study indicated that nutrient structure of EGEU belongs to a tree species of Ca>N>K>Mg>P, with strong concentrated Ca in mature individual. The order of tree parts for N, P, K, Mg concentration was the same, leaf>bole bark>branch> root > bole stem, Ca-concentration was very different, followed bole bark > leaf> branch >root >bole stem. Five nutrient elements concentrations, generally, increased with increasing continuous planting rotation, and decreased with increasing with tree age in N, P, K concentration, and increased with increasing tree age in Ca and Mg concentration. EGEU plantation was characterized as a fast of nutrient accumulation, high of nutrient retention ratio (account for 94%) and low of nutrient return ratio (account for 6%). Five nutrient elements (N, P, K, Ca and Mg) bio-cycle ratio of EGEU plantation was 40.40-41.81%. The bio-cycle ratio of N and P was the highest in the nutrient cycle of EGEU plantation, K and Mg was the middle, and Ca was the lowest. The nutrient utilized per biomass of EGEU plantation was lower, to produce per 1t biomass needed to utilize nutrient 5kg including N, P, K, Ca and Mg, and to produce per 1t bole wood only needed to utilize nutrient 2kg above nutrient. Although nutrient utilized per biomass of EGEU plantation was lower, the total biomass of EGEU plantation was higher and hence, the nutrient consumption of eucalypt plantation was higher too. The study results also showed that continuous planting system was not significant effect on nutrient accumulation of the second rotation of eucalypt plantation. On the contrary, continuous planting system was significant effect on nutrient accumulation of shrub layer and herbaceous layer. The nutrient accumulation of shrub layer and herbaceous layer in the second rotation eucalypt plantation was less 115% and 85% than that in first rotation eucalypt plantation. Continuous planting has the effects of decreasing soil bulk density, increasing soil porosity and aeration and retained water in eucalypt plantation, but these effects was not sustainable and generally maintenance 3-4 years after planted. Continuous planting has a positive effect and negative effect, but negative effect was more obviously. Continuous planting resulted in a significant reduction of soil nutrient of 0-20cm soil layers, in which Ca and Mg decreased the most obviously. Continuous planting of eucalypt plantation also decreased soil pH and resulted in soil acidification.
     Based on measuring the species composition, biomass and nutrient etc. in the 36 plots (each 100m2), the relationship between plant species diversity and ecosystem function has been researched using three measures of species diversity, and four measures of ecosystem function. The results showed that a relationship between species diversity indices and biomass of tree parts of eucalypt plantation was not close, but species diversity indices with biomass of absorbing root (diameter is less 0.6cm) were closely and extreme closely negative relation. It is indicated that the biomass of absorbing root decreased significantly with increasing of species diversity of understory vegetation. Plant species diversity effected significantly on the biomass of shrub layer and herbaceous layer, and species diversity increased a biomass and productivity of understory vegetation. Plant species diversity effected significantly on the nutrient use efficiency (NUE) of tree layer, shrub layer and herbaceous layer. However, different layer of community and nutrient element were different in relationship between species diversity and NUE. Species richness, Shannon-Wiener index and evenness index with NUE of N, P, K and Ca of tree layer were a positive relation of significance and extremely significance, but Mg was a significant negative relation. The result showed that species diversity improved the NUE of N, P, K and Ca of the tree layer, and decreased the NUE of Mg of the tree layer. The study also found that species richness with NUE of plant species of shrub layer were a positive relation of extremely significance. Except for species richness with K element was a closely relation in the herbaceous layer, another were not closely relation. Species richness increased the NUE of plants. The species richness of the community was higher, the species resilience, vegetation covering resilience, biomass resilience and soil nutrient resilience was higher. Species diversity was advantageous to improve a resistance and resilience of community and strengthen community stability. Due to strong disturbance with continuous planting of eucalypt plantation effected obviously on the community stability that threaten a sustainability of species diversity and soil fertility in eucalypt plantation ecosystem. Therefore, a new hypothesis, resource and space classifying management, on the maintaining mechanism of high species diversity and high productivity in eucalypt plantation were put forward.
引文
1.林林.林业处在转折点.林业问题.1988,(1):18-23
    2.李周,谢京湘.国内外发展速生丰产林的比较研究.林业经济,1992(2):29-33
    3.沈国舫主编.森林培育学.北京:中国林业出版社,第二次印刷.2002.413-416
    4.张守攻,张建国.我国工业人工林培育现状及其在林业建设中的战略意义.中国农业科技导报,2000,2(1):32-35
    5.温远光,刘世荣,陈放.桉树工业人工林的生态问题与可持续经营.广西科学院学报,2005.21(1):13-18
    6.温远光等.广西桉树工业人工林的生态问题及对策研究.2005年广西专家论坛·广西林业可持续发展研究专题.广西壮族自治区科学技术协会,2005.1-18
    7. FAO. State of the World's Forests. FAO, Rome, 1997. 200pp
    8. www.fao.org, 2005
    9.王豁然等译.桉树栽培与利用.北京:中国林业出版社.1990
    10. Ahmad T. Eucalyptus in Pakistan. Edited by Kashio K, White. Reports Submitted to the Regional Expert Consultation on Eucalyptus-Volume Ⅱ, FAO Regional Office for Asia and the Pacific(RAP), Bangkok, Thailand, 1996
    11. FAO (Food and Agriculture Organization of the United Nations). Eucalypts for Planting. FAO Forestry Series No.11. FAO, Rome.1979
    12. Tumbull,. Eucalypt plantations. New Forests. 199917:37-52
    13.祁树雄主编.中国桉树.北京:中国林业出版社.2002
    14. Edgard Campinhos JR., Sustainable planatations of high-yield Eucalyptus trees for production of fiber: the Aracruz case. New Forests. 1999. 17:129-143
    15. Tumbull, J.W., (Ed.). Eucalypts in Asia. Proceedings of an international conference held in Zhanjiang, Guangdong, Peoples'Republic of China, 7-11 April 2003. ACIAR Proceedings No.111.
    16.FAO,世界森林资源状况.联合国粮食及农业组织,罗马.2001.
    17.孙长忠,沈国舫,李吉跃等.我国主要树种人工林生产力现状及潜力的调查研究:桉树、落叶松及樟子松人工林生产力研究[J].林业科学研究,2001.14(6):657-667.
    18. Luangviriyasaeng, V., Eucalyt Planting in Thailand. Turnbull, J.W., (Ed.), 2003. Eucalypts in Asia. Proceedings of an international conference held in Zhanjiang, Guangdong, Peoples'Republic of China, 7-11 April 2003. ACIAR Proceedings No.111.28-31.
    19. Le Dinh Kha, Ha Huy Thinh and Nguyen Viet Cuong, Improvement of Eucalypts for Reforestation in Vietnam. Turnbull, J.W., (Ed.). 2003. Eucalypts in Asia. Proceedings of an international conference held in Zhanjiang, Guangdong, Peoples'Republic of China, 7-11 April 2003. ACIAR Proceedings No.111.71-81.
    20. Subhani, K.M., Chaudhry, M.R., Iqball, M., Eucalypt Planting on Salt-Affected and Waterlogged Soils in Pakistan. Turnbull, J.W., (Ed.). 2003. Eucalypts in Asia. Proceedings of an international conference held in Zhanjiang, Guangdong, Peoples'Republic of China, 7-11 April 2003. ACIAR Proceedings No.111.193-197.
    21. Marien, J.N. Clonal forestry in Morocco: Propagation and maturation problems, pp. 126-132. In: Schonau, A.P.G. (Ed) Proceedings of the International Union of Forestry Research Organisations Symposium on Intensive Forestry: The Role of Eucalypts. South African Institute of Forestry, Pretoria. 1991
    22. Jayawickrama, K.J.S., Schlatter, V.J.E. and Escobar, R.R. Eucalypt plantation forestry in Chile. Aust. For.1993.56: 179-192.
    23. Borralho, N. Around the world: Portugal. Commonw. For. Rev. 1990.69: 18-19.
    24. San Miguel, A. Short rotation biomass plantations, pp. 540-579. In: Hummel, F.C., Palz, W. and Grassi, G. (Eds) Biomass Forestry in Europe: A Strategy for the Future. Elsevier Applied Science, London. 1988.
    25. Shiva V, et al., Social, economic and ecological impact of social forestry in Kilar. Indian institute of management, Banglore. 1981.
    26.FAO,桉树的生态作用.联合国粮食及农业组织,罗马,1985
    27. Lembke, C.A., N.Z. Forest products limited turns to eucalypt. Aust. For. Ind. J., 1977.43(7): 27.26-31.
    28. Revell, D.H., Silviculture of eucalypts: New Zealand experience. Proc. ANU/IWS Workshop on wood: Future Growth and Conversion. Eds E. P. Bachelard and W. E. Hillis. 1981.116-122.
    29. Masatoshi Endo. Forestry land registration in the southern China. In: Wei R.P., and Xu D.P.(Ed.) Euclayptus Plantations-Research, Management and Development. World Scientific. Singapore·New·Jersey·London·Hong Kong, 2003.64-75
    30. National Forest Inventory, National plantation inventory tabular report-March 2002. Canberra, Bureau of Rural Sciences.
    31. Anonymous. Around the world: Chile. Commonw. For. Rev. 1990.69: 212.
    32. Masatoshi, Endo., Forestry Land Reristration in the Southern China. 64-76. In: Wei R.P., and Xu D.P.(Ed.) Euclayptus Plantations-Research, Management and Development. World Scientific. Singapore·New·Jersey·London·Hong Kong, 2003
    33. Qi Shuxiong. Brief introduction of Eucalypt cultivation and utilization in China. In: Wei R.P., and Xu D.P.(Ed.) Euclayptus Plantations-Research, Management and Development. World Scientific. Singapore·New·Jersey·London·Hong Kong, 2003, 37-41
    34.中国可持续发展林业战略研究项目组.中国可持续发展林业战略研究战略卷.北京:中国林业出版社,2003
    35.袁建立,王刚.生物多样性与生态系统功能:内涵与外延.兰州大学学报(自然科学版),2003.39(2):85-89
    36.WRI(世界资源研究所)等.中国科学院生物多样性委员会译.全球生物多样性策略.北京:中国标准出版社,1993
    37.钱迎倩和马克平.生物多样性研究的原理与方法.北京:中国科学技术出版社.1994
    38.马克平.论生物多样性的概念.生物多样性.1993.1(1):20-22
    39.彭少麟和黄忠良.生产力与生物多样性之间的相互关系研究概述.生态科学.2000.10(1):1-9
    40.孙儒泳.《动物生态学原理》.(第3版).北京:北京师范大学出版社,2001.394-404.
    41. May R.M. How many species inhabit the Earth? Scientific American. 1992
    42. McNeely J Aet al., Conserving the World's Biological Diversity. Washington D C. and Gland, Switzerland. 1992
    43. Wilson E.O. The current state of biological diversity. In E.O. Wilson and Francis M Peter (eds.) Biodiversity, National Academy of Press. Washington, D.C.,1988,3-18.
    44. Wilson E.O. Integrated science and the coming century of the environment. Science, 1998, 279:2048-2049
    45. Tansley A.G. The use and abuse of vegetational concepts and terms. Ecology, 1935.16,284-307.
    46.蔡晓明.《生态系统生态学》.北京:科学出版社,2000.1-331.
    47.孙儒泳,李庆芬,牛翠娟,娄安如.基础生态学.北京:高等教育出版社,2002.1-325.
    48.李慧蓉.生物多样性和生态系统功能研究综述.生态学杂志,2004.23(3):109-114.
    49.Costanza R. The value of the world's ecosystems services and natural capital. Nature, 1997.387: 233-240.
    50.李文华和赵景柱.《生态学研究回顾与展望》.北京:气象出版社,2004
    51.张全国和张大勇.生物多样性与生态系统功能:进展与争论.生物多样性,2002.10(1):49-60.
    52. Kaiser J.,Rift over biodiversity divides ecologists. Science, 2000. 289:1282-1283.
    53. Loreau M, Naeem S, Inchausti P et al., Biodiversity and ecosystem functioning: current knowledge and future challenges. Science, 2001. 294: 804-808.
    54. Cameron, T. 2002: The year of the "diversity-ecosystem function" dbate. Trend in Ecology and Evolution, 2002.17:495-496
    55. Tilman D. Biodiversity: population versus ecosystem stability. Ecology, 1996.77:350-363.
    56. Tilman D. The ecological consequence of changes in biodiversity: a search for general principles. Ecology, 1999.80:1455-1474.
    57. Tilman D., and Downing J.A. Biodiversity and stability in grasslands. Nature, 1994.367:363-365.
    58. Tilman D., Knops J., Wedin D., et al.,. The influence of functional diversity and composition on ecosystem processes. Science, 1997.277:1300-1302
    59. Tilman D. Lehman C L. and Thomson K.T., Plant diversity and ecosystem productivity: Theoretical considerations. Proc Natl Acad Sci, USA, 1997.94:1857-1861
    60. Tilmang D., Lehman C. and Bristow C. E., Diversity stability relationships statistical inevitability or ecological consequence. American Naturalist, 1998.151:244-282.
    61. Lawton J. H., What do species do in ecosystem? Oikos, 1994.71:367-374.
    62. Lawton J. H., The theory and practice of the science of biodiversity: a personal assessment. In: Kato M.(ed.), The Biology of Biodiversity. Springer, Berlin, 2000.107-131.
    63. Naeem S., Species redundancy and ecosystem reliability. Conservation Biology, 1998.12:39-45.
    64. Naeem, S. and Li, S. Biodiversity enhances ecosystem reliability. Nature, 1997.390: 507-509.
    65. Naeem S. and Li S., Consumer species richness and autotrophic biomass. Ecology, 1998.79:2603-2615.
    66. Naeem S., Tompson L J., Lawler S P. et al., Declining biodiversity can alter the performance of ecosystems. Nature, 1994.368:734-737.
    
    67. Naeem S.,Hahn D R., and Schuurman G, Producer decomposer co-dependency in fluences biodiversity effects. Nature, 2000.403:762-764.
    
    68. Huston M A, Hidden treatments in ecological experiments: re-evaluating the ecosystem function of biodiversity. Oecologica, 1997.110:449-460.
    
    69. Huston M A, Aarssen L W, Austin M P., et al., No consistent effect of plant diversity on productivity. Science, 2000.289:1255a.
    
    70. Grime J P., Biodiversity and ecosystem function: the debate deepens. Science, 1997. 277: 1260-1261.
    
    71. Wardle D A, A more reliable design for biodiversity study? Nature, 1998.394:30.
    
    72. Wardle D A, Is sampling effect a problem for experiments investigating biodiversity ecosystem function relationships? Oikos, 1999.87:403-407.
    
    73. MacArthur R H, Fluctuations of animal populations and a measure of community stability. Ecology, 1955.36:533-536.
    
    74. Elton C S, 1958. The ecology of invasions by animals and plants. Methuen, London, England.
    75. Pimn S L, The complexity and stability of ecosystems, Nature, 1984.307:321-326.
    76. May R M, What is the chance that a large complex system will be stable? Nature, 1972. 237:413-414.
    
    77. McNaughton S J, Serengeti grassland ecology: the role of composite environmental factors and contingency in community organization. Ecological Monographs, 1983.53:291-320.
    78. King A W, Pimn S L,Complexity, diversity and stability: are conciliation of empirical and theoretical results. American Naturalist, 1983.122:229-239.
    79. Doak D F, Bigger D, Harding E K, et al., The statistical inevitability of stability -diversity relationship in community ecology. AmericanNaturalist,1998.151:264-276.
    80. Michel Loreau and Narayan Behera, Phenotypic diversity and stability of ecosystem process. Theoretical Population Biology, 1999.56(1):29-47.
    81. Joel E Cohen and Charles M Newman, When will a large complex system be stable? J. Theor. Biol.,1985.113:153-156.
    82. Loreau M, Biodiversity and ecosystem functioning: A mechanistic model. Process Naturalist Academic Science USA, 1998.95:5632-5636.
    83. Peterson G and Allen C R, Ecological resilience, biodiversity and scale. Ecosysterems, 1998.1:6-18.
    84. Anke Jentsch et al.,Scale, the dynamic stability of forest ecosystems, and the persistence of biodiversity. Silva Fennica, 2002.36(1):393-400.
    85. Ruth J M itchell, Martin H D Auld, Michael et al., Ecosystem stability and resifience: are view of their relevant for the conservation management of low land heaths. Urban and Fischer Verlag, 2000.3(2):142-160.
    86.黄建辉和韩兴国.生物多样性和生态系统稳定性.生物多样性,1995.3(1):31-37.
    87. Volker Grimm, Christian Wissel, Babel, or the ecological stability discussions: an inventory and analysis of terminology and a guide for avoiding on fusion. Oecologia, 1997. 109: 323-334.
    88.彭少麟.森林群落稳定性与动态测度.广西植物,1987.7(1):67-72.
    89.刘增文,李雅素.生态系统稳定性研究的历史与现状.生态学杂志,1997.16(2):58~61
    90.郑元润.森林群落稳定性研究方法初探.林业科学,2000.36(5):28~32.
    91.邬建国.生态学范式变迁综论.生态学报,1996.16(5):449~459.
    92.柳新伟,周厚诚,李萍等.生态系统稳定性定义剖析.生态学报,2004.24(11):2635-2640.
    93.岳天祥,马世骏.生态系统稳定性研究.生态学报,1991.12(1):61~66.
    94.岳天祥.种群可持续增值区稳定性分析.自然科学进展,2000.10(7):665~669.
    95. Vincent A A Jansen, Alun L L Loyd, Local stability analysis of spatially homogeneous. Journal Mathematical Biology, 2000.41:232-252.
    96. Thom R, Structural Stability and Morphogenesis: An outline of a general theory of models. Addison-wesley publishing Co., Redwwood City, CA. 1991.
    97. Myerscough M R, Darwen M J, Hogarth W L, Stability, persistence and structural stability in a classical predator-prey model. Ecological Modelling, 1996.89:31-42.
    98. Andrew J Rixon, Craig R Johnson, Alan S Jones. Stability in paradigm biological systems. Journal Austral Math Society (Ser. B), 1989.40:23-34.
    99.张继义,赵哈林.植被(植物群落)稳定性研究评述.生态学杂志,2003.22(4):42~48.
    100. Goodman D, The theory of diversity-stability relationships in ecology. The quarterly Teview of Biology, 1975.50(3):237-266.
    101. MacCann K, Hastings A and Huxel G R. Weak trophic interactions and the balance of nature..Nature, 1998.395:794-798.
    102. Paine R T. Food-Web analysis through field measurement of per capita interaction strength. Nature, 1992. 355:73-75.
    103. Wootton J T. Estimates and test of per capita interaction strength: Diet abundance, and impact of intertidally foraging dirds. Ecol. Monogr, 1997,67:45-64.
    104. Polis G A. Stability is woven by complex webs. Nature, 1998.395:744-745.
    105. Tilman, D., Wedin, D.& Knops, J. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature, 1996.379:718-720
    106. Givnish T J. Does diversity beget stability? Nature, 1994.371:113-114.
    107. Tilman D, Secondary succession and the pattern of plant dominance along experimental nitrogen gradients. Ecological Monographs, 1987.57:189-214.
    108.刘世荣和温远光.杉木生产力生态学,北京:气象出版社,2005
    109. Hector A and Hooper R.Darwin and the first ecological experiment. Science, 2002. 295:639-640.
    110. Darwin C. The origin of species by means of natural selection. London: John Murray. 1859
    111.贺金生,方精云,马克平等,生物多样性与生态系统生产力:为什么野外观测和受控实验结果不一致?植物生杰学报,2003.27(6):835-843.
    112. McGrady-Steed, J., Harris P M, Morin. Biodiversity regulates ecosystem predictability. Nature, 1997.390:162-165.
    113. Hector A, Schmid B, Beierkuhnein C. et al.,Plant diversity and productivity experiments in European grasslands. Science, 1999.286:1123-1127.
    114. Tilman D. et al. Diversity and productivity in a long-term grassland experiment. Science, 2001.294:843-845
    115. Hooper, D.U and Vitousek, P. M, The effects of plant composition and diversity on ecosystem process. Science, 1997.277:1302-1305
    116. Wardle D A, Huston M A, Grime J Pet al., Biodiversity and ecosystem function: an issue in ecology. Bulletin of the Ecological Society of America, 2000.81:235-239.
    117. Schwartz M, Brigham C A, Hoeksema J D., et al., Linking biodiversity to ecosystem function: implications for conservation ecology. Oecologia, 2000.122:297-305.
    118. Huges, J. and Petchey, O.L.Merging perspectives on biodiversity and ecosystem functioning. Trend in Ecology and Evolution, 2001.16:222-223
    119. Schaffers A P, Soil, biomass, and management of semi-natural vegetation Part2 Factors controlling species diversity. Plant Ecology, 2002.158:247-268.
    120. Mittellbach G G, Steiner C F, Scheiner S M, et al., What is the observed relationship between species richness and productivity? Ecology, 200182:2381-2396.
    121.胡聃.生态系统可持续性的一个测度框架.应用生态学报,1997.8(2):213-217
    122. Hooper D.U. and Vitousek P.M., Effects of plant composition and diversity on nutrient cycling. Ecological Monographs, 1998.68(1):121-149.
    123. Jermy L S ans Stork W(eds.), Biodiversity assessment: a guide to good practice. Department of the Environment, HWSO, Landon. 1995
    124. Schulze E D and Mooney H A (eds.), Biodiversity and ecosystem function. Springer-Verlag, Berlin. 1993.
    125. Bertness M D and Leonard G H, The role of positive interactions in communities: lessons from intertidal babitats. Ecology, 1997.78:1976-1989.
    126. Mulder C P H, Uliassi D D, and Doak D F, Physical stress and diversity productivity relationships: the role of positive interaction. Proceedings of the National Academy of Sciences, USA, 2001.98:6704-6708.
    127. Yachi S and Loreau M, Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proceedings of the National Academy of Sciences, USA, 1999,96:1463-1468.
    128. Loreau M, Biodiversity and ecosystem functioning: recent theoretical advances. Oikos, 2000.91:3-17
    129. Walker B H, Biodiversity and ecological redundancy. Conservation Biology, 1992.6:18-23
    130.韩兴国等,植物学通报(生态学专辑),1995.168-184
    131.赵平,彭少麟.种、种的多样性及退化生态系统功能的恢复和维持研究.应用生态学报,2001.12(1):132-136.
    132. Grime J P., Plant strategies and vegetation processes. Chichester: John Wiley & Sons. 1979
    133. Pickett STA and White PS. The ecoloy of natural disturbance and patch dynamics. Orlando: Academic Press, 1985
    134.Canham C D, Marks P L,The response of woody plants to disturbance: patterns of establishment and growth. In Pickett S T A, White P S (eds.).1985
    135.HustonMA, General hypothesis of diversity. American Naturalist, 1979.113:81-101.
    136.Connell J H, Diversity in tropical rain forests and coral reefs. Science, 197819:1302-1310.
    137.Denslow J S, Disturbance-mediated coexistence of species in Pickett S T A, White P S (eds.). The ecology of natural disturbance and patch dynamics. London: Academic Press, 1985.307-323.
    138.Berendse R Ecosystem stability, comptition, and nutrient cycling. In:Schulze E D, Mooney HA. Biodiversity and ecosystem function. Berlin: Springer-Verlag. 1993.409-431
    139.Risser P G Biodiversity and ecosystem function. Conservation Bioloty, 1995.9(4):742-746
    140.Chapin F S, Krenr Ceds, Arctic and alpine biodiversity. Vol.113. Springer, Berlin,1995
    141.Davis G W, Richardson D M (eds.),Mediterranean-type ecosystems: the function of biodiversity. Springer, Heidelberg, 1995
    142.Vitousek P M, et al.,(eds.). Islands biological diversity and ecosystem function. Berlin Heidelberg: Springer-Verlag. 1995.
    143.Orians G H, et al.,(eds.). Biodiversity and ecosystem process in tropical forests. Berlin Herdelberg, Springer-Verlag. 1996.
    144.Mooney H A, et al.,(eds.). Functional roles of biodiversity a global perspective. SCOPE 55, John Wiley and Sons. 1996
    145.Solbrig O T, et al., Biodiversity and savanna ecosystem process: a global perspective. Springer Berlin. 1996.
    146.Mouqut N, Moore J L, and Loreau M, Plant species richness and community productivity: why mechanism that promotes coexistence matters. Ecology Letters, 2002.5:56-65.
    147.Fox J W, The long-term relationship between plant diversity and total plant biomass depends on the mechanism maintaining diversity. Oikos, 2003.102:630-640.
    148.邱波和王刚,生产力与生物多样性关系研究进展.生态科学,2003.22(3):265—270.
    149.Tilman D., Knops J., Wedin D., et al., The influence of functional diversity and composition on ecosystem processes.Science, 1997.277:1300-1302.
    150.Wilson S D and Tilman D, Plant competition and resource availability in response to disturbance and fertilization. Ecology, 1993,74:599-611.
    151. Aerts R, Interspecific competition in natural plant communities: mechanisms, trade-offs and plant-soil feedbacks. Journal of Experimental Botany, 1999.50:29-37.
    152. Symstad A J, Chapin F S Ⅲ, Wall D H, et al., Long-term and large-scale perspectives on the relationship between biodiversity and ecosystem functioning. BioScience, 2003.53:89-98.
    153.贺金生等.长江三峡地区退化生态系统植物群落多样性特征.生态学报,1998.18(4):399-407
    154.安树青,朱学雷,王峥峰等.海南五指山热带山地雨林植物物种多样性研究.生态学报,1999.19(6):804-809
    155.安树青,陈兴龙,李国旗等.南京灵谷寺森林种多度结构变化的研究.南京大学学报(自然科学版),1999.35(2):156-161.
    156.陈灵芝主编.中国的生物多样性.现状及其保护对策.北京:科学出版社.1993
    157.陈灵芝.生物多样性保护现状及其对策.见:中国科学院生物多样性委员会编,生物多样性研究的原理和方法.北京:中国科学技术出版社,1994.13-35.
    158.方精云.探索中国山地植物多样性的分布规律.生物多样性,2004.12(1):1-5.
    159.方精云,李意德,朱彪等.海南岛尖峰岭山地雨林的群落结构、物种多样性以及在世界雨林中的地位.生物多样性,2004.12(1):29-43.
    160.黄建辉.物种多样性的空间格局及其形成机制初探.生物多样性.1994.2(2):103-107.
    161.黄建辉等.地带性森林群落物各多样性的比较研究.生态学报。1997.17(6):611-618.
    162.马克平.国内近年出版的生物多样性方面的书籍简介.见:钱迎倩,甄仁德主编.《生物多样性研究进展——首届全国生物多样性保护与持续利用研讨会论文集》北京:中国科学技术出版社,1995.536-537.
    163.马克平.国内近年出版的生物多样性方面的书籍简介(续1).见:陈宜瑜主编.《生物多样性保护与人类未来——第二届全国生物多样性保护与持续利用研讨会论文集》.北京:中国林业出版社,1998.463-464.
    164.马克平.国内近年出版的生物多样性方面的书籍简介(续3).见:许智宏主编.《面向21世纪的中国生物多样性保护——第三届全国生物多样性保护与持续利用研讨会论文集》.北京:中国林业出版社,2000.479-480.
    165.马克平.国内近年出版的生物多样性方面的书籍简介(续4).见:主编.陈宜瑜.生物多样性保护与区域可持续发展——第三届全国生物多样性保护与持续利用研讨会论文集.北 京:中国林业出版社,2002.360-361.
    166.陈秋波.桉树人工林土壤生物多样性问题研究.热带农业科学,2002.22(1):82-90
    167.马克平等.生物多样性研究进展评述.见李文华和赵景柱主编.《生态学研究回顾与展望》.北京:气象出版社,2004.110-125
    168.彭少麟和陈章和.广东亚热带森林群落的物种多样性.生态科学,1983.(2):98-104.
    169.温远光,李信贤,元昌安等.不同采伐方式对常绿阔叶林物种多样性保持与恢复的影响.见:钱迎倩,甄仁德主编.生物多样性研究进展——首届全国生物多样性保护与持续利用研讨会论文集.北京:中国科学技术出版社,1995.354-361.
    170.温远光,元昌安,李信贤等.大明山中山植被恢复过程植物物种多样性的变化.植物生态学报.1998.22(1):33-40.
    171.温远光,李信贤.大明山退化生态系统的垂直结构及动态研究.广西农业大学学报.1998.17(2):160-167.
    172.温远光.常绿阔叶林退化生态系统恢复过程物种多样性的发展趋势与速率.广西农业大学学报.1998.17(2):93-106.
    173.温远光,刘世荣,陈放等.桉树工业人工林植物物种多样性及动态研究.北京林业大学学报.2005.27(4):17-22.
    174.温远光,刘世荣,陈放.连栽对桉树人工林下物种多样性的影响.应用生态学报.2005.16(9):1667-1671.
    175.臧润国,杨彦承,蒋有绪.海南岛霸王岭热带山地雨林群落结构与树种多样性特征研究.植物生态学报,2001.25(3):270-275.
    176.唐志尧和方精云.植物物种多样性的垂直分布格局.生物多样性,2004.12(1):20-28.
    177.蒋有绪和刘世荣.关于区域生物多样性保护研究的若干问题.自然资源学报,1993.8(4):289-298.
    178.胡志昂,张亚平主编.《中国动植物遗传多样性》.杭州:浙江科学技术出版社.1997
    179.刘世荣,蒋有绪,史作民等著.《中国暖温带森林生物多样性研究》.北京:中国科学技术出版社,1998.1-232
    180.蒋有绪等.《海南岛热带林生物多样性及其形成机制》.北京:科学出版社,2002.1-394
    181.臧润国,刘静艳,董大方.《林隙动态与森林生物多样性》.北京:中国林业出版社,1999
    182.臧润国,安树青,陶建平,蒋有绪,王伯荪.《海南岛热带林生物多样性维持机制》.北京:科学出版社,2004
    183.臧润国,成克武,李俊清等.《天然林生物多样性保护与恢复》.北京:中国科学技术出版社,2005
    184.温远光,和太平,谭伟福著.《广西热带和亚热带山地的植物多样性及群落特征》.北京:气象出版社,2004.1-438
    185.刘峰,贺金生,陈伟烈.生物多样性的生态系统功能.植物学通报,1999.16(6):671-676.
    186.邢雪荣,韩兴国,陈灵芝.植物养分利用效率研究综述.应用生态学报,2000,11(5):785-790
    187.黄建辉,白永飞,韩兴国.物种多样性与生态系统功能:影响机制及有关假说.生物多样性,2001.9(1):1-7
    188.王长庭,龙瑞军,丁路明等.草地生态系统中物种多样性、群落稳定性和生态系统功能的关系.草业科学,2005.22(6):1-7.
    189. Fukami, T. and Morin, P.J. Productivity-biodiversity relationships depend on the history of community assembly. Nature, 2003.424: 423-426.
    190. Subba Rao, B K, Impact on Eucalyptus plantations on locality factors. Workshop on Eucalyptus plantation, June 29 1984, Bangalore, India, Papers and Proceedings 171-190.
    191. Puri D N, Eucalyptus—a boon for social/agro-forestry. Workshop on Eucalyptus plantation, June 29 1984, Bangalore, India, Papers and Proceedings 1984.99-105.
    192.赵庭香.桉树生态环境变化.广西林业,1988.(4):22.
    193.白嘉雨.桉树人工林的社会、经济和生态问题.世界林业研究,1996.(2):63-68.
    194. Bernard Matin, Development and Ecological/Social Impact—Eucalyptus: A strategic forest tree. In: Wei R.P., and Xu D.P.(Ed.) Euclayptus Plantations-Research, Management and Development. World Scientific. Singapore·New·Jersey·London·Hong Kong, 2003
    195. Shiva V, et al., Eucalyptus—a disastrous tree for India. The Ecologist, 1983.13 No.5:184-187.
    196. Shiva V, et al., The ecology of Eucalyptus and farm forestry policy in rainfed areas. Workshop on 1984. Eucalyptus plantations, June 29 1984, Bangalore, India. Papers and Proceedings, 191-222.
    197.沈国舫.对世界造林发展新趋势的几点看法.世界林业研究,1988.(1):21-27.
    1.阎洪.中国和澳大利亚的气候比较研究.见王豁然,江泽平,李延俊等著.格局在变化—树木引种与植物地理.北京:中国林业出版社,2005.11-18.
    2.李治基.广西森林.中国林业出版社.2001.
    3.广西国有东门林场.东门桉树引种改良及高产栽培综合技术研究(总报告).广西国有东门林场.2000.
    4.祁述雄.中国桉树.北京:中国林业出版社.2002.
    5. Boland et al.,1984. Forest Trees of Australia. Nelson. CSIRO.
    6.王豁然和江泽平.论大洋洲森林植物地理与中国林木引种.见王豁然,江泽平,李延俊等著.格局在变化—树木引种与植物地理.北京:中国林业出版社,2005.124-132.
    7. Pryor L D, Biology of Eucalyptus. The Institute of Biology's Studies in Biology No.61. Edward Arnold (Publishers) Ltd. London. 1976.82pp.
    8. Chippendale G M and Wolf L, The natural distribution of Eucalytus in Australia. Special publication No. 6. Australian National Parkw and Wildlife Service, 1981.192pp.
    9. Gill A M, Belbin I and Chippendale G M, Phytogeography of Eucalyptus in Australia. Auatralian Flora and Fuana series No.3. Auatralian Government Publishing Service, Canberra. 1985.53pp.
    10. Hill K D and Johnson L A S, Systematic studies in the eucalypts-7. A revision of the bloodwoods, genus Corymbia (Myrtaceae). Telopea. 1995.6 (2-3): 185-504.
    11. Wilcox M D, A catalogue of the eucalypts. Groome Poyry Ltd., Auckland, 1997.114.
    12.王豁然,郑勇奇,臧道群等,单蒴盖亚属桉树引种及其生物地理学意义.林业科学,1999.35(2):2-6.
    13.王豁然.澳大利亚阔叶树引种与栽培的研究.林业科学研究,19881(1):3-112.
    14.王豁然,阎洪,周文龙.巨桉种源实验及其在我国适生范围的研究.林业科学研究,1989.2(5):9-411.
    15.王豁然,郑勇奇,臧道群等.蓝桉地理种源实验.林业科学研究,1992.5(4):409-416.
    16.王豁然,郑勇奇,阎洪等.亮果桉引种与种源实验及其在我国人工林应用潜力的研究.林业科学,1993.29(4):72-366.
    17.王豁然,江泽平,阎洪等.论澳大利亚森林植被与中国林木引种的关系.热带地理, 1994.14(1):73-82.
    18.陈永伶等,赤桉种源实验苗期阶段初报.林业科技通讯,1990.(6):13-15.
    19. Florence R G. Perceptions of eucalyptus as an exotics: an eclolgical interpretation. Proc. of International eucalyptus Symposium, China, 1991.28-37.
    20.奚福生和苏扬主编.南方速生材营林新技术与效益评价.南宁:广西科学技术出版社.1997.
    21. Griffin A R, Burgess I P, wolf L,.Pattems of natural and manipulated hybridization in the genus of Eucalyptus L'Herit.-a review. Aust. J. Bot. 1988.36:41-66.
    22.冯宗炜,陈楚莹等.湖南会同县两个森林群落的生物生产力.植物生态学与地植物学丛刊,1982.(4):257~266
    23.冯宗炜,陈楚莹等.不同自然地带杉木的生物生产力.植物生态学与地植物学丛刊,1984.8(2):93~100
    24.冯宗炜,王效科,吴刚著.中国森林生态系统的生物量和生产力.科学出版社.1999.
    25.温远光,梁乐荣,黎洁娟等.广西不同生态地理区域杉木人工林的生物生产力.广西农学院学报,1988.7(2):55~66
    26.温远光,和太平,李信贤等..广西合浦窿缘桉海防林生物量和生产力研究.广西农业生物科学,2000 19(1):1~5
    27.温远光,梁宏温,招礼军等尾叶桉人工林生物量和生产力的研究.热带亚热带植物学报,.2000.8(2):123~127
    28.中国科学院南京土壤研究所.土壤理化分析.上海:上海科学出版社.1978.
    29.林业部科技司编.森林生态系统定位研究方法.北京:中国科学技术出版社.1994
    30.许光辉和郑洪元.土壤微生物研究法.北京:农业出版社.1986.
    31.中国科学院南京土壤研究所微生物室.土壤微生物研究法.北京:科学出版社.1985.
    32.陈传国,朱俊风.东北主要林木生物量手册.北京:中国林业出版社
    33.温远光..杉木立木生物量表的编制与应用.中南林业调查规划,1993.(4):42-45.
    34.孟宪宇主编.测树学(第二版).北京:中国林业出版社.1996.
    35.温远光,梁宏温,蒋海平.广西杉木人工林生物量及分配规律的研究.广西农业大学学报,1995.14(1):55-64.
    36.木村允著,姜恕等译.陆地植物群落的生产量测定法.北京:科学出版社.1981.
    37.刘世荣和温远光杉木生产力生态学.北京:气象出版社..2005.
    38.叶镜中和姜志林.苏南丘陵杉木人工林的生物量结构.生态学报,1983.3(1):4-13.
    39.温远光,罗天祥,梁宏温..广西杉木人工林生产力地理分布规律及模型的研究.山西师范大学学报,增刊.1993.(2):367-372.
    40.温远光和刘世荣..杉木物候期地理变化规律及其与生产力关系的研究.林业科学,199430(4):313-319.
    41. Magurran A F. Ecological diversity and its measurement. New Jersy: Princeton University Press. 1988.
    42. Alatalo R U..Problems in the measurementof evenness in ecology. Oikos, 198137:199-204.
    43.彭少麟.广东亚热带森林群落的生态优势度.生态学报 1987.,7(1):37-42.
    44.王荷生.植物区系地理.北京:科学出版社.1992.
    45.祝廷成和钟章成.植物生态学.北京:高等教育出版社.1988.
    1.沈国舫主编,森林培育学.北京:中国林业出版社.(第1版,第2次印刷).2002.
    2.孟宪宇主编.测树学(第2版).北京:中国林业出版社.1996.
    3.刘世荣和温远光等著.杉木生产力生态学.北京:气象出版社,2005
    4.陈北光,苏国庆,赵贵.两种桉树人工林的树冠结构和叶面积的研究.见曾天勋主编.雷州短轮伐期桉树生态系统研究.北京:中国林业出版社,1995.52-57.
    5.张富明等.短轮伐期雷林1号桉生长过程的研究.见曾天勋主编.雷州短轮伐期桉树生态系统研究.北京:中国林业出版社,1995.76-81.
    6.余雪标主编.桉树人工林长期生产力管理研究.北京:中国林业出版社.1999.
    7. Kenkel N C, Hendrie M L and Bella I E., A long-term study of Pinus bonksiana population dynamics. Journal of Vegetation Science, 1997.8:241-254.
    8. Takahashi K, Mitsuishi D, Uemera S et al.,.Stand structure and dynamics during a 16-year period in a sub-boreal conifer-bardwood mixed forest, northern Japan. Forest Ecology and Management, 2003174:39-50.
    9.侯继华,黄建辉,马克平.东灵山辽东栎林主要树种种群11年动态变化.植物生态学报,2004.28(5):609-615.
    10.赵平,曾小平,蔡锡安,彭少麟.利用数字植物冠层图象分析仪测定南亚热带森林叶面积指数的初步报道.广西植物,.2002.22(6):485-489.
    11. Pierce L L. and Running R W., Rapid estimation of coniferous forest leaf area index using a portable integrating radiometer. Ecology, 1988.69:1762-1767.
    12. Gholz H L, Vogel S A, Cropper W P, et al., Dynamices of canopy structure and light intereception in Pinus elliottii stands, North Florida. Ecological Monograph, 1991.6:33-51.
    13. Holland D N, Lilieholm R J, Roberts D W et al., Economic trade-offs of managing forests for timber production and vegetative diversity. Can. J. For. Res., 1994.24:1260-1265.
    14. Kuuluvainen T, Penttinen A, Leinonen K et al., Statistical opportunities for comparing stand structural heterogeneity in managed and primeval forests: An example from boreal spruce forest in southern Finland. Silva Fennica. 1996.30(2-3):315-328.
    15. MacArthur R H and MacArthur J W. On bird species diversity. Ecology, 1961.42:594-598.
    16.祝宁.生境及其多样性的测定.东北林学院学报,1982.(1):134-141.
    17.高宝嘉,张执中,李镇宇.封山育林对植物群落及多样性的影响.见:徐化成和郑均宝主编.封山育林研究.北京:中国林业出版社,1994124-131.
    18. Pretzsch H. Structural diversity as a result of silvicultural operations. In Olsthoom A F M et al. edited, Management of mixed species forest: Silviculture and Economices, 1999.157-174.
    19. Gove J H, Patil G P and Taillie C. A mathematical programming model for maintain structural diversity in unever-aged forest stands with implications to other formulations. Ecological Modelling, 1995. 79:11-19.
    20. Lahde E, Laiho O and Norokorpi Y. Diversity oriented silviculture in the boreal zone of Europe. For. Ecol. Manage. 1999.118:223-243.
    21.北京林业大学主编.测树学.中国林业出版社.1990.
    22.吴中伦主编.杉木.中国林业出版社.1984.
    23.祁述雄.中国桉树.北京:中国林业出版社,2002
    24. Florence R G. Perceptions of eucalyptus as an exotics: an ecological interpretation. Proc. of International eucalyptus symposium, China, 1991.28-37.
    1.U.里思,R.H惠特克等著.生物圈的第一性生产力.王业蘧等译.北京:科学出版社.1985.
    2.木村允著.陆地植物群落的生产量测定法.姜恕等译.北京:科学出版社.1981.
    3.佐藤大七郎,堤利夫著..陆地植物群落的物质生产.聂绍荃等译.北京:科学出版社.1986
    4. Reichle D. E Dynamic properties of forest ecosystems. (IBP23), CAMBRIDGE UNIVERSITY PRESS, 1981
    5.盛炜彤,范少辉.人工林长期生产力保持机制研究的背景、现状和趋势.林业科学研究,2004.17(1):106-115.
    6.孙长忠和沈国舫.我国主要树种人工林生产力现状及潜力的调查研究.Ⅰ.杉木、马尾松人工林生产力研究.林业科学研究,2000.13(6):613-621.
    7.孙长忠和沈国舫..我国人工林生产力问题的研究(Ⅰ)——影响我国人工林生产力的自然因素评价.林业科学,2001 37(3):72-77.
    8.孙长忠和沈国舫.我国人工林生产力问题的研究(Ⅱ)——影响我国人工林生产力的人为因素与社会因素探讨.林业科学,2001.37(4):26-34.
    9. Evans, Long-term productivity of forest plantation status in 1990. IUFRO, 19th world congress, 1(1): 1990.165-180.
    10.魏殿生主编.造林绿化与气候变化——碳汇问题研究.北京:中国林业出版社.2003.
    11.刘世荣和温远光.杉木生产力生态学.北京:气候出版社.2005.
    12.冯宗炜等.中国森林生态系统的生物生产力.北京:科学出版社.1999.
    13.彭少麟等小良热带人工桉林第二代萌生林生物量和生产力研究.桉树,.1993.(3):21-28.
    14. Singh V & Toky O P. Biomass and primary productivity in Leucaena, Acacia and Eucalyptus, short rotation, high density("energy") plantations in arid India. Journal of Arid Environment, 1995.31:301-309.
    15.陈北光,傅冠旭,陈孝.两种桉树人工林地上部分生物量和生产力.见曾天勋主编.雷州短轮伐期桉树生态系统研究.北京:中国林业出版社.1995.58-65
    16. Bemardo A L, Maria G F Reis, Geraldo G Reis et al., Effect of spacing on growth and biomass distribution in Eucalyptus camaldulensis, E. pellita and E. urophylla plantations in southeastern Brazil. Forest Ecology and management, 1998.104:1-13.
    17.余雪标,徐大平,龙腾等.连栽桉树人工林生物量及生产力结构的研究.见余雪标主编.桉树 人工林的长期生产力管理研究.北京:中国林业出版社,1999.61-67.
    18.温远光,和太平,李信贤等.广西合浦窿缘桉海防林生物量和生产力的研究.广西农业生物科学,2000.19(1):1-5.
    19.温远光,梁宏温,招礼军等.尾叶桉人工林生物量和生产力的研究.热带亚热带植物学报,2000.8(2):123-127.
    20. Stape J L, Binkley Dan, Michael G Ryam. Eucalyptus production and the supply, use and efficiency of use of water, light and nitrogen across a geographic grandient in Brazil. Forest Ecology and management, 2004.193:17-31.
    21.杨玉盛和邱仁辉.不同栽杉代数林分林下植被营养元素的生物循环.东北林业大学学报,1999.27(3):26-30.
    22.余雪标,白先权等.不同连栽代数桉树人工林的养分循环.热带作物学报,.1999.20(3):60-66.
    23.余雪标,莫晓勇等.不同连栽次数桉树林枯落物及其养分组成研究.海南大学自然科学报,1999.17(2):140-143.
    24.温远光,刘世荣,陈放等..桉树工业人工林植物物种多样性及动态研究.北京林业大学学报,2005.27(4):17-22.
    25.温远光,刘世荣,陈放.连栽对桉树林下物种多样性的影响.应用生态学报,2005..16(9):1667-1671
    26.祁述雄.桉树.北京:中国林业出版社2002.
    27.余雪标,钟罗生,杨为东等.桉树人工林下植被结构的研究.见余雪标主编.桉树人工林的长期生产力管理研究.北京:中国林业出版社,1999.68-73.
    28.沈国舫.中国林业可持续发展及其关键科学问题.地球科学进展,2000.15(1):10-18.
    29.盛炜彤主编.人工林地力衰退研究.北京:中国科学技术出版社.1992.
    30.FAO.《2005年世界森林状况》联合国粮食及农业组织,罗马.2005
    31.陈婷和温远光等连栽桉树人工林生物量和生产力的初步研究.广西林业科学,.2005.14(1):8-12.
    32. Edgard Campinhos J R. Sustainable plantations of high-yield Eucalyptus trees for production of fiber: the Aracruz case. New Forests, 1999.17:129-143.
    1.杨承栋..发育林下植被是恢复杉木人工林地力的重要途径.林业科学,1995 31(3):276-283.
    2.杨承栋..杉木林下植被对5-15cm土壤性质的改良.林业科学研究,1995 8(5):514-519.
    3.盛炜彤和范少辉.人工林长期生产力保持机制研究的背景、现状和趋势.林业科学研究,2004.17(1):106-115.
    4.雷相东和唐守正.林分结构多样性指标研究综述.林业科学,2002.38(3):140-146.
    5.杨再鸿,杨小波,余雪标.人工林下植被及桉树林生态问题的研究进展.海南大学学报自然科学版,2003.21(3):278-282.
    6.FAO.桉树的生态作用.联合国粮食和农业组织,罗马.1985.
    7. Intemational Foundation for Science, Trees for development in sub-saharan Africa. Proceedings of seminar held at Nairobi (Kenya), 20-25 February 1989, IFS Publication, Stockholm, Sweden, 361 pp
    8. Calder, I.R., Hall, R.L., Adlard, P.G (Editors), Growth and water use of forest plantations. Wiley and Sons, New York, 1992.381 pp.
    9. Loumeto Joel J and Huttel C., Understory vegetations in fast-growing tree plantations on savana soil in Congo. Forest Ecology and Management, 1997.99:65-81.
    10.沈国舫.中国林业可持续发展及其关键科学问题.地球科学进展,2000.15(1):10-18.
    11. Lahti T. Understorey vegetation as a indication of forest site potential in southern Finland. Acta Forest Fennica, 1995. (246):68
    12. Michelsen A. Comparisons of understorey vegetation and soil fertility in plantations and adjacent natural forest in the Ethiopian highlands. Journal of Applied Ecology, 1996.33(3):627-642.
    13.盛炜彤.关于杉木林下植被对改良土壤性质效用的研究.生态学报,1997.17(4):377-385.
    14.庄雪影.香港3种人工林下植物多样性的调查.热带亚热带植物学报,.19986(3):196-202.
    15.余雪标,钟罗生,杨伟东等.桉树人工林林下植被结构的研究.热带作物学报,1999.2(1):66-72.
    16. Wang G G. Use of understorey vegetation in classifying soil moisture and nutrient. Forest Ecology and Management, 2000.129(1-3):3-100.
    17.姚茂和.杉木林林下植被及其生物量的研究.林业科学,1991.27(6):644-648
    18.温远光,刘世荣,陈放等..桉树工业人工林植物物种多样性及动态研究.北京林业大学学报,2005.27(4):17-22.
    19.温远光,刘世荣,陈放.连栽对桉树林下物种多样性的影响.应用生态学报,2005.16(9):1667-1671
    20. Parrotta, J.A., Influence of overstory composition on understory colonization by native species in plantations on a degraded tropical site. J. Veg. Sci. 1995.6, 627-636.
    21. da Silva Junior, M.C.,Scarano, F.R. and Souza Cardel, F., Regeneration of an atlantic forest formation in the understory of a Eucalyptusus grandis plantation in south-eastern Brazil. J. Trop. Ecol., 1995.11:147-152.
    22.李志辉,李跃林,杨民胜等.桉树人工林地土壤微生物类群的生态分布规律.中南林学院学报,2000.20(3):24-28.
    23. Bauhus J, Aubin I, Messier C., Composition, structure, light attenuation and nutrient content of the understorey vegetation in a Eucalyptus siebed regrowth stand 6 years after thinning and fertilization. Forest Ecology and Management, 2001.144:275-286.
    24.吴钿,刘新田,杨新华.雷州半岛桉树人工林林下植物多样性研究.林业科技,2003.28(3):10-13.
    25.陈秋波.桉树人工林生物多样性研究进展.热带作物学报,2001.22(4):81-89.
    26.陈秋波.桉树人工林土壤生物多样性问题研究.热带农业科学,.2002.22(1):66-76
    27.陈秋波..桉树人工林生物多样性标准与指标体系研究.2002.23(1):95-111.
    28. Kanowski, J., Catterall, C.P., Wardell-Johnson, G.W., Consequences of broadscale timber plantations for biodiversity in cleared rainforest landscapes, of tropical and subtropical Australia. For. Ecol. Manag., 2005. 208, 359-372.
    29. Leck M A, Parker V T, Simpson R L.(eds). Ecology of Soil Seed Banks. San Diege: Academic Press,1989
    30.于顺利和蒋高明土壤种子库的研究进展及若干研究热点.植物生态学报,.2003.27(4):552-560.
    31. Luzuraga A L, Escudero Adrian, et al., Regenerative role of seed banks following an intense soil disturbance. Acta Oecologica, 2005,27:57-66
    32.曹敏,唐勇,张建侯,盛才余.西双版纳热带森林的土壤种子库储量及优势成分.云南植物研究,1997.19(2):177-183.
    33.周先叶,李鸣光,王伯荪等.广东黑石顶自然保护区森林次生演替不同阶段土壤种子库的研究.植物生态学报,2000.24(2):222-230.
    34.唐勇,曹敏,张建侯,盛才余.西双版纳热带森林土壤种子库与地上植被的关系.应用生态学报,1999.10(3):279-282.
    35.张玲和方精云.太白山土壤种子库储量与物种多样性的垂直格局.地理学报,2004.59(6):880-888.
    36. Grime J P.,. Seed bank in ecologicalperspective in: Leck M A, Parker V T and Simpon R L.(eds). Ecology of soil seed bank. San Diego: Academic Press, 1989 149-209.
    37. Harper J L., Population biology of plant. London: Academic Press, 1977. 256-263.
    38.彭军,李旭光,付永川等.重庆四面山常绿阔叶林种子雨和种子库研究,应用生态学报,.2000.11(1):22-24.
    39. Nakagoshi N., Buried viable seeds in temperate forest. In: White J ed. The population structure of vegetation. Dordrecht: Dr. W Junk Pupblishers, 1985.551-570.
    40.付家瑞.1985.种子生理.北京:科学出版社
    41. Raunldaer, C., The Life Forms of Plants and Statistical Plant Geography, Being the Collected Papers of C. Raunkiaer. Oxford Englangd:Clarendon Press. 1934.
    42. Whittaker,R. H., Evolution of measurement of species diversity. Toxon, 1972.21:213-251.
    43. MacArthur, R.H. and Wilson, E.O., Biogeographie von Inseln. Wiss. Taschenbuch. Munchen: Goldmann Verl., 1967.201 S.
    44. Pfdenhauer, J., 1997. Vegetationsokologie-ein Skriptum. IHW-Verlag.448 S.
    45.温远光,李信贤,元昌安等.不同采伐方式对常绿阔叶林物种多样性保持与恢复的影响.见钱迎倩等主编.生物多样性研究进展.北京:中国科学技术出版社,1995.354-361.
    46.温远光.大明山不同环境梯度植被的物种多样性研究.广西农业大学学报,1998.17(2):131-137.
    47.温远光,元昌安,李信贤等.大明山中山植被恢复过程植物物种多样性的变化.植物生态学报,1998.22(1):33-40.
    48.温远光,和太平,谭伟福著.广西热带和亚热带山地的植物多样性及群落特征.北京:气象出版社,2004.1-438.
    49. Connell J H. Diversity in tropical rain forests and coral reefs. Science, 1978.19:1302-1310.
    50.冯耀宗.2003.物种多样性与人工林生态系统稳定性探讨.应用生态学报,14(6):853-857.
    51. Tilman D. Resource Competition and Community Structure. Princeton New Jersey: Princeton University Press. 1982.
    52. Pickett S T A and White P S. Patch dynamics: A synthesis. In: Pickett S T A and White P S. eds. The Ecology of Natural Disturbance and Patch Dynamics. London: Academic Press. 1985.
    53. Egler F E. Vegetation science concepts. I. Initial floristic composition, a factor in old-field vegetation development. Vegetatia, 1954.4:412-417.
    54. Kolasa J and Pickett S T A. Ecological Heterogeneity. Berling: Springer Verlag. 1991.256-267.
    55. Kimmins, J.P., Forest Ecology, (3rd Edition). Published by Pearson Eduction. 2004. 329-347.
    56. Tilman D.. Secondary succession and the pattern of plant dominance along experiment nitrogen gradiens. Ecological Monographs, 198757:189-214.
    57. Menaut, J.C., Gignoux, J., Prado, C., Clobert, J., Tree community in a humid savanna of Cote of Ivoire: modeling the effects of fire and competition with grass and neighbours. J. Biogeog.,1990.17:471-481
    58.温远光,李信贤,和太平等广西沿海防护林生物多样性保育功能的研究.防护林科技,.2000.1(1):1-4
    59.叶万辉.2000.物种多样性与植物群落的维持机制.生物多样性,8(1):17-24.
    60. Harrison, S.R., Herbohn, J.L., Tisdell, C.A., Lamb, D., Timber production and biodiversity trade-offs in plantation forestry. In:Harrison, S.R., Herbohn, J.L., Herbohn, K.L. (Eds.), Sustainable Small-Scale Forestry. Edward Elgar, Cheltenham, 2000.pp. 65-76.
    61. Catterall, C.P., Kanowski, J., Lamb, D., Killin, D., Erskine, P.,Wardell-Johnson, G.W., Trade-offs between timber production and biodiversity in rainforest plantations: emerging issues and an ecological perspective. In: Erskine, P.D., Lamb, D., Bristow, M. (Eds.), Reforestation in the Tropics and Subtropics of Australia Using Rainforest Tree Species. RIRDC, Canberra/Rainforest CRC, Cairns, in press. 2005.
    62. Hartley, M.J., Rationale and methods for conserving biodiversity in plantation forests. For. Ecol. Manag. 2002.155, 81-95.
    63.徐化成和斑勇.大兴安岭北部兴安落叶松种子在土壤中的分布及其种子库的持续性.植物生态学报,1996.20(1):28-34.
    64.唐勇,曹敏,白昆甲.片断化热带雨林土壤种子库初步研究.山地学报,18(6):568-571.
    65.安树青,林向阳,洪必恭.1996.宝华山主要植被类型土壤种子库初探.植物生态学报,2000.20(1):41-50.
    66.杨小波,陈明智,吴庆书.热带地区不同土地利用系统土壤种子库的研究.土壤学报,1999.36(3):327-333.
    67. Tilman D. Competition and biodiversity in spatially structure habitats. Ecology, 1994.75:2-16.
    68. Tilman D. 2000. Causes, consequences and ethics of biodiversity. Nature, 405:208-211.
    69. Hartshorn, G.S., Natural forest management by the Yanesha forestry cooperative in Peruvian Amazonia. In: Anderson, A.B.(Ed.),Alternatives to Deforestation. Columbia University Press, New York, 1990.pp. 128-138.
    70. Brown, D., The development of woody vegetation in the 1st right-of-way. For. Ecol. Manage. 1994.65, 171-181.
    71. Mclntyre, S., Lavorel, S., Tremont, R.M., Plant life-history attributes: their relation to disturbance response in herbaceous vegetation. J. Ecol., 1995.83:31-44.
    72. Rautiainen, O. and Suoheimo, J., Natural regeneration potential and early development of Shorea robusta Gaertn.f. forest after regeneration felling in the Bhabar-Terai zone in Nepal. For. Ecol. Manage. 1997. 92, 243-251.
    73. Kammeslieidt, L.M., Forest recovery by root suckers and aboveground sprouts after slash-and-burn agriculture fire, and logging in Paraguay and Venezuela. J. Trop. Ecol. 1999.15, 143-157.
    74. Reynolds H L et al. Soil heterogeneity and plant competition in and annula grassland. Ecology,, 1997.78(7):2076-2090.
    1.盛炜彤主编.人工林地力衰退研究.北京:中国科学技术出版社
    2. Evans J A. Future report on second rotation productivity in the Usutu Forest, Swaziland Results of the 1977 assessment. Common Wealth Forestry Review, 1978, 57, 253-261
    3. Evans J. Long-term productivity of forest plantation: status in 1990. 1UFRO. 19th World Congress 1990, 1(1): 165~180
    4. Kimmins J. P. A. Strategy for research on the maintence of long-term site productivity. IUFRO, The Congress Proceedings, Division, 1990, 1:206~213
    5. Gessel S P., Lacate D S., Wectman G F (eds). Sustained of Productivity of Forest Soils. Proceedings of 7th North American Forest Soil Conference University of British Columbia Faculty of Forestry. Vancouvewr, B C. 1990
    6. Jorgensen J R, Wells C G. Tree nutrition and fast growth plantations in developing countries. International Tree Crops Journal, 1986, 3, 225-244
    7. Folster H, Kharma P K. Dynamics of nutrient supply in plantation soils. In: Nambiar E K S, Brown A G (eds). Management of soil. Nutrients and water in tropical plantation. ACIAR/CSIRO/CIFOR, ACIAR, Canberra, Australia, 1997, 338-378
    8. Montagnini F. Porras C. Evaluating the role of plantations as carbon sinks: An example of an integrative approach from the humid tropics, Environ. Manage, 1997, 22(3):459-470
    9.陈灵芝主编.中国退化生态系统研究.北京:中国科学技术出版社
    10.曾天勋主编.雷州短轮伐期桉树生态系统研究.北京:中国林业出版社
    11.盛炜彤和范少辉.人工林长期生产力保持机制研究的背景、现状和趋势.林业科学研究.2004,17(1):106-115
    12.杨玉盛,陈光水,黄宝龙.杉木多世代连栽的土壤水分和养分变化.南京林业大学学报,2000,24(2):25~28
    13.方奇.杉木连栽对土壤肥力及林木生长的影响.林业科学,1987,23(4):389~397
    14.陈楚莹.改善杉木人工林的林地质量和提高生产力的研究.应用生态学报,1990,1(2):97~106
    15.杨玉盛.不同栽杉木代数29年生林分生产力变化.福建林学院学报,1998,18(3):202~206
    16.杨玉盛,叶德生.不同栽植杉木代数林分生物量的研究.东北林业大学学报,1999,27(4):9~12
    17.杨玉盛,邱仁辉.不同栽杉代数林分林下植被营养元素的生物循环.东北林业大学学报,1999,27(3):26~30
    18.马祥庆,叶世坚,陈侣栓.轮伐期对杉木人工林地力维护的影响.林业科学,2001,36(6):47~52
    19.马祥庆,刘爱琴等.不同代数杉木林养分积累和分布的比较研究.应用生态学报,2000,11(4):501~506
    20.余雪标,得太平.连栽桉树人工林生长特性和树冠结构特征.林业科学,2000,36(专刊1):137~142
    21. Mackensen J. Study on sustainable nutrient management in fast-growing tree plantations in East Kalimantan, Indonesia, ecological and economical implications. Ph.D thesis. 1998
    22. Binkley D, Dunkin KA, DeBell D. Production and nutrient cycling in mixed plantations of eucalyptus and albizia in Hawall. For. Sci., 1998, 38: 393-408
    23.沈国舫.中国林业可持续发展及其关键科学问题.地球科学进展.2000.15(1):10-18
    24.余雪标,白先权等.不同连栽代数桉树人工林的养分循环.热带作物学报,1999,20(3):60~66
    25.余雪标,得太平.连栽桉树人工林生物量及生产力结构的研究.海南大学学报,1999,3(2):10~17
    26.阎德仁,刘永军.落叶杉人工林土壤肥力与防治地力衰退趋势的研究.内蒙古林业科技,1996,(3,4):93~98
    27.刘世荣和温远光等著.杉木生产力生态学.北京:气象出版社
    28.徐大平,曾育田,李伟雄.尾叶桉幼林地上部分生物量及养分循环的研究.林业科学研究,1994,7(6):600-605
    29. Sankaran K V. Decomposition of leaf litter of albizia (Albizia falcatatia), eucalyptus (Eucalyptus tereticornis) and teak (Tectona grandis) in Kerala. India. Forest Ecology and Management, 1993,56:225-242
    30. Bargali S S, Singh S P. Singh R P. Structure and function of an age series of eucalypt plantations in Central Himalaya. I Dry matter dynamics, Annual of Botany, 1992,69:405-411
    31. Elaine M Birk, John Turner. Response of flooded gum (Eucalyptus grandis) to intensive culture treatments:biomass and nutrient content of eucalypt plantations and native forest. Forest Ecology and Management, 1992.47.1-28
    32. John Turner, Marcia J. Lambert, Geoff Holmes. Nutrient cycling in forested catchments in southeastern New South Walse. Biomass accumulation. Forest Ecology and Management,1992.55.135-148
    33. Grove T S, Malajczuk N. Nutrient eccumulation by tree and understorey shrubs in an age-series of Eucalyptus diversicolor F Muel. Stands. Forest Ecology and Management, 1985.11.75-79
    34.余雪标,莫晓勇,龙腾等.不同连栽代次桉树枯落物及其养分组成研究.见余雪标主编.桉树人工林长期生产力管理研究.中国林业出版社,1999,81-94
    35.陈秋波.桉树人工林土壤生物多样性问题研究.热带农业科学,2002.22(1):66-76
    36.温肇穆.龙胜县里骆林区杉木人工林营养元素的研究.广西农学院学报,1983,(2):1-27
    37.李治基主编.广西森林.北京:中国林业出版社,2001
    38.赵平和彭少麟.种、种的多样性及退化生态系统功能的恢复和维持研究.应用生态学报,2001.12(1):132-136
    39.赵其国等著.中国东部红壤地区土壤退化的时空变化、机理及调控.北京:科学出版社,2002
    40.余雪标,钟罗生,杨为东等.桉树人工林林下植被结构的研究.见余雪标主编.桉树人工林长期生产力管理研究.中国林业出版社,1999,68-73
    41.温远光,刘世荣,陈放等.桉树工业人工林植物物种多样性及动态研究.北京林业大学学报,2005,27(4):17-22
    42.温远光,刘世荣,陈放.连栽对桉树人工林下物种多样性的影响.应用生态学报,2005,16(9):1667-1671
    43.沈国舫主编.森林培育学.北京:中国林业出版社,2002(第2次印刷)
    44.祁述雄.中国桉树.北京:中国林业出版社,2002
    45.余雪标,杨国清,李尚昆等.不同连栽代次树树林土壤性质的变化.见余雪标主编.桉树人工林长期生产力管理研究.中国林业出版社,1999,94-103
    46.杨玉盛,何宗明,林光耀.退化红壤不同治理措施模式对土壤肥力的影响.土壤学报,1998,35(2):276-282
    47.李志辉,李跃林,杨民胜等.桉树人工林地土壤微生物类群的生态分布规律.中南林学院学 报,2000,20(3):24-28
    48.杨凤,潘超美,李幼菊等.亚热带赤红壤不同林型对土壤微生物区系的影响.热带亚热带森林土壤科学,1996,5(1):20-26
    49.潘超美,杨凤,蓝佩玲等.南亚热带红壤地区不同人工林下的土壤微生物特性.热带亚热带植物学报,1998,6(2):158-165
    50.杨玉盛,黄宝龙.杉木连栽土壤微生物及生化特性研究.生物多样性,1999,7(1):1~7
    1.张全国和张大勇.生物多样性与生态系统功能:进展与争论.生物多样性,2002,10(1):49-60.
    2.李文华和赵景柱.《生态学研究回顾与展望》.北京:气象出版社2004
    3. Kost J A, Boemer R E T. Foliar nutrient dynamics and nutrient use efficiency in comus florida. Ecologia, 1985, 66(4):602-606
    4. Birk E A, Vitousek P M. Nitrogen availability and nitrogen use efficiency in loblolly pine stand. Ecology, 1985, 67(1):69-79
    5. Xue L, Tadaki Y. Seasonal change in litterfall, nutrients in litterfall and nutrient use efficiency in a Japanese cedar (Cryptomeria japonica) stand. Bull, Nagoya Univ. For., 1996,15:23-30
    6.薛达,薛立,罗山.日本中部风景林凋落物量,养分归还量和养分利用效率的研究.华南农业大学学报,2001,22(1):25-28
    7. Delucia E H, Schlesinger W H. Resource-use efficiency and dro tolerance in adjacent great basin and sieran plants. Ecology, 1991,72(1):51-58
    8.彭少麟和黄忠良.2000.生产力与生物多样性之间的相互关系研究概述.生态科学.10(1):1-9
    9. Mulder C P H, Uliassi D D, and Doak D F. Physical stress and diversity productivity relationships: the role of positive interaction. Proceedings of the National Academy of Sciences, USA, 2001,98:6704-6708.
    10.孙儒泳.动物生态学原理.(第三版).北京:科学出版社,2001
    11.郑元润.森林群落稳定性研究方法初探.林业科学,2000,36(5):28-32
    12.周集中,马世骏.生态系统稳定性.见马世骏,现代生态学透视,北京:科学出版社,20-25
    13. Holling C S. Resilience and stability of ecological systems. Ann. Rev. Ecol. Syst. 1973,4:1-23
    14. Sennhauser E B. The concept of stability in connection with the gallery forests of the Chaco region. Vegetation, 1991,94:1-13
    15. Tilman D., and Downing J.A. Biodiversity and stability in grasslands. Nature, 1994, 367:363-365.
    16.张继义,赵哈林.2003.植被(植物群落)稳定性研究评述.生态学杂志,22(4):42~48.
    17.胡聃.生态系统可持续性的一个测度框架.应用生态学报,1997,8(2):213-217
    18. Whittaker R H.Forest dimensions and production in the Great Smoky Mountains.Ecology,1966,47:103-121.
    19. Naeem S., Tompson L J., Lawler S P. et al. Declining biodiversity can alter the performance of ecosystems. Nature, 1994,368:734-737.
    20. Naeem, S. and Li, S. Biodiversity enhances ecosystem reliability. Nature, 1997,390: 507-509.
    21. Hector A, Schmid B, Beierkuhnein C. et al., Plant diversity and productivity experiments in European grasslands. Science, 1999,286:1123-1127.
    22. Tilman, D., Wedin, D.& Knops, J. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature, 1996,379:718-720
    23. Tilman D. et al. Diversity and productivity in a long-term grassland experiment. Science, 2001,294:843-845
    24. Huston M A. Hidden treatments in ecological experiments:re-evaluating the ecosystem function of biodiversity. Oeeologia, 110:449-460
    25. Grime J P. Biodiversity and ecosystem function: the debate deepens. Science, 1997,277: 1260-1261
    26. Tilman D. Lehman C L. and Thomson K.T., Plant diversity and ecosystem productivity: Theoretical considerations. Proc Natl Acad Sci, USA, 1997,94:1857-1861
    27. Grime J P., Plant strategies and vegetation processes. Chichester: John Wiley & Sons. 1979
    28.贺金生,方精云,马克平等.生物多样性与生态系统生产力:为什么野外观测和受控实验结果不一致?植物生态学报,2003,27(6):835-843.
    29.邢雪荣,韩兴国,陈灵芝.植物养分利用效率研究综述.应用生态学报,2000,11(5):785-790
    30. Vitousek P M. Nutrient cycling and nutrient use efficiency. The Amer Naturalist, 119:553-572
    31. Vitousek P M. Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology, 65:285-298
    32. Hooper D.U. and Vitousek P.M.,1998. Effects of plant composition and diversity on nutrient cycling. Ecological Monographs,68(1):121-149.
    33. Tilman D., and Downing J.A. 1994. Biodiversity and stability in grasslands. Nature, 367:363-365.
    34. Lamb, D., Large-scale ecological restoration of degraded tropical forest lands: the potential role of timber plantations.Restor. Ecology, 1998,6, 271-279.
    35. Herbohn, J.L. and Harrison, S.R., Assessing financial performance of small-scale forestry. In: Harrison, S.R., Herbohn, J.L.,Herbohn, K.E (Eds.), Sustainable Small-Scale Forestry: Socio- Economic Analysis and Policy. Edward Elgar, Cheltenham, 2000,pp.39-49.
    36. Braganca, M.A., Zanuncio, J.C., Picanco, M., Laranjeiro, A.J., Effects of environmental heterogeneity on Lepidoptera and Hymenoptera populations in Eucalyptusus plantations in Brazil.For. Ecol. Manag. 1998,103, 287-292.
    
    37. Zanuncio, J.C., Mezzomo, J.A., Narciso, R., Guedes, C, Oliveira, A.C., Influence of strips of native vegetation on Lepidoptera associated with Eucalyptusus cloeziana in Brazil. For. Ecol Manag. 1998,108, 85-90.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.