秦巴山地两种冷杉种实特性研究与秦岭冷杉濒危原因探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
球果和种子是物种繁殖系统的最重要组分,处于强大的选择压力下,有很大的生态适应性。他们同时也受到较强的遗传控制,最具有区分和比较的意义。巴山冷杉的分布区包围着秦岭冷杉分布区,前者是一个正常的种群,后者却处在濒危的边缘。本研究在秦岭中段南坡和神农架北坡采集秦岭冷杉和巴山冷杉球果,测量和比较他们的球果和种子的结实特征;利用发芽试验,研究和分析两种冷杉在不同条件下的萌发特性;选择巴山冷杉群落设置样地和种子收集器,研究其种子雨并与秦岭冷杉的种子扩散特性进行比较;通过人工加速老化试验,探讨两种冷杉种子的劣变过程;利用播种试验和幼苗生长监测,研究秦岭冷杉野外幼苗的生态适应性。通过上述研究,首次揭示了种群命运截然不同的这两种冷杉在种实特性、更新特点等方面的异同,为了解秦巴山地优势针叶植被巴山冷杉林的更新策略、指导生产实践中科学选择母树和合理调拨种子提供了理论与实践依据。同时也为探讨秦岭冷杉濒危的繁殖原因、寻求该濒危种的复壮途径奠定了基础。
     本研究获得的主要结果有;
     1.两种冷杉种间、群体间、植株间结实特性差异明显,秦岭冷杉结实率(110.1个/株)明显低于巴山冷杉(201.6个/株)。秦岭冷杉核心区(秦岭地区)出种量较高,种子较大,种子的败育率高。秦岭冷杉结实量、成龄母树结实个体的比率随海拔升高而减少,低海拔的秦岭冷杉生殖生长好于高海拔处。巴山冷杉球果大小、单果出种量和种子质量在不同海拔高度以及同一海拔内都存在着显著差异,低海拔的巴山冷杉生殖生长高于低海拔。
     2.两种冷杉球果和种子的形态指标在群体间、个体间和个体内均有显著差异。巴山冷杉的种群间差异要大于秦岭冷杉。秦岭冷杉球果和种子形态特征变化约85%的变异来自地区内个体间和个体内,说明受遗传因素控制显著。低海拔处秦岭冷杉球果长、球果宽、球果重量、饱满度大于高海拔区,核心区的要好于边缘区,人工林优于天然林。巴山冷杉球果和种子形态特征在其分布区内存在垂直变异,海拔对巴山冷杉球果和种子形态特征的影响很大,高海拔区的种子形态好于低海拔。秦岭冷杉种子饱满度(25.7%)低于巴山冷杉(57.9%)。
     3.两种冷杉的种子雨扩散表现出一定的空间格局。巴山冷杉落雨过程中主要依靠重力和风力的共同作用进行扩散,对种子的后扩散和将来幼苗的萌发和更新格局产生一定的影响,在很大的程度上决定着种群未来的分布格局。秦岭冷杉种子较大,种子雨扩散不远,大部分种子都散布在母体周围,种子散布前期呈明显的聚集分布。在种子散布末期,散布量减少,种子因母树的分布而趋向于随机分布。秦岭冷杉种子雨散布距离(大部分集中在6m内)不及巴山冷杉远(88%的雨量集中在12m内)。
     4.两种冷杉种子之间的发芽率相差很大,秦岭冷杉发芽率(28%)远远低于巴山冷杉(80%)。同等条件下,巴山冷杉种子萌发率约三倍于秦岭冷杉种子。进一步说明同一属的两种植物,一种成为濒危物种,一种却有很大的种群,其中一个很重要的因素就是它们种子的生命力不一样。
     5.秦岭冷杉种子具浅休眠,在实验室最适环境中,经典的冷层积方法和适当的物理化学方法处理可以打破休眠,在萌发之前最好先浸泡种子3-5d,然后与湿沙1;3混合后,在1-5℃温度下进行层积处理,是提高种子的发芽率和发芽速率的最佳方法。核心区种子萌发率(38.1%)显著高于边缘区(13.8%),质量好于边缘区,表明核心区秦岭冷杉具有较优良的繁殖生物学特性。
     6.老化处理影响到两种冷杉种子的含水量和生活力。不同老化条件种子含水量反应不同。高温高湿条件会引发两种冷杉种子的快速老化,活力水平随着老化时间的延长而降低,40℃/100%RH处理6d种子基本丧失活力。
     7.天然生境下秦岭冷杉平均出苗率只有16.9%,不及实验室发芽率的一半(36%)。海拔、光照、苗床类型、埋藏深度和种子来源对秦岭冷杉的种子萌发、幼苗存活和幼苗生长率都有不同程度的影响,所以生产上秦岭冷杉的复壮一定要遵循适地适树(适种源)的原则。出苗率、幼苗保存率低可能是秦岭冷杉面临濒危的原因之一。
Cones and seeds are the most important part of propagation system for conifers, and have great ecological adaptation under strong selection pressure. They can also form the basis for distinction and comparison between conifer species because they are mostly determined by genetic control. Abies fargesii is a common species currently under no conservation threats, while Abies chensiensis is an endangered species. The distribution area of A. fargesii is larger and encompasses the distribution of the less widespread A. chensiensis. Mature cones of the two firs were collected at the south slope of Qinling Mountain and the north slope of Shennongjia Mountain. The fruiting characteristics of cones and seeds were measured and comparatively analyzed. Accelerated seed aging processes and seed germination were studied under different experimental conditions. The spatial and temporal pattern of seed rain in Shennongjia was monitored through the setting of seed collectors in selected plots of A. fargesii communities, and was compared to that of A. chensiensis. Field experiments were conducted to determine seedling adaptations of A. chensiensis to different environmental conditions. Similarities and differences in fruiting characteristics and regeneration dynamics for these 2 firs with different population status were found for the first time based on above research. This provides the scientific basis to understand the regeneration strategies, wisely choose parent trees and allocate seeds and seedlings for A. fargesii. It also provides further understanding on the endangering causes for A. chensiensis and aids in the development of suitable restoration approaches. The major results are as follows.
     1. One-way ANOVA analysis showed fruiting characteristics had significant differences among populations and parent trees for both species. The number of cones per tree was 110.1 for A. chensiensis, which significantly lower than that of A. fargesii(201.6). For A. chensiensis in Qinling Mountain, the number of seeds per cone and the seed size were greater than that of most other specimens studies, but fewer seeds were fully developed per cone and showed very high abortion rates. With the increase of elevation, the ratio of fruiting trees to adult trees and the number of cones per tree were reduced, which indicated better reproduction for A. chensiensis at low elevations. Significant differences in cone size, the number of seeds per cones, and seed quality were found among differing elevations for A. fargesii, indicating better reproduction capabilities for A. fargesi at low elevations.
     2. The variance component analysis indicated the presence of significant differences of morphological traits of cones and seeds among populations, parent trees and cones for both fir species. For A. chensiensis, approximately 85% of the variation was attributable to differences between individual trees and within tree variation, providing strong evidence of substantial genetic control over traits. The mean values of traits for cones and seeds showed that plants distributed at low elevations were better than plants distributed at higher elevations, the core region was higher than the border area, the planted forest greater than the natural forest, showing that overall A. chensiensis reproduced better in the core region. For A. fargesii, the mean values of traits for cones and seeds changed along a vertical gradient, which showed that the high elevation was better than the low elevation. The different cone and seed traits between A. chensiensis populations was greater than those found between A. fargesii populations. The percentage of fully developed seeds in total seeds was 25.7% for A. chensiensis and 57.9% for A. fargesii.
     3. The seed rain of two firs showed different patterns that were affected by wind and seed weight. This dispersal pattern determines the seed germination, seedling regeneration and future distribution pattern of the populations. For A. chensiensis, the seed rain depended mainly on weight due to its comparatively larger size, and seed rain was concentrated in the distance of 6m far from the parent tree. 88% of the seed rain of A. fargesii populations was concentrated in the distance of 12m far from the parent tree. The seed rain pattern changed from a clump distribution pattern at the beginning of seed dispersal to a random pattern at the end of the dispersal period.
     4. The seed germination rates were significantly different between the 2 firs. The germination rate of A. fargesii (80 %) was 3 times that of A. chensiensis (28 %) under the same conditions. This suggests that seed viability may be an important causal factor in determining the abundance and consequently the conservation status differences between the two species.
     5. The seeds of A. chensiensis were found to undergo light dormancy. Some physical and chemical treatments were helpful to break dormancy of A. chensiensis besides cold stratification. Cold stratification under 1-5℃was the most successful method to increase germination rates and speed, after the seeds were soaked in water for 3-5 days and mixed with wet sand at a ratio of 1:3. Germination rates of seeds from the core region (38.1%) were significantly better than those from the border area (13.8 %) , which indicated that A. chensiensis in the core region had superior reproductive traits.
     6. High relative humidity and high temperature not only changed the moisture content of the seeds but also led to seed deterioration. The seeds of A. fargesii lost their vigor after storage at 40℃and 100% relative humidity for a period of 6 days.
     7. Seedling adaptation of A. chensiensis was revealed by field experiments under different conditions. The mean seedling emergence in field was only 16.9% and no morn than the half of that in lab. After one year, the seedling mortality was 57.6%. Seed germination and seedling survival and growth of A. chensiensis were affected by elevation, light conditions, seedbed material, sowing depth and seed provinces in differing degrees.
引文
[1]班勇.土壤种子库的结构与动态[J].生态学杂志,1995,14(3);33-39
    [2]岑庆雅.中国松科冷杉亚科植物区系研究[J].中山大学学报,1996,(2);87-92
    [3]查同刚,孙向阳,王登芝.北京西山地区人工侧柏林种子雨的研究[J].北京林业大学学报,2003,25(1);28-31
    [4]陈彩霞,王九龄,智信.国内外红松种子休眠及催芽问题研究动态[J].世界林业研究,1997(5);3-9
    [5]陈家宽,陈中义.不同生境内濒危植物长喙毛莨泽泻种群数量动态比较[J].植物生态学报,1999
    [6]陈灵芝.中国的生物多样性;现状与保护对策[M].北京;科学出版社,1993,241
    [7]陈晓阳.林木种内地理变异及其应用[J].贵州林业科技,1989,17(1);79-85
    [8]陈章和,张德明.南亚热带森林24种乔木的种子萌发和幼苗生长[J].热带亚热带植物学报,1999,7(1);37-46
    [9]成克武,臧润国.物种濒危状态等级评价概述[J].生物多样性,2004,12(5);534-54
    [10]狄维忠.秦岭冷杉[M].见;傅立国主编,中国植物红皮书(第一卷).北京;科学出版社,1992,52
    [11]丁琼,王华,贾桂霞.沙冬青种子萌发及幼苗生长特性[J].植物生态学报,2006,30(4);633-639
    [12]樊金拴,王性炎.巴山冷杉针叶精油化学成分的研究[J].武汉植物学研究,1992,10(2);163-168
    [13]樊金拴.巴山冷杉和秦岭冷杉精油比较分析[J].西北林学院学报,1998,13(3);42-44.
    [14]傅家瑞.种子生理[M].北京;科学出版社,1985,76-78
    [15]傅立国.珍稀濒危植物红皮书(第一册)[M].北京;科学出版社,1991
    [16]傅志军.秦岭太白山巴山冷杉林初步研究[J].宝鸡文理学院学报(自然科学版),1997,17(4);60-64
    [17]谷建田,孔祥辉,陈杭.蕃茄种子人工老化前后吸湿-回干处理的生理生化变化[J].植物生理与分子生物学学报,1993,19(2);131-136
    [18]管中天.四川松杉植物地理[M].成都;四川人出版社,1982.
    [19]郭忠玲,赵秀海.保护生物学概论[M].北京;中国林业出版社,2003,186-187
    [20]贺军民,佘小平.提高人工老化番茄种子活力的研究[J].西北大学学报(自然科学版),2000,30(2);147-149
    [21]贺善安,顾姻,诸瑞芝等.植物园与植物园学[J].植物资源与环境学报,2001,10(4);48-51.
    [22]胡星明,蔡永立,李恺等.浙江天童常绿阔叶林栲树种子雨的时空格局[J].应用生态学报,2005,16(5);815-819.
    [23]黄仕训.元宝山冷杉濒危原因初探[J].农村生态环境,1998,14(1);6-9.
    [24]黄振英,张新时,Gutterman Y等.光照、温度和盐分对梭梭种子萌发的影响[J].植物生理学报,2001,27(3);275-280.
    [25]蒋志刚,葛颂.探索长江流域物种濒危机制与保护对策[J].生物多样性,2005,13(5);367-375.
    [26]景新明,郑光华,洪德元.野生紫斑牡丹和四川牡丹种子萌发特性及与其致濒的关系[J].生物多样性.1995,3(2);84-87.
    [27]景新明,郑光华.4种野生牡丹种子休眠和萌发特性及与其致濒的关系[J].植物生理学报,1999,25(3);214-221.
    [28]景新明,郑光华.超干的榆树种子在加速老化过程中活力变化与染色体变异[J].植物学报,1994,36;73-78.
    [29]克累莫尔,考兹洛夫斯基.木本植物生理学(汪振儒等译).北京;中国林业出版社.1985.
    [30]拉德维格,蓝诺兹著.统计生态学;计算方法和入门(李育中,王炜,裴浩译).呼和浩特;内蒙古大学出版社.1990,10-24.
    [31]赖江山,李庆梅,谢宗强.濒危植物秦岭冷杉种子萌发特性的研究[J].植物生态学报,2003,27(5);661-666.
    [32]雷明德.陕西植被[M].北京;科学出版社,1999,126.
    [33]李昂,葛颂.植物保护遗传学研究进展[J].生物多样性 2002,10(1);61-71.
    [34]李博,班继德.鄂西神农架自然保护区巴山冷杉林的研究[J].武汉植物学研究,1988,6(4);345-356.
    [35]李长喜.林木天然群体表型变异研究概述[J].林业科学研究,1998,1(6);657-664.
    [36]李典谟,徐汝梅.物种濒危机制和保育原理[M].北京;科学出版社,2005,42
    [37]李景侠,张文辉.巴山冷杉种群结构及空间分布格局的研究[J].西北农林科技大学学报,2001,29;115-118.
    [38]李楠.论松科植物的地理分布、起源和扩散[J].植物分类学报,1995,33(2);105-130.
    [39]李天煜.鲁山县石人山自然保护区巴山冷杉(Abies fargesii)群落的初步研究[J].信阳师范学院学报(自然科学版),1991,4(1);80-85.
    [40]李文漪.神农架巴山冷杉林花粉与植物关系及其森林植被之演替[J].地理学报,1991,46(2);186-194.
    [41]李先琨,苏宗明.元宝山冷杉种群濒危原因及保护对策[J].北华大学学报(自然科学版),2002,3(1);80-84.
    [42]李晓洁,徐化成.白皮松种子发芽习性及其种源变异的研究[J].林业科学,1989,25(2);97-104.
    [43]刘果厚.阿拉善荒漠特有植物沙冬青濒危原因的研究[J].植物研究,1998,18(3);341-345.
    [44]刘济明,钟章成.梵净山栲树群落的种子雨,种子库及更新[J].植物生态学报,2000,24(4);402-407.
    [45]刘继生,张鹏等.延边地区赤松种子及球果形态特征的变异[J].延边大学农学学报,2000,22;245-249.
    [46]刘建军,令志哲.太白山巴山冷极林初步研究[J].西北林学院学报,1995,10(1);9-14.
    [47]刘录,金月平,王奉吉等.兴安落叶松种子园无性系结实特性初探[J].辽宁林业科技,1997,(4);6-7.
    [48]刘增力,朴世龙,方精云.中国冷杉、云杉和落叶松属植物的地理分布[J].地理学报,2002,57(5);577-586.
    [49]刘震,王艳梅,蒋建平.不同种源白花泡桐种子的休眠生理生态研究[J].生态学报,2004,24(5);959-964.
    [50]刘志民,赵文智等.西藏雅鲁藏布江中游河谷砂生槐种群种子库特征[J].生态学报,2002,22(5);715-722.
    [51]刘足根,朱教君,袁小兰.辽东山区长白落叶松(Lafix olgensis)种子雨和种子库[J].生态学报,2007,27(2);579-587.
    [52]卢小根,邹达明.普陀鹅耳枥濒危原因的调查研究[J].浙江林业科技,1990,10(5);61-64.
    [53]路纪琪,李宏俊,张知彬.山杏的种子雨及鼠类的捕食作用[J].生态学杂志,2005,24(5);528-532.
    [54]罗建勋,顾万春.云杉天然群体种实性状变异研究[J].西北农林科技大学学报,2004,32(8);60-66.
    [55]马杰,李庆芬,孙儒泳等.啮齿动物和鸟类对东灵山地区辽东栎种子丢失的影响[J].生态学杂志,2004,23(1);107-110.
    [56]马绍宾,姜汉侨,黄衡宇.药物植物桃儿七不同种群种子产量初步研究[J].应用生态学报,2001,12(3);363-368.
    [57]马万里,荆涛,Joni Kujau等,长白山地区胡桃楸种群的种子雨和种子库动态[J].北京林业大学学报,2001,23(3);70-72.
    [58]马信祥等.国家重点保护植物山红树濒危原因研究[J].云南植物研究,1988,10(31);313-316.
    [59]彭超英.SAS,8.2[M].北京;希望电子出版社,2000.
    [60]奇文清,冯云,陈朱希昭等.濒危植物南川升麻生殖特性的研究[J].植物学报,1997,39(1);7-10.
    [61]沈泽昊,吕楠,赵俊.山地常绿落叶阔叶混交林种子雨的地形格局[J].生态学报,2004,24(9);1981-1987.
    [62]盛海燕,常杰,殷现伟等.濒危植物明党参种子散布和种子库动态研究[J].生物多样性,2002,10(3);269-273.
    [63]盛瑞发,任朝珊,梁立兴.油松人工林球果生物量的初步研究[J].生态学报,1984,4;134-140.
    [64]世界资源研究所(WRI)等.全球生物多样性策略(中国科学院生物多样性委员会译)[M].北京;中国标准出版社,1993.
    [65]孙会忠.秦岭冷杉种群生殖生态学研究.硕士论文.2004.
    [66]孙敬爽,贾桂霞.朝鲜冷杉种子层积过程中萌发特性和内源激素ABA、IAA含量的变化[J].林业科学研究,2006,19(1);117-120.
    [67]孙时轩.森林学[M].北京;中国林业出版社.1992.
    [68]孙玉玲,李庆梅,谢宗强.濒危植物秦岭冷杉结实特性的研究[J].植物生态学报,2005,29(2);251-257.
    [69]孙玉玲,李庆梅,杨敬元等.秦岭冷杉球果与种子的形态变异[J].生态学报,2005,25(1);176-181.
    [70]谭志一,董愚得,房耀仁等.红松种于休眼与脱落酸及外种皮的关系[J].中国科学(B).1983,26;816-822.
    [71]唐润琴,李先琨等,濒危植物元宝山冷杉结实特性与种子繁殖力初探[J].植物研究,2001,21;403-408.
    [72]汪小全,邹喻苹,张大明等.银杉遗传多样性的RAPD分析[J].中国科学(C辑),1996,26(5);436-441.
    [73]汪振儒译.木本植物生理学[M].中国林业出版社.1985.
    [74]王东馥,杨军,宋学之等.硝酸钾对油松种子萌发与活力的影响[J].种子,1983,10-12.
    [75]王荷生.植物区系地理[M].北京;科学出版社,1992.
    [76]王建波,陈家宽.长喙毛茛泽泻的生活史特征及濒危机制.生物多样性,1998,6;167-171.
    [77]王罗荣,宋从文,陈清波等.神农架秦岭冷杉天然资源的开发与利用[J].湖北林业科技,2000,4;11-14.
    [78]王巍,马克平,刘灿然.北京东灵山落叶阔叶林中辽东栎种子雨[J].植物学报,2000,42(2);195-202.
    [79]王文章,陈杰,刘思举等.红松种于抑制物的提取、分离、鉴定[J].中国科学,1980(B),23;899-906.
    [80]王献溥,郭柯.关于IUCN红色名录类型和标准新的修改[J].植物资源与环境学报,2002,11(3);53-56.
    [81]王小平,刘春江.白皮松种子及球果形态特征的地理变异[J].北京林业大学学报,1988,20;25-31.
    [82]王孝安,王志高,肖娅萍.太白红杉种实数量特征[J].植物生态学报,2005,29(3);367-372.
    [83]王孝安,王志高,肖娅萍等.秦岭山地太白红杉种群种实性状的生态可塑性研究[J].应用生态学报,2005,16(1);29-32.
    [84]王性炎,樊金拴.巴山冷杉和秦岭冷杉树脂精油化学成分的研究[J].经济林研究,1990,9(1);11-16.
    [85]王怡陶.红松种于休眠、后熟和萌发生理的研究[M].东北林业大学硕士论文,1991.
    [86]王占勤,李怡,郝士成等.太岳林区油松球果出种量及种子品质的研究[J].山西林业科技,2005,2;12-14.
    [87]吴大荣,王伯荪.濒危树种闽楠种子和幼苗生态学研究[J].生态学报,2001,21(11);1750-1760.
    [88]吴征镒.中国种子植物属的分布区类型[M].云南植物研究,1991.
    [89]向巧萍.冷杉属的系统学.博士论文,2000.
    [90]谢宗强,陈伟烈,胡东.濒危植物银杉的结实特性及动物对果实的危害性[J].植物生态学报,1998,22(4);319-326.
    [91]谢宗强,陈伟烈,路鹏等.濒危植物银杉的种群统计与年龄结构[J].生态学报,1999,19(4);523-528.
    [92]谢宗强,李庆梅.濒危植物银杉种子特性的研究[J].植物生态学报,2000,24(1);82-86.
    [93]熊志斌,冉景丞,谭成江等.濒危植物掌叶木种子生态特征[J].生态学报,2003,23(4);8-20.
    [94]徐化成.油松地理变异及种源选择[M].北京;中国林业出版社,1991,67-69.
    [95]徐亮,包维楷,何永华.4个岷江柏种群的球果和种子形态特征及其地理空间差异[J].应用与环境生物学报,2005,10(6);707-711.
    [96]许再富.稀有濒危植物迁地保护的原理与方法[M].云南科学技术出版社.1998.
    [97]杨允菲,祝廷成.松嫩平原大针茅群落种子雨动态的研究[J].植物生态学与地植物学学报, 1991,15(1);46-55.
    [98]叶常丰,戴心维.种子学[M].中国农业出版社,1994,249-288.
    [99]殷寿华,帅建国等.望天树种子散布萌发及其种群年龄匹配关系的研究[M].主要珍稀濒危树种繁殖技术,北京;中国林业出版社,1992.66-69.
    [100]尹华军,刘庆.川西米亚罗亚高山云杉林种子雨和土壤种子库研究[J].植物生态学报,2005,29(1);108-115.
    [101]应俊生.中国种子植物物种多样性及其分布格局[J].生物多样性,2001,9(4);393-398.
    [102]于永福.中国野生植物保护工作的里程碑[J].植物杂志,1999(5);3-11.
    [103]张恒庆,安利佳,祖元刚.天然红松种群形态特征地理变异的研究[J].生态学报,1999,19(6);932-938.
    [104]张良诚,郭维明,陈永盛.红松种子生理后熟的研究[J].东北林业大学学报,1981,4;43-50.
    [105]张岂凡.中国森林(第2卷)-针叶林[M].北京;中国林业出版社,1999,773-774.
    [106]张世挺,杜国祯,陈家宽.种子大小变异的进化生态学研究现状与展望[J].生态学报,2003,23(2);353-364.
    [107]张文辉,许晓波,周建云.濒危植物秦岭冷杉生殖生态学特征[J].生态学报,2006,26;2417-2424.
    [108]张文辉,许晓波,周建云等.濒危植物秦岭冷杉种群空间分布格局及动态[J].西北植物学报,2005,25;1840-1847.
    [109]张文辉,许晓波,周建云等.濒危植物秦岭冷杉种群数量动态[J].应用生态学报,2005,18;1799-1804.
    [110]张文辉,祖元刚,刘国彬.十种濒危植物的种群生态学特征及致危因素分析[J].生态学报,2002,22(9);1513-1522.
    [111]张晓艳,李宇歌.PEG渗透处理对老化种子活力的影响[J],吉林师范大学学报(自然科学版),2005,2;50-51.
    [112]张仰渠.陕西森林[M].北京;中国林业出版社,1986.
    [113]张卓文.杉木种子园无性系球果及其种子分布特征[J].福建林学院学报,2004,24(1);45-49.
    [114]赵德铭.中国木本植物种子[M].北京;中国林业出版社,2001,10-15.
    [115]浙江农业大学种子教研组.种子学[M].上海;上海科学技术出版社,1980,241.
    [116]郑光华,史忠礼,赵同芳等.实用种子生理学[M].北京;农业出版社,1990,214-268.
    [117]郑光华.种子生理研究[M].北京;科学出版社.2004.
    [118]中国科学院武汉植物研究所.神农架植物[M].武汉;湖北人民出版社,1980.
    [119]中国森林编辑委员会.中国森林[M].北京;中国林业出版社,1999.
    [120]中国植物志编辑委员会.中国植物志[M]第7卷[M].1978.
    [121]中科院西北植物研究所.秦岭植物志[M].科学出版社,1976.
    [122]周爱清等.种子活力[M].北京;农业出版社,1990.
    [123]周陛勋.林木种子检验[M].中国标准出版社,1986.
    [124]周仁超,于东明,黄言强等.紫斑牡丹的濒危机制与保护对策[J].国土与自然资源研究,2002,3;74-75.
    [125]周世良,张方,王中仁等.杭州石荠苎和石香薷的遗传多样性研究[J].遗传学报,1998,25(2);173-180.
    [126]朱兆泉,宋朝枢.神农架自然保护区科学考察集[M].北京;中国林业出版社,1999.
    [127]庄雪影,Corlett.香港次生林树种种子生理生态学特性的研究[J].生态科学,1999,18(1);1-6.
    [128]邹春静,徐文铎,刘广田.沙地云杉种群种子雨的时空分布规律.生态学杂志,1998,17(3);16-19.
    [129]邹德曼.种子生理学(种子生理讲习班)[M]).北京;中国林业科学研究院.
    [130]Abrahamson W G.Pattern of resources allocation in wild flower population of fields and woods[J].American Journal of Botany.1979,66;71-79.
    [131]Aiazzi M T,Di Rienzo J A,Arguello J A.Effect of light and temperature on the germination and seedling vigor of Atriplex cordobensis(Gandoger et Stuckert)seeds harvested in autumn and winter[J].Seed Science and Technology.2000,28;477-484.
    [132]Angela T M,David D A,John C T,John B D,Roger S,Michelle R L,Margaret M M,Andy P,Jeff T W,Mark W.Global patterns in seed size[J].Global Ecology and Biogeography.2007,16;109-116.
    [133]Beaulieu J,Simon J P.Variation in cone morphology and seed characters in Pinus strobes in Quebec[J].Canadian Journal of Botany.1995,73;262-271.
    [134]Bhattacharya A,Nagar P K,Ahuja P S.Seed germination of Rumex hastatus D.Don[J].Seed Science and Technology.2000,28;67-74.
    [135]Borghetti M,Giannini R,Menozzi P.Geographic Variation in cones of Norway Spruce(Picea Abies(L.)Karst.)[J].Silvae Genetica.1988,37(5- 6);178-184.
    [136]Brown J,Enright N J,Miller B P.Seed production and germination in two rare and three common co-occurring Acacia species from south-east Australia[J].Australia Ecology.2003,28;271-280.
    [137]Cambell S J,Landis TD,Managing seedbourne diseases in Western Forest nurseries[J].Tree Planters Notes.1990,41;3-7.
    [138]Chambers J C.A day in the life of a seed;Movements and fates of seeds and their implications for natural and managed systems[J].Annual Review of Ecology and Systematics.1994,25;263-293.
    [139]Clobert J.Dispersal[M].London;Oxford University Press.2001.
    [140]Connell J H.On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees.In;Boer P J,Gradwell G R.Dynamics of Populations[M].Wageningen;Centre for Agricultural Publishing and Documentation.1971,298-312.
    [141]Cunningham S A.Effects of habitat fragmentation on the reproductive ecology of four plant species in mallee woodland[J].Conservation Biology.2000,14;758-768.
    [142]Davidson R,El-Kassaby Y A.Genetic diversity and gene conservation of pacific silver fir(Abies amabilis)on Vancou- ver Island,British Columbia[J].Forest Genetics.1997,4;85-98.
    [143]Delouche J C,Baskin C C.Accelerated aging techniques for predicting the relative storability of seeds lots[J].Seed Science and Technology.1973,1(2);427-452.
    [144]Delouche J C.Precepts of seed storage[J].Proceeding of the Mississippi State Seed Processors Short Course.1973,93-122.
    [145]Dunn C P,Bowles M L,Rabb G B,et al.Endangered species "hot spots"[J].Science.1997,276,513-515.
    [146]Elliott H M.Some methods for the Statistical Analysis of Samples of Benthic Invertebrates[M].Great Britain;Scientific Publication No.25,Freshwater Biological Association.1973.
    [147]Ellsworth J W,Harrington R A,Fownes J H.Seedling emergence,growth,and allocation of Oriental bitter sweet;effects of seed input,seed bank,and forest floor litter[J].Forest Ecology and Management.2004,190;255-264.
    [148]Feller M C.Influence of ecological conditions on Engelmann spruce(Picea engelmannii)and subalpine fir(Abies lasiocarpa)germinant survival and initial seedling growth in south-central British Columbia[J].Forest Research and Management.1998,107;55-69.
    [149]Franklin J F.Preserving biodiversity;Species,ecosystems,or landscapes?[J].Ecological Applications.1993,3;202-205.
    [150]Frankham R.Stress and adaptation in conservation genetics.Jourual of Evolutionary Biology 2005.18,750-755.
    [151]Gosling P G.Dry after-ripening does not stimulate the germination of shallowly dormant Sitka spruce(Picea sitchensis[Bong.]Carr.)seeds[J].Seed Science and Technology.2000,28;507-511.
    [152]Grime J P,Madson G,Curtis A V.et al.A comparative study of germination characteristics in a local flora[J].Journal of Ecology.1981,69;1017-1059.
    [153]Hagner M.Provenance research in Sweden,in the past and in the future[J].Tree Species.1972,Part 2.
    [154]Hamrick J L,Blanton H M,Hamrick K J.Genetic structure of geographically marginal populations of ponderosa pine[J].American Journal of Botany.1989,76;1559-1568.
    [155]Harper J L.Population Biology of Plants[M].London;Academic Press.1977.
    [156]Henry F,Howe J S.Ecology of seed dispersal[J].Annual Review of Ecology and Systematics.1982,13;201-228.
    [157]Heydecker W.Seed Ecology[M].London;Butterworths.1973,159-167
    [158]ISTA.国际种子检验规程(颜启传等译)[M].北京;中国农业出版社.1996,8-20.
    [159]IUCN.Guidelines for Application of IUCN Red List Criteria at Regional Levels;Version 3.0[M].Gland;the IUCN Species Survival Commission.2003.
    [160]IUCN.IUCN Red List Categories[M].Gland;the IUCN Species Survival Commission.1994.
    [161]IUCN.IUCN Red List Categories and Criteria;Version 3.1[M].Gland;the IUCN Species Survival Commission.2001.
    [162]IUCN.IUCN Red List on Threatened Plants[M].Gland;the IUCN Speci Gland;the IUCN Species Survival Commission.es Survival Commission.1997.
    [163]Jackson S T,Overpeck J T,et al.Mapped plant-macrofossil and pollen records of late Quaternary vegetation change in eastern North America[J].Quaternary Science Reviews.1997,16;1-70.
    [164]Janzen D H.Herbivores and the number of tree species in tropical forests[J].American Naturalis.1970,104;501-528.
    [165]Jennifer C J,John G,Stephen P H.Growth and Photosynthesis of Pinus Sylvestris at its Altitudinal Limit in Scotland[J].The Journal of Ecology.1994,82;297-306.
    [166]Jones S K,Samuel Y K,Gosling P G.The effect of soaking and prechilling on the germination of noble fir seeds[J].Seed Science and Technology.1991,19;287-293.
    [167]Juan J A,Ivan D Claudia P,Mary F W.Seed rain of fleshy and dry propagules in different habitats in the temperate rainforests of Chiloé Island,Chile[J].Australia Ecology.2001,26;311-320.
    [168]Kaye T N,Kuykendall K.Effect of scarification and cold stratification on seed germination of Lupinus ssp.Kincaidii[J].Seed Science and Technology.2001,29;663-668.
    [169]Khalil M A K.Genetic of cone morphology of Black Spruce(Picea mariana(Mill).B.S.P.)in Newfoundland,Canada[J].Silvae Genetica.1984,33;4-5.
    [170]Khan.种子休眠和萌发的生理生化(王沙生,洪铁宝,高荣孚等译)[M].北京;农业出版社.1989,62-115.
    [171]Leimu R,Mutikainen P,Koricheva J,Fischer M.How general are positive relationships between plant population size,fitness and genetic variation? Journal of Ecology 2006.94;942-952
    [172]Leishman M R,Wright I J,Moles A T,Westoby M.The evolutionary ecology of seed size.In;Fenner M.Seeds;The Ecology of Regeneration in Plant Communities,2nd(ed.)[M].Wallingford;CAB International.2000,31-57.
    [173]Liu J G,Ouyang Z Y,Stuart L,Pimm S L,et al.Protecting China's Biodiversity[J].Science.2003,300(23);1740-1741.
    [174]Mace G,Lande R.Assessing Extinction Threats;Toward a Reevaluation of IUCN Threatened Species Categories[J].Conservation Biology.1991,5(2);148-157.
    [175]Maley M L,Parker W H.Phenotypic variation in cone and needle characters of Pinus banksiana(jack pine)in northwestern Ontario[J].Canada Journal of Botany.1993,71;43-51.
    [176]Martin J P.Genetic variation in the endemic and endangered Rosmarinus tomentosus(Labiatae)using RAPD markers[J].Heredity.2000,85(5);434-443.
    [177]McDonald M B.Seed quality assessment[J].Seed Science Research.1998,8;265-275.
    [178]McDonald M B.Vigor test subcommittee report[J].AOSA Newsletter.1980,54(1);37-40.
    [179]Mohammad K B,Esen A.Zein degradation in the endosperm of maize seeds during germination[J].American Journal of Botany.1990,77(8);973-980.
    [180]Montserrat A,Salvador T.Density effect on the fruit-set,seed crop viability and seedling vigour of Abies pinsapo[J].Annals of Botany.1996,77;187-192.
    [181]Nathan R,Helene C M.Spatial patterns of seed dispersal,their determinants and consequences for recruitment[J].Tree.2000,15(7);278-284.
    [182]Nishitani S,Masuzawa T.Germination characteristics of two species of Polygonum in relation to their altitudinal distribution on Mt.Fuji,Japan[J].Arctic and Alpine Research.1996,28;104-110.
    [183]Oldfield S,Lusty C,MacKinven A.The World List of Threatened Trees[M].Cambridge;World Conservation Press.1998.
    [184]Oostermeijer J G B,Luijten S H,Krenova Z V,et al.Relationships between population and habitat characteristics and reproduction of the rare Gentiana Kruckeberg[J].Conservation Biology.1998,12;1042-1053.
    [185]Perry L P,Boodley Y W.Germination of foliage plant seeds in respon(?)e to pre-sowing ultrasonic exposures water soaks,and fungicides[J].Hort Science.1980,15(2);192-194.
    [186]Piedra,T.E.,Geographic variation in needles,cones and seeds of Pinus tecunumanii in Guatemala[J].Sivae Genetica,1984,33(2-3);72-79
    [187]Roemer G W,Coonan T J,Garcelon D K et al.Feral pigs facilitate hyperpredation by Golden Eagles and indirectly cause the decline of the island fox[J].Animal Conservation.2001,4;307-318.
    [188]Schmitz N,Xia J H,Kermode A R.Dormancy of yellow cedar seeds is terminated by gibberellic acid in combination with fluridone or with osmotic priming and moist chilling[J].Seed Science and Technology.2001,29;331-346.
    [189] Schoettle A W, Rochelle S G. Morphological variation of Pinus Flexilis(Pinaceae), a bird-dispersed pine, across a range of elevations [J]. American Journal of Botany. 2000, 87(12): 1797-1806.
    [190] Shea K L, Fumier G R. Genetic variation and population structure in central and isolated populations of Balsam fir, Abies Balsamea (Pinaceae) [J]. American Journal of Botany. 2002, 89(5): 783-791.
    [191] Shen T Y, Qden P C. Activity of sucrose synthase, soluble acid invertase and fumarase in germinating seeds of Scots pine(Pinus sylvestris L.) of different quality [J]. Seed Science and Technology. 1999, 27: 825-838.
    [192] Staszriewicz J. Biometric studies on the cones of Pinus sylvestris growing in Hungary [J]. Acta. Botanica. 1961,7:451-466.
    [193] Steven D. Experiments on mechanisms of tree establishment in old-field succession: seedling survival and growth [J]. Ecology. 1991, 1076-1088.
    [194] Tobe K, Zhang L, Omasa K. Effect of NaCl on seed germination of five nonhalophytic species from a Chinese desert environment [J]. Seed Science and Technology. 1999, 27: 851 -863.
    [195] Venable DL, Lawlor L. Delayed germination and dispersal in desert annuals: escape in space and time [J]. Oecologia. 1980. 46: 272-282.
    [196] Vidakovic M. Investigation on the intermediate type between the Austrian and Scots pine [J]. Sivae Genetica. 1958,7:12-19.
    [197] Wheeler N C, Guries R P. Population structure, genetic diversity, and morphological variation in Pinus contorta Dougl [J]. Canadian Journal of Forest Research. 1982,12:595-606.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.