释药微球骨组织工程支架的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统医学通常依靠自体骨和异体骨移植进行骨修复,但它们各自存在明显的缺点。人工骨修复材料在近年来得到了广泛关注,尤其是针对骨组织工程中存在的关键问题之一——构建功能化的、特别是能介导蛋白的富集和细胞的粘附、迁移、增殖,诱导细胞特异性分化、维持细胞表型的骨组织工程支架,已成为该领域的热点。本研究结合组织工程与药物缓释技术以构建功能化的骨修复支架,在为细胞提供生长的三维环境的同时,可控缓释有特定作用的药物分子,刺激细胞响应,促进细胞的生长。本文以PLGA和PHBV为主要基体,首次完成PHBV微球改性PLGA基体多孔支架的多级构建,并进一步将该支架系统中的PHBV微球功能化——即负载药物,最终构建了具有多级结构和多级成分的功能化骨组织工程支架。它一方面可以为细胞的生长提供三维空间,支持其生长;另一方面能缓释药物,刺激细胞响应并促进其增殖。
     本研究根据PLGA与PHBV在丙酮中的溶解度差异,采用预制的PHBV微球改性PLGA基体,构建了PHBV微球增强PLGA基体的具有多级结构的复合支架(简称PLGA/m-PHBV)。通过合理地调控PHBV微球的粒径大小、氯化钠和PHBV微球的比例,可以控制PLGA/m-PHBV支架的孔隙率及孔径分布。当PHBV微球的质量达到PLGA基体质量的50%时,支架孔隙率超过83%,抗压强度约1.4MPa。采用人骨髓间质干细胞(hMSCs)对PLGA/m-PHBV支架的细胞相容性进行评价。结果表明,hMSCs在该支架上粘附良好,细胞生长形态正常。其增殖实验表明该支架体系能够很好地支持hMSCs在其上增殖;Live/Dead实验显示细胞大多分布在PLGA基体和微球交界处。在成骨诱导液中分别培养14天和21天后,对支架上的细胞分别进行碱性磷酸酶染色和茜素红染色,结果均呈阳性,表明hMSCs被诱导成了成骨细胞,并开始形成钙结节。
     利用HA与AL之间的螯合作用预制HA-AL螯合体并采用单乳液法将其包入PHBV制得PHBV/HA-AL释药微球,探讨了多个因素对微球粒径的影响。研究表明,随着搅拌速度的增加、表面活性剂浓度的增高和PHBV浓度的降低,微球的粒径逐渐减小。由于HA与AL之间的螯合作用,使得药物包封率达到80%以上;体外28天累积释放药物70%,并且累积释放率与时间遵循指数关系。体外60天的降解实验中,该系统没有引起明显酸性。细胞毒性试验表明,该释药微球系统的细胞毒性极小。
     将PHBV/HA-AL微球粒径优化,用该释药微球改性PLGA基体,构建了具有多级结构的功能化的PLGA/PHBV-HA-AL载药型骨组织工程支架。通过控制氯化钠、PHBV/HA-AL微球与PLGA的比例,得到了孔隙率超过81%的多孔支架。该支架的抗压强度超过1.1MPa,具有连通孔并且微球在基体上分布均匀。采用人骨髓间质干细胞(hMSCs)评价了PLGA/ PHBV-HA-AL支架的细胞相容性。结果表明,hMSCs在该支架上粘附良好,细胞形态正常。此外,MTT实验表明该支架系统能较好地支持hMSCs增殖;Live/Dead实验显示细胞大多集中在PLGA基体和微球交界处。在成骨诱导液中分别培养14天、21天后,对支架上的细胞进行碱性磷酸酶(ALP)和茜素红染色,其结果呈阳性,表明hMSCs被成功诱导成了成骨细胞。对支架上的hMSCs原位诱导,结果表明I型胶原免疫组化染色呈阳性,说明该载药支架能将hMSCs诱导为成骨细胞。
Although autogenous and allogeneic bone transplantation for bone repair has their drawbacks separately, they were widely used traditionally. Man-made bone repair materials have gained extensive attention in late years. Scholars paid especially attention to one of the key problems, which is establishing a functional bone repair scaffold with the ability to promote the adhesion, migration, proliferation of cells and seduce them toward specified ones. This study combined tissue engineering and control release of drugs together to establish a functional bone repair scaffold in the hope of providing a 3-D environment as well as controlled releasing certain drug moleculars to stimulate the cells and promote them to grow. This research employed PLGA and PHBV as the matrix, and then fabricated a multilevel structured PLGA scaffold modified by PHBV microspheres. Furthermore, we functionalized the PHBV mcirospheres by loading them with alendronate to make the whole scaffold with the property of sustained releasing drugs. This new scaffold with special structure can provide the 3-D space for the cells to grow on the one hand, on the other, it releases drugs with controlled manner to stimulate the cells to response and proliferate.
     According to the different solubility in acetone, PLGA and PHBV have been employed to fabricate PLGA/m-PHBV scaffold using particle-leaching method. The PHBV microspheres were used to enhance the PLGA scaffold. By adjusting the amount of PHBV microspheres, NaCl and PLGA concentration, we can control the porosity and pore size distribution of the scaffold. In this study, we made a scaffold with the porosity above 83% and the compressive strength of 1.4MPa. hMSCs were employed to evaluate the cyto-property. The result demonstrated that hMSCs adhered and proliferated well on the PLGA/m-PHBV scaffold. Live/dead experiment showed that most of the visible cells were distributed between PHBV microspheres and PLGA matrix. After induced in the osteogenic medium (OGM) for 21d, hMSCs on the scaffolds were turned into osteoblast according to the positive result of alizarin red dyeing.
     This study prepared PHBV/HA-AL microspheres with controllable diameter using single emulsion method and investigated the influential factors of microsphere diameter. The results showed that increasing the stirring speed and the concentration of surfactant could reduce the diameter of the microspheres. Owing to the chelation between hydroxyapatite (HA) and AL, this drug delivery system had a high encapsulation efficiency which exceeds 80% and only released 70% of AL within 28 days. During the in vitro degradation experiment, this system did not cause obvious acid environment. Meanwhile, the in vitro cytotoxicity experiment showed that this system did little harm to the hMSCs.
     The diameter of PHBV/HA-AL microspheres was tailored and they were used to fabricate PLGA/PHBV-HA-AL scaffold by the same method used above. This scaffold possessed a multi-level structure with the porosity of 81% and the compressive strength of 1.1MPa. hMSCs adhered and proliferated well on the scaffolds. The same cells distribution profile was found in the live/dead experiment. After induced in the osteogenesis inducing solution (OS) for 14d and 21d separately, the results of alkaline phosphatase and alizarin red dyeing were positive, which meant that hMSCs had turned into osteoblasts. After been cultured in the L-DMEM for 14d, the result of immunohistochemistry of collagenⅠon the scaffold was positive, which confirmed that this functional scaffold could induce the hMSCs to osteoblasts.
引文
[1] Langer R, Vacanti JP. Tissue engineering [J]. Science, 1993, 260: 920–926
    [2] MacArthur BD, Oreffo RO.“Bridging the gap”[J]. Nature, 2005, 433 (7021): 19.
    [3]阎明编译,姜宗来校.组织工程学[J].国外医学生物医学工程分册,1994, 17:279-283
    [4] Joseph P.R.O Orgel, Andrew Miller, Thomas C Irving, et al. The In Situ Supermolecular Structure of Type I Collagen [J]. Structure, 2001, 9(11): 1061-1069
    [5] Furthmayr H, Timol R. Immunochemistry of collagens and procollagens [J]. Int Rev Connect Tiss Res, 1976, 7: 61-99
    [6] Maeda M, Tan S, Sano A, et al. Microstructure and release characterstics of the minipellet, a collagen based drug delivery system for controlled release of protein drugs [J]. J Controlled Rel, 1999, 62: 313-324
    [7] Y. S. Pek, M. Spector, I. V. Yannas, et al. Degradation of a collagen–chondroitin-6-sulfate matrix by collagenase and by chondroitinase [J]. Biomaterials, 2004, 25(3): 473-482
    [8] Mueller S M, Shortkro S, Schneider T O, et al. Meniscus cells seeded in typeⅠand typeⅡcollagen-GAG matrices in vitro [J]. Biomaterials, 1999, 20: 701-709
    [9] Kuzuya M, Kinsell J L. Induction of endothelial cell differentiation in vitroby fibroblast-derived soluble factors [J]. Exp. Cell Res, 1994, 215: 310-318
    [10] Reddi A H. Ophogenesis and tissue engineering of bone and cartilage: inductive signals, stem cells, and biomimetic biomaterials [J]. Tissue Eng, 2000, 6(4): 351-359
    [11] Richard D. Price, M.G. Berry, Harshad A. Navsaria. Hyaluronic acid: the scientific and clinical evidence [J]. Journal of Plastic, Reconstructive & Aesthetic Surgery, 2007, 60(10): 1110-1119
    [12] Pisár ik M, Bako D, eppan M. Non-Newtonian properties of hyaluronic acid aqueous solution [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 97(3): 197-202
    [13] Liu L S, Thompson A Y, et al. An osteoconductive collagen/hyaluronate matrix for bone regeneration [J]. Biomaterials, 1999, 20: 1097-1108
    [14] Davide C, Patric D, et al. Semisynthetic resorbable materials from hyaluronan esterification [J]. Biomaterials, 1998, 19(23): 2101-2127
    [15] Solchaga L A, Dennis J E, Golgberg V M, et al. Hyaluronic acid-based polymers as cell carriers for tissue engineered repair of bone and cartilage [J]. J Orthop Res, 1999, 17: 205-209
    [16] Hideki Murakami, Masao Kobayashi, Hirofumi Takeuchi, et al. Further application of amodified spontaneous emulsification solvent diffusion method to various types of PLGA and PLA polymers for preparation of nanoparticles [J]. Powder Technology, 2000, 107(1-2): 137-143
    [17] Shuyu Xie, Siliang Wang, Luyan Zhu, et al. The effect of glycolic acid monomer ratio on the emulsifying activity of PLGA in preparation of protein-loaded SLN [J]. Colloids and Surfaces B: Biointerfaces, 2009, 74(1): 358-361
    [18] MJesús Dorta, Obdulia Munguía, Matías Llabres. Effects of polymerization variables on PLGA properties: molecular weight, composition and chain structure [J]. International Journal of Pharmaceutics, 1993, 100(1-3, 8): 9-14
    [19] Salvatore D'Antone, Fabio Bignotti, Luciana Sartore, et al. Thermogravimetric investigation of two classes of block copolymers based on poly(lactic-glycolic acid) and poly( -caprolactone) or poly(ethylene glycol) [J]. Polymer Degradation and Stability, 2001, 74(1): 119-124
    [20] S. Schenderlein, M. Lück, B.W. Müller. Partial solubility parameters of poly(d,l-lactide-co-glycolide) [J]. International Journal of Pharmaceutics, 2004, 286(1-2, 22): 19-26
    [21]蔡晴;贝建中;王身国,等.乙交酯/丙交酯共聚物的体内外降解行为及生物相容性研究[J].功能高分子学报, 2000, 13(3): 249-254
    [22] Qing Cai, Guixin Shi, Jianzhong Bei et al. Enzymatic degradation behavior and mechanism of Poly(lactide-co-glycolide) foams by trypsin [J]. Biomaterials, 2003, 24(4): 629-638
    [23]王平山,蔡锦方,梁进,等.可吸收内固定物在手部关节内骨折的应用[J].中华手外科杂志,2003, 19(2): 68
    [24] Ishaug-Riley S L, Crane-Kruger G M, Yaszemski M J, et al. Three dimensional culture of rat calvarial osteoblasts in porous biodegradable polymers [J]. Biomaterials, 1998, 19: 1405-1412
    [25] Masayuki Tohyama, Trayanka Patarinska, Ziwen Qiang et al. Modeling of the mixed culture and periodic control for PHB production [J]. Biochemical Engineering Journal, 2002, 10(3): 157-173
    [26] Joseph M. Merrick, Steger R, Dombroski D. Hydrolysis of native poly(hydroxybutyrate) granules (PHB), crystalline PHB, and artificial amorphous PHB granules by intracellular and extracellular depolymerases [J]. International Journal of Biological Macromolecules, 1999, 25(1-3): 129-134
    [27] L. J. Chen, M. Wang. Production and evaluation of biodegradable composites based on PHB–PHV copolymer [J]. Biomaterials, 2002, 23(13): 2631-2639
    [28] R.C. Young, Giorgio Terenghi, M. Wiberg. Poly-3-hydroxybutyrate (PHB): a resorbable conduit for long-gap repair in peripheral nerves [J]. British Journal of Plastic Surgery, 2002, 55(3): 235-240
    [29] Cheng Chen, Bin Fei, Shuwen Peng, et al. Nonisothermal crystallization and melting behavior of poly(3-hydroxybutyrate) and maleated poly(3-hydroxybutyrate) [J]. European Polymer Journal, 2002, 38(8): 1663-1670
    [30] H. Yamane, K. Terao, S. Hiki, Y. Kawahara, Y. Kimura, T. Saito. Enzymatic degradation of bacterial homo-poly(3-hydroxybutyrate) melt spun fibers [J]. Polymer, 2001, 42(18): 7873-7878
    [31]姚康德,尹玉姬.组织工程相关生物材料[M].北京:化学工业出版社,2003: 77-78
    [32] Boeree N R, Dove J, Cooper J J. Development of a degradable composite for orthopaedic use: mechanical evaluation of an hydroxyapatite polyhydroxybulyrate composite material [J]. Biomaterials, 1993, 14(10): 793-796
    [33] Y. S. Chun, W. N. Kim. Thermal properties of poly(hydroxybutyrate-co-hydroxyvalerate) and poly(ε-caprolactone) blends [J]. Polymer, 2000, 41(6): 2305-2308
    [34] Chen Y, Yang G, Chen Q. Solid-state NMR study on the structure and mobility of the noncrystalline region of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [J]. Polymer, 2002, 43(7): 2095-2099
    [35] Li Z G, Lin H, Ishii N, et al. Yoshio Inoue Study of enzymatic degradation of microbial copolyesters consisting of 3-hydroxybutyrate and medium-chain-length 3-hydroxyalkanoates [J]. Polymer Degradation and Stability, 2007, 92(9): 1708-1714
    [36] Peng S W, An Y , Chen C, et al. Isothermal crystallization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [J]. European Polymer Journal, 2003, 39(7): 1475-1480
    [37] Agarwal S, Speyerer C. Degradable blends of semi-crystalline and amorphous branched poly(caprolactone): Effect of microstructure on blend properties [J]. Polymer, 2010, 51(5): 1024-1032
    [38] Luo X F, Lauber K E., Mather P T. A thermally responsive, rigid, and reversible adhesive [J]. Polymer, 2010, 51(5): 1169-1175
    [39] F. Rezgui, M. Swistek, J.M. Hiver, et al. Deformation and damage upon stretching of degradable polymers (PLA and PCL) [J]. Polymer, 2005, 46(23): 7370-7385
    [40] Nojima S C, Tanaka H, Rohadi A, et al. The effect of glass transition temperature on thecrystallization of -caprolactone-styrene diblock copolymers [J]. Polymer, 1998, 39(8-9): 1727-1734
    [41] Guo Q P, Zheng F H. Miscibility and crystallization of thermosetting polymer blends of unsaturated polyester resin and poly(ε-caprolactone) [J]. Polymer, 1999, 40(3): 637-646
    [42] Huang Q, Goh J C, Hutmacher D W. In vivo mesenchymal cell recruitment by a scaffold loaded with transforming growth factor betal and the potential for in situ chondrogenesis [J]. Tissue Eng, 2002, 8(3): 469-482
    [43] Luciani A, Coccoli V, Orsi S, et al. PCL microspheres based functional scaffolds by bottom-up approach with predefined microstructural properties and release profiles [J]. Biomaterials, 2008, 29 (36): 4800-4807
    [44] Kang B, Dai Y D, Zhang H Q, et al. Synergetic degradation of chitosan with gamma radiation and hydrogen peroxide [J]. Polymer Degradation and Stability, 2007, 92(3): 359-362
    [45] Jiang S C, Ji X L, An L J, et al. Crystallization behavior of PCL in hybrid confined environment [J]. Polymer, 2001, 42(8): 3901-3907
    [46] Mareau V H, Robert E. Prud'homme. Crystallization of ultrathin poly(ε-caprolactone) films in the presence of residual solvent, an in situ atomic force microscopy study [J]. Polymer, 2005, 46(18) : 7255-7265
    [47] Lahiji A, Sohrabi A, et al. Chitosan supports the expression of extracellular matrix proteins in human osteoblasts and chondrocytes [J]. J Biomed Mater Res, 2000, 51(4): 586-595
    [48] Prokopiev O, Sevostianov I. Dependence of the mechanical properties of sintered hydroxyapatite on the sintering temperature [J]. Materials Science and Engineering: A, 2006, 431(1-2, 15): 218-227
    [49] F.N. Oktar. Microstructure and mechanical properties of sintered enamel hydroxyapatite [J]. Ceramics International, 2007, 33(7):1309-1314
    [50] Kothapalli C, M. Wei, A. Vasiliev, et al. Influence of temperature and concentration on the sintering behavior and mechanical properties of hydroxyapatite [J]. Acta Materialia, 2004, 52(19): 5655-5663
    [51] Coathup M J, Blackburn J, Goodship A E, et al. Role of hydroxyapatite coating in resisting wear particle migration and osteolysis around acetabular components [J]. Biomaterials, 2005, 26(19): 4161-4169
    [52] Nenad Ignjatovi , Vojin Savi , Stevo Najman,E, et al. A study of HAp/PLLA composite as a substitute for bone powder, using FT-IR spectroscopy [J]. Biomaterials, 2001, 22(6):571-575
    [53] Sarig S. Aspartic acid nucleates the apatite crystallites of bone: a hypothesis [J]. Bone, 2004, 35(1): 108-113
    [54]廖凯荣,赵剑豪,罗丙红,等.聚乳酸/羟基磷灰石复合材料的研究Ⅲ.聚(D,L-乳酸)/羟基磷灰石复合材料的体外降解行为[J].中山大学学报(自然科学版), 2001, 40(1): 44-47
    [55] Ehara A, Ogata K, Imazato S, et al. Effects ofα-TCP and TetCP on MC3T3-E1 proliferation, differentiation and mineralization [J]. Biomaterials, 2003, 24(5): 831-836
    [56] M. Sous, R. Bareille, F. Rouais, et al. Cellular biocompatibility and resistance to compression of macroporousβ-tricalcium phosphate ceramics [J]. Biomaterials, 1998, 19(23): 2147-2153
    [57] Li Y B, Zhang X D, K. de Groot. Hydrolysis and phase transition of alpha-tricalcium phosphate [J]. Biomaterials, 1997, 18(10): 737-741
    [58] Xu H K, Takagi S, Quinn J B, et al. Fast-setting calcium phosphate scaffolds with tailored macropore formation rates for bone regeneration [J]. J Biomed Mater Res Part A, 2004, 68: 725-734.
    [59] Burguera E F, Xu H K, Takagi S, et al. High early strength calcium phosphate bone cement: Effects of dicalcium phosphate dihydrate and absorbable fibers [J]. J Biomed Mater Res Part A, 2005, 75: 966-975.
    [60] Xu H K, Simon G C. Self-hardening calcium phosphate cement–mesh composite: Reinforcement, macropores, and cell response [J]. J Biomed Mater Res Part A, 2004, 69: 267-278.
    [61] K. Ishikawa, Y. Miyamoto, M. Takechi, et al. Non-decay type fast-setting calcium phosphate cement: hydroxyapatite putty containing an increased amount of sodium alginate [J], J Biomed Mater Res, 1997, 36: 393–399
    [62] Lisa E. Carey, Hockin H.K. Xu, Carl G. Simon, et al. Premixed rapid-setting calcium phosphate composites for bone repair [J]. Biomaterials, 26(24): 5002-5014
    [63] Helen H. Lu, Amy Tang, Seong Cheol Oh, et al. Compositional effects on the formation of a calcium phosphate layer and the response of osteoblast-like cells on polymer-bioactive glass composites [J]. Biomaterials, 2005, 26(32): 6323-6334
    [63] Obata A, Nakamura S, Yamashita K. Interpretation of electrical polarization and depolarization mechanisms of bioactive glasses in relation to ionic migration [J]. Biomaterials, 2004, 25(21): 5163-5169
    [64] A.J. DeFail, C.R. Chu, N. Izzo, et al, Controlled release of bioactive TGF-beta 1 from microspheres embedded within biodegradable hydrogels [J]. Biomaterials, 2006, 27: 1579–1585.
    [65] Francis H. Shen, Qing Zeng, Qing Lv, et al. Osteogenic differentiation of adipose-derived stromal cells treated with GDF-5 cultured on a novel three-dimensional sintered microsphere matrix [J]. The Spine Journal, 2006, 6(6):615-623
    [66] Jiang T, Wafa I, Abdel-Fattah, et al. In vitro evaluation of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds for bone tissue engineering [J]. Biomaterials, 2006, 27 (28): 4894-4903
    [67] Luciani A, Coccoli V, Orsi S, et al. PCL microspheres based functional scaffolds by bottom-up approach with predefined microstructural properties and release profiles [J]. Biomaterials, 2008, 29 (36): 4800-7
    [68] Brown J L, Lakshmi S. Nair, Laurencin C T. Solvent/non-solvent sintering: A novel route to create porous microsphere scaffolds for tissue regeneration [J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2008, 86(2): 396-406
    [69] Singh M, Sandhu B, Scurto A, et al. Microsphere-based scaffolds for cartilage tissue engineering: Using subcritical CO2 as a sintering agent [J]. Acta Biomaterialia, 2010, 6(1):137-143
    [70] Fa-Ming Chen, Yi-Min Zhao, Hai-Hua Sun, et al. Novel glycidyl methacrylated dextran (Dex-GMA)/gelatin hydrogel scaffolds containing microspheres loaded with bone morphogenetic proteins: Formulation and characteristics [J]. Journal of controlled release, 2007, 118: 65-77
    [71] M. George, T.E. Abraham. pH sensitive alginate–guar gum hydrogel for the controlled delivery of protein drugs [J]. International Journal of Pharmaceutics, 2007, 335(1-2):123-129
    [72]谢志伟.聚羟基丁酸戊酸聚酯(PHBV)的结晶行为和粘弹性研究.硕士学位论文.东华大学
    [73]吴俊;孙俊英;李海燕;常江.以PHBV为支架构建组织工程化软骨.中国矫形外科杂志, 2006, 13(14): 1016-1020
    [74]刘婷;杨庆;沈新元;顾晓华;郯志清;陈琳; PHBV共混物纤维制备组织工程支架的研究.合成纤维. 2007, 1: 16-20
    [75] Kevin S. Jack, Shiny Velayudhan, Paul Luckman. The fabrication and characterization of biodegradable HA/PHBV nanoparticle–polymer composite scaffolds. ActaBiomaterialia, Volume 5, Issue 7, September 2009, Pages 2657-2667
    [76] Chandrasekhar R. Kothapalli, Montgomery T. Shaw, Mei Wei. Biodegradable HA-PLA 3-D porous scaffolds: Effect of nano-sized filler content on scaffold properties. Acta Biomaterialia, Volume 1, Issue 6, November 2005, Pages 653-662
    [77] Xu Li, Kerh Li Liu, Miao Wang. Improving hydrophilicity, mechanical properties and biocompatibility of poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate] through blending with poly[(R)-3-hydroxybutyrate]-alt-poly(ethylene oxide) Acta Biomaterialia, Volume 5, Issue 6, July 2009, Pages 2002-2012
    [78]刘海兰,董利民,王晨,等. PHBV微球/磷酸钙骨水泥复合材料研究.稀有金属材料与工程,2007,2(36): 40-42
    [79] Zentner G M, Rathi R, Shih C, et al. Biodegradable block copolymers for delivery of proteins and water-insoluble drugs [J]. Journal of Controlled Release, 2001, 72(1-3): 203-215.
    [80] Reed A M, Gilding D K. Biodegradable polymers for use in surgery poly(glycolic/polylactic acid) homo and copolymers: in vitro degradation [J]. Polymer, 1983, 22: 494-498.
    [81]胡培战,吴兰亭,杨士林.医用生物降解材料-聚乳酸及其共聚物[J].生物医学工程杂志, 1993, 10(2): 183-193.
    [82] Anderson J M, Shive M S. Biodegradation and biocompatibility of PLA and PLGA microspheres [J]. Advanced Drug Delivery Reviews, 1997, 28(1): 5 -24.
    [83] Li H Y, Chang J. In vitro degradation of porous degradable and bioactive PHBV/wollastonite composite scaffolds [J]. Polym Degrad Stabil. 2005, 87(2): 301-307.
    [84] Gu Q S, Hou C L, Xu Z Z. Applied biomedical materials [M]. Shanghai science and technology publishing company, Shanghai (2005)
    [85] Karande T.S, Ong J.L., Agrawal C.M. Diffusion in musculo-skeletal tissue engineering scaffolds: design issues related to porosity, permeability, architecture, and nutrient mixing [J]. Ann Biomed Eng, 2004, 32(12): 1728-1743
    [86] Ho S.T., Hutmacher D.W. A comparison of micro CT with other techniques used in the characterization of scaffolds [J]. Biomaterials, 2006, 27: 1362-1376
    [87] Washburn EW. The dynamics of capillary flow [J]. Phys Rev, 1921, 17: 273–283
    [88] Gibson L.J., Ashby M.F.多孔固体结构与性能[M].第二版,刘培生.北京:清华大学出版社, 2003: 152-188
    [89] Scott G. Green polymers [J]. Polym Degrad Stabil, 2000, 68: 1-7
    [90] Mochizuki M., Hirami M. Structural effects on the biodegradation of aliphatic polyesters [J]. Polym Advan Technol, 1997, 8: 203-209
    [91] Pistner H., Bendi D.R., Mühling J., et al. Poly (-lactide): a long-term degradation study in vivo Part III. Analytical characterization [J]. Biomaterials, 1993, 14: 291-298
    [92]柯渔.聚羟基烷酸酯酰胺化表面构建及细胞相容性研究[D] .广州:华南理工大学,2009
    [93]王正辉,等.高分子生物材料的研究进展[J].高分子材料科学与工程,2005,21(5):19- 22
    [94]马爱洁,杨青芳,梁威,等.生物可降解多孔支架的研究进展[J].材料科学与工程学报,2005,23(5): 621-624
    [95] Derjaguin B., Landau L, Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes[J]. Acta Physico chemica URSS, 1941,14: 633.
    [96] J.S.Temenoff, A.G. Mikos. Biomaterials: The intersection of biology and materials science [M]. New York, 2008, Pearson Education. 296-299
    [97] Haines-Butterick L A, Salick D A, Pochan D J et al. In vitro assessment of the pro-inflammatory potential ofβ-hairpin peptide hydrogels. Biomaterials, 2008, 29 (31): 4164-4169
    [98] http://www.galaxybio.net/NewsShow.asp?id=60945
    [99] Campbell CE, Von Recum AF. Microtopography and soft tissue response. J Invest Surg 1989;2:51–74.
    [100] Zhu XL, Chen J, Scheideler L, Reichl R, Geis-Gerstorfer J. Effects of topography and composition of titanium surface oxides on osteoblast responses. Biomaterials. 2004;25:4087–103.
    [101] Dalby MJ, Giannaras D, Riehle MO, Gadegaard N, Affronssman S, Curtis ASG. Rapid fibroblast adhesion to 27 nm high polymer demixed nano-topography. Biomaterials, 2004, 25:77–83.
    [102] Dalby MJ, Childs S, Riehle MO, Johnstone HJH, Affronssman S, Curtis ASG. Fibroblast reaction to island topography: changes in cytoskeleton and morphology with time. Biomaterials, 2003, 24:927–35.
    [103] Wan YQ, Wang Y, Liu ZM, Qu X, Han BX, Bei JZ, et al. Adhesion and proliferation of OCT-1 osteoblast-like cells on micro- and nano-scale topography structuredpoly(L-lactide). Biomaterials, 2005, 26:4453–9
    [104] Yagmurlu M.F., Korkusuz F., Gursel I., et al. Sulbactam-cefoperazone polyhydroxybutyrate-co-hydroxyvalerat (PHBV) local antibiotic delivery system: In vivo effectiveness and biocompatibility in the treatment of implant-related experimental osteomyelitis [J]. J Biomed Mater Res, 1999, 46(4): 494-503
    [105] Sendil D., Gürsel I., Wise D.L., et al. Antibiotic release from biodegradable PHBV microparticles [J]. J Control Release, 1999, 59(2): 207-217
    [106] Shishatskaya E.I., Volova T.G., Puzyr A.P., et al. Tissue response to the implantation of biodegradable polyhydroxyalkanoate sutures [J]. J Mater Sci-mater M, 2004, 15: 719-728
    [107] Suwantong O., Waleetorncheepsawat S., Sanchavanakit N., et al. In vitro biocompatibility of electrospun poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fiber mats [J]. Int J Biol Macromol, 2007, 40(3): 217-223
    [108] Novikov L.N., Novikova L.N., Mosahebi A., et al. A novel biodegradable implant for neuronal rescue and regeneration after spinal cord injury [J]. Biomaterials, 2002, 23: 3369-3376
    [109] Zorlutuna P., Tezcaner A., K?yat I., et al. Cornea engineering on polyester carriers [J]. J Biomed Mater Res A, 2006, 79 A: 104-11
    [110] Tezcaner A., Bugra K., Has?rc?V. Retinal pigment epithelium cell culture on surface modified poly(hydroxybutyrate-co-hydroxyvalerate) thin films [J]. Biomaterials, 2003, 24: 4573-4583
    [111] Kwon O.H., Lee I.S., Ko Y.G., et al. Electrospinning of microbial polyester for cell culture [J]. Biomed Mater, 2007, 2: S52-S58
    [112] Sun J.Y., Wu J., Li H.Y., et al. Macroporous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) matrices for cartilage tissue engineering [J]. Eur Polym J, 2005, 41(10): 2443-2449
    [113] Cool S.M., Kenny B., Wu A., et al. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) composite biomaterials for bone tissue regeneration: In vitro performance assessed by osteoblast proliferation, osteoclast adhesion and resorption, and macrophage proinflammatory response [J]. J Biomed Mater Res A, 2007, 82A: 599-610
    [114] K?se G.T., Korkusuz F., Korkusuz P., et al. Bone generation on PHBV matrices: an in vitro study [J]. Biomaterials, 2003, 24(27): 4999-5007
    [115] Li H Y, Chang J. Preparation, characterization and in vitro release of gentamicin fromPHBV/wollastonite composite microspheres [J]. Journal of Controlled release, 2005, 107(3): 463-473
    [116] Viswanath B, Ravishankar N. Controlled synthesis of plate-shaped hydroxyapatite and implications for the morphology of the apatite phase in bone [J]. Biomaterials, 2008, 26(12):1349-1357
    [117] J. Kuljanin, I. Jankovi?, J. Nedeljkovi?, et al. Spectrophotometric determination of alendronate in pharmaceutical formulations via complex formation with Fe(III) ions [J]. J. Pharmaceut. Biomed, 2002, 28: 1215-1220
    [118] Alis Yovana Pataquiva Mateus, Cristina C. Barrias, Cristina Ribeiro, et al. Comparative study of nanohydroxyapatite microspheres for medical applications [J]. J Biomed Mater Res A, 2008, 86(2): 483-493
    [119]张淑花.层状介结构纳米羟基磷灰石的合成、形成机理及载药性能的研究[D].广州:华南理工大学,2008
    [120] Panda RN, Hsieh MF, Chung RJ, et al. FTIR, XRD, SEM and solid state NMR investigations of carbonate-containing hydroxyapatite nano-particles synthesized by hydroxide-gel technique [J]. J Phys Chem Solids, 2003, 64:193–199.
    [121] W. J. Lo, D. M. Grant. Hydroxyapatite thin films deposited onto uncoated and (Ti,Al,V)N-coated Ti alloys [J]. J Biomed Mater Res. 1999, 46(3): 408-417
    [122] Elisa Boaninia, Paola Torricellib, Massimo Gazzano. Alendronate–hydroxyapatite nanocomposites and their interaction with osteoclasts and osteoblast-like cells. Biomaterials, 2008(29): 790–796
    [123] Segvich S J, Smith H C, Kohn D H. The adsorption of preferential binding peptides to apatite-based materials [J]. Biomaterials, 2009, 30(7): 1287-1298
    [124] Zhou S, Deng X, Li X. Investigation on a novel core-coated microspheres protein delivery system [J]. J. Control. Release, 2001, 75: 27–36
    [125] Li H Y, Chang J. In vitro degradation of porous degradable and bioactivePHBV/wollastonite composite scaffolds [J]. Polym Degrad Stabil. 2005, 87(2): 301-307
    [126] Sombatmankhong K, Suwantong O, Waleetorncheepsawat S, et al. Electrospun fiber mats of poly(3-hydroxybutyrate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate), and their blends [J]. J Polym Sci Pol Phys, 2006, 44(19): 2923-2933
    [127] Kim B.S., Mooney D.J. Development of biocompatible synthetic extracellular matrices for tissue engineering [J]. Trends Biotechnol, 1998, 16(5): 224-230
    [128] Frenkel S.R., Dicesare P.E. Scaffolds for Articular Cartilage Repair [J]. Ann Biomed Eng, 2004, 32(1):26-34
    [129] Jaklenec A, Hinckfuss A, Bilgen B. Sequential release of bioactive IGF-I and TGF-β1 from PLGA microsphere-based scaffolds [J]. Biomaterials. 2008, 29(10): 1518-1525
    [130] Shi X T, Wang Y J, Rohan R. Microsphere-based drug releasing scaffolds for inducing osteogenesis of human mesenchymal stem cells in vitro [J]. European Journal of Pharmaceutical Sciences. 2010, 39(1-3): 59-67
    [131] F Ungaro, M Biondi, I d'Angelo. Microsphere-integrated collagen scaffolds for tissue engineering: Effect of microsphere formulation and scaffold properties on protein release kinetics [J]. Journal of Controlled Release. 2006, 2 (113): 128-136
    [132] A Luciani, V Coccoli, S Orsi. PCL microspheres based functional scaffolds by bottom-up approach with predefined microstructural properties and release profiles [J]. Biomaterials, 2008, 36(29):4800-4807
    [133] Biman B. Mandal, Subhas C. Kundu. Calcium alginate beads embedded in silk fibroin as 3D dual drug releasing scaffolds [J]. Biomaterials. 2009, 30(28): 5170-5177
    [134] B Li, J M. Davidson, Scott A. Guelcher The effect of the local delivery of platelet-derived growth factor from reactive two-component polyurethane scaffolds on the healing in rat skin excisional wounds [J]. Biomaterials, 2009, 30(20): 3486-3494
    [135] J E Lee, K E Kim, I C Kwon. Effects of the controlled-released TGF-β1 from chitosan microspheres on chondrocytes cultured in a collagen/chitosan/glycosaminoglycan scaffold [J]. Biomaterials, 2004, 25(18): 4163-4173
    [136] Borisy GG, Svitkina TM. Actin machinery:pushing the envelope[J]. Curr Opin Cell Biol, 2000, 12:104-112.
    [137] www.biotium.com
    [138] www.51protocol.com
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.