甘蓝型油菜溶血磷脂酸酰基转移酶基因的克隆和表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油菜是我国种植面积最广的油料作物之一,提高油菜含油量和菜籽油品质是提高我国植物油市场竞争力的关键。因此,发掘优良品质基因,从基因水平上找到与提高油菜含油量和菜籽油品质的关键基因对种质资源的改良有重要意义。油菜溶血磷脂酸酰基转移酶基因(Lysophosphatidic Acid Acyltransferase, LPAAT)是已被证实的油脂合成的关键基因,分为质体型和微粒体型两类。目前对该基因的报道表明,该基因在不同物种和相同物种的不同品系中具有不同的底物偏好性。本研究以甘蓝型油菜(Brassica napus L.)B351未成熟种子为材料,分离BnLPAAT基因,进行功能初步研究。主要研究结果如下:
     (1)从甘蓝型油菜B351中克隆得到3个BnLPAAT基因的ORF,pBnLPAAT、sBnLPAAT1、sBnLPAAT4,长度分别为1035 bp、1173 bp、1302 bp,生物信息学分析表明质体型pBnLPAAT与已知基因(GenBank登录号AF111161)同源性达99.9%;微粒体型sBnLPAAT1、sBnLPAAT4与已知基因(GenBank登录号Z95637)同源性达93.8%和85.3%。sBnLPAAT4与已知基因(GenBank登录号Z95637)相比有123 bp的重复区段。
     (2)成功构建了BnLPAAT基因的酵母表达载体pPIC9K-pBnLPAAT、pPIC3.5K-sBnLPAAT1、pPIC3.5K-sBnLPAAT4,实现了BnLPAAT在毕赤酵母中的蛋白表达。对酵母脂肪酸组分进行分析表明,sBnLPAAT1、sBnLPAAT4对硬脂酸和油酸积累有促进作用
     (3)构建了植物表达载体PBI121-pBnLPAAT,并成功转化拟南芥,为进一步分析该基因对植物体脂肪酸的积累的影响奠定了基础。
Rapeseed is one of the most widely cultivated oil crops in China. Inceasing the oil content and quality of seeds in Brassica napus is essential to improve our vegetable oil market competitiveness. Isolating the key genes which could improve the quality of rapeseed oil and oil content are important to enhance crop quality.
     Lysophosphatidic Acid Acyltransferase (LPAAT) is proven to be the key enzyme of oil accumulation in unmatured seeds and is divided as plastidial type and the microsomal type.It is reported that LPAATs have different substrates preference either in different species or the same species in different strains. In this study, we isolated the LPAAT in immature Brassica napus L. B351. The main research results are as follows,
     (1) Three sequences had been isolated from Brassica napus L. B351, the sequences are as follow,pBnLPAAT,sBnLPAAT1 sBnLPAAT4. The sequence length is 1035 bp, 1173 bp, 1302 bp respectively. Bioinformatics analysis showed that pBnLPAAT shares 99.9% identity with the gene deposits in GenBank(access number AF111161). sBnLPAAT1 and sBnLPAAT4 shares 93.8% and 85.3% identity with the gene deposits in GenBank(access number Z95637). sBnLPAAT4 have 123 bp repeats segment compared with the genes(GenBank access number Z95637).
     (2) Pichia pastoris expression vectors pPIC9K-pBnLPAAT, pPIC3.5K-sBnLPAAT1 and pPIC3.5K-sBnLPAAT4 had been constructed and transferred Pichia pastoris.The protein was expressed successfully. Fatty acid components of Pichia pastoris analysis shows that, sBnLPAAT1 and sBnLPAAT4 can both improve the accumulation of Stearic acid and Oleic acid.
     (3) A plant expression vector PBI121-pBnLPAAT had been constructed, and transferred Arabidopsis thaliana successful. Fatty acid components analysis will be carried out in the future.
引文
[1]王汉中.我国油菜产业发展的历史回顾与展望[J].中国油料作物学报,2010,32(2):300-302.
    [2]殷艳,陈兆波,王汉中等.我国油菜生产潜力分析[J].中国农业科技导报,2010,12(3):16-21.
    [3] Ohlrogge J, Browse J. Lipid Biosynthesis[J]. The Plant Cell, 1995, 7: 957-970.
    [4]卢善发.植物脂肪酸的生物合成与基因工程[J].植物学通报,2000,17(6):481-491.
    [5] Sakamoto A, Murata N. Genetic engineering of glycinebetaine synthesis in plants: current status and implications for enhancement of stress tolerance[J].Journal of experiental botany, 2000, 51(342): 81-88.
    [6] Deborah S K, Gregory A T, Sharon E R, et al. Modification of Brassica seed oil by antisense expression of a stearoyl-acyl carrier protein desaturase gene[J].Proceedings of theNational Academy of Sciences.USA, 1992, 89: 2624-2628.
    [7]周奕华,陈正华.植物种子中脂肪酸代谢途径的遗传调控与基因工程[J].植物学通报,1998,15(5):16-23.
    [8]周永明,Scarth R.甘蓝型油菜和芥菜型油菜杂种小孢子培养获得再生植株[J].作物学报,1996,22(4):399-402.
    [9]殷福珊.油脂化学品的工业应用[J].中国油脂,2000,25(6):24-30.
    [10] Sakamoto A, Murata N. The role of glycine betaine in the protection of plants from stress:clues from transgenic plants[J]. Plant cell and environment, 2002, 25: 163-171.
    [11] Rosalind A C, Douglas P L. Enzymes of triacylglycerol synthesis and their regulation[J]. Progress in Lipid Research, 2004, 43: 134-176.
    [12] Jay J T, Ohlrogge J B. Metabolic Engineering of Fatty Acid Biosynthesis in Plants[J]. Metabolic Engineering, 2002, 4: 12-21.
    [13] Johnathan A N, Ian A G. Tailoring plant lipid composition: designer oilseeds come of age[J]. Current Opinion in Plant Biology, 2010, 13: 330-337.
    [14] Wolf B F, Uwe S. Progress in physiological research and its relevance for agriculture and ecology[J]. Current Opinion in Plant Biology, 2010, 13: 227-232.
    [15] Hu Y P, Wu G, Lu C M, et al. Breeding response of transcript profiling in developing seeds of Brassica napus[J]. BMC Molecular Biology, 2009, 10: 49.
    [16] Ohlrogge J B, Jan G J. Regulation of fatty acid synthesis[J]. Annual Review of Plant Biology, 1997, 48: 109-136.
    [17]李红军,张党权,谭晓风.植物油脂合成途径及酰基载体蛋白基因的特性[J].经济林研究,2007,25(2):92-94.
    [18] Antoni R S, Simon J W, Adrian P B. Biosynthesis and regulation of fatty acids and triglycerides in oil seed rape. Current status and future trends[J]. European Journal of Lipid Science and Technology, 2001, 103: 455-466.
    [19] Umi S R, Darren S B, Patti A Q, et al. Control analysis of lipid biosynthesis in tissue cultures from oil crops shows that flux control is shared between fatty acid synthesis and lipid assembly[J]. Biochemical journal. J, 2002, 364: 393-401.
    [20] Ohlrogge. Methods of increasing oil content of seeds. United States Patent, 1995, 925, 805.
    [21]谢禄山,谭晓风.乙酰辅酶A羧化酶基因研究综述[J].中南林业学院学报,2005,25:4-7.
    [22] Roesler K, Shintani D, Ohlrogge J, et al. Targeting of the Arabidopsis homonerie acetyl-coenzyme A carboxylase to plastids of rapeseed[J]. 1997, Plant Physiology, 113: 75-81.
    [23] Dehesh K, Tai H, Edwards P, et al Overexpression of 3-Ketoacyl-Acyl-Carrier Protein Synthase IIIs in Plants Reduces the Rate of Lipid Synthesis[J]. Plant Physiology, 2001, 125: 1103-1114.
    [24] Wu G Z , Xue H W. Arabidopsis Ketoacyl Acyl Carrier Protein Synthase I Is Crucial for Fatty Acid Synthesis and Plays a Role in Chloroplast Division and Embryo Development[J]. Plant Cell, 2010, 22: 3726-3744.
    [25] Branen J K, Chiou T J, Nicki J E. Overexpression of Acyl Carrier Protein1 Alters Fatty Acid Composition of Leaf Tissue in Arabidopsis[J]. Plant Physiology, 2001, 127: 222-229.
    [26] Bonaventure G, Salas J J, Ohlrogge J B, et al. disruption of the FATB gene in Arabidopsis demonstrates an essential role of saturated fatty acids in plant growth[J]. Plant Cell, 2003, 15: 1020-1033.
    [27] Zou J T, Qi Q G, Katavic V, et al. Effects of repression of Arabidopsis thaliana pyruvate dehydrogenase kinase cDNA on plant development. plant molecular biology[J]. Plant Molecular Biology, 1999, 41: 837-849.
    [28]陈锦清,郎春秀,黄锐之,等.反义PEP基因调控油菜籽粒蛋白质/油脂含量比率的研究[J].农业生物技术学报,1999,7:316-320.
    [29] Yokoi S, Higashi S I, Murata N, et al. Introduction of the cDNA for Arabidopsis glycerol-3-phosphate acyltransferase (GPAT) confers unsaturation of fatty acids and chilling tolerance of photosynthesis on rice[J]. Molecular Breeding, 1998, 4: 269-275.
    [30] Maisonneuve S, Bessoule J J, Roscoe T J, et al. Expression of Rapeseed Microsomal Lysophosphatidic acid Acyltransferase Isozymes Enhances Seed Oil Content in Arabidopsis[J]. Plant Physiology, 2010, 152: 670-684.
    [31] Zou J, Katavic V, Taylor D C, et al. Modification of Seed Oil Content and Acyl Composition in the Brassicaceae by Expression of a Yeast sn-2 Acyltransferase Gene[J]. Plant Cell, 1997, 9: 909-923.
    [32] Kim H U, Li Y B, Anthony H C, et al. Ubiquitous and Endoplasmic Reticulum-Located Lysophosphatidyl Acyltransferase, LPAT2, Is Essential for Female but Not Male Gametophyte Development in Arabidopsis[J]. Plant Cell, 2005, 17: 1073-1089.
    [33] Jako C, Kumar A, Taylor D C, et al. Seed Specific Over Expression of an Arabidopsis cDNA Encoding a Diacylglycerol Acyltransferase Enhances Seed Oil Content and Seed Weight[J]. Plant Physiology, 2001, 126: 861-874.
    [34] Weselake R J, Shah S, Harwood J L, et al. Metabolic control analysis is helpful for informed genetic manipulation of oilseed rape (Brassica napus L.) to increase seed oil content[J]. Journal of Experimental Botany, 2008, 59: 3543-3549.
    [35] Lu C F, Hills M J. Arabidopsis Mutants Deficient in Diacylglycerol Acyltransferase Display Increased Sensitivity to Abscisic Acid, Sugars, and Osmotic Stress duringGermination and Seedling Development[J]. Plant Physiology, 2002, 129: 1352-1358.
    [36] Mu J Y, Tan H L, Chong K, et al. LEAFY COTYLEDON1 Is a Key Regulator of Fatty Acid Biosynthesis in Arabidopsis[J]. Plant Physiology, 2008, 148: 1042-1054.
    [37] Shen B, William B, Tarczynski M C, et al. Expression of ZmLEC1 and ZmWRI. Increases Seed Oil Production in Maize [J]. Plant Physiology, 2010, 153: 980-987.
    [38] Zhang L Z, Tan Q M, Tegeder M, et al. Altered Xylem Phloem Transfer of Amino Acids Affects Metabolism and Leads to Increased Seed Yield and Oil Content in Arabidopsis[J]. Plant Cell, 2010, 22: 3603-3620.
    [39] Vigeolas H, Joost T, Geigenberger P, et al. Lipid Storage Metabolism Is Limited by the Prevailing Low Oxygen Concentrations within Developing Seeds of Oilseed Rape[J]. Plant Physiology, 2003, 133: 2048-2060.
    [40] Vigeolas H, Dongen J T, Waldeck P, et al. Lipid Storage Metabolism Is Limited by the Prevailing Low Oxygen Concentrations within Developing Seeds of Oilseed Rape[J]. Plant Physiology, 2003, 133: 2048-2060.
    [41] Sylvie M, Jean-Jacques B, Rene′L. Expression of Rapeseed Microsomal Lysophosphatidic Acid Acyltransferase Isozymes Enhances Seed Oil Content in Arabidopsis[J]. Plant Physiology, 2010, 152: 670-684.
    [42] ZOU J T, Vesna K, Giblin E. M. Modification of Seed Oil Content and Acyl Composition in the Brassicaceae by Expression of a Yeast sn-2 Acyltransferase Gene[J]. Plant Cell, 1997, 9: 909-923.
    [43] Fabienne B, Jean C K, Pierre B. A Plastidial Lysophosphatidic Acid Acyltransferase from Oilseed Rape[J]. Plant Physiology, 1999, 120: 913-921.
    [44] Kim H U, Anthony H C. Plastid Lysophosphatidyl Acyltransferase Is Essential for Embryo Development in Arabidopsis [J]. Plant Physiology, 2004, 134: 1206-1216.
    [45] Deborah S. K, Kathryn D. L, Janet S. N. Cloning of a Coconut Endosperm cDNA Encoding a 1-Acyl-sn-Glycerol-3-Phosphate Acyltransferase That Accepts Medium Chain Length Substrates[J]. Plant Physiology, 1995, 109: 999-1006.
    [46] S?rensen B M., Furukawa-Stoffera T L, Kris S M. Storage Lipid Accumulation and Acyltransferase Action in Developing Flaxseed[J]. Lipids, 2005, 40: 1043-1048.
    [47] Brown A P, Brough C L, Johan T M. Identification of a cDNA that encodes a 1-acyl-sn-glycerol-3-phosphate acyltransferase from Limnanthes douglasii[J]. PlantMolecular Biology, 1995, 29: 267-278.
    [48] Davies H M, Hawkins D J, Nelsen J S. Lysophosphatidic acid acyltransferase from immature coconut endosperm having medium chain length substrate specificity[J]. Phytochemistry, 1995, 39: 989-996.
    [49] Lassner M W, Levering C K, Davies H M. Lysophosphatidic Acid Acyltransferase from Meadowfoam Mediates Insertion of Erucic Acid at the sn-2 Position of Triacylglycerol in Transgenic Rapeseed Oil[J]. Plant Physiology, 1995, 109: 1389-1394.
    [50] Jain S, Stanford N T, Bhagwat N. Identification of a Novel Lysophospholipid Acyltransferase in Saccharomyces cerevisiae[J]. Journal of Biological Chemistry, 2007, 282(42): 30562-30569.
    [51] Nath U K, Wilmer J A, Wallington E J. Increasing erucic acid content through combination of endogenous low polyunsaturated fatty acids alleles with Ld-LPAAT + Bn-fae1 transgenes in rapeseed(Brassica napus L.)[J]. Theoretical and Applied Genetics, 2009, 118: 765-773.
    [52]陈柳,毛善婧,王幼平,等.导入LPAAT和KCS基因对油菜种子芥酸含量的影响[J].作物学报,2006,32(8):1174-1178.
    [53] Shekar S, Tumaney A W, Rao T J. Isolation of Lysophosphatidic Acid Phosphatase from Developing Peanut Cotyledons[J]. Plant Physiology, 2002, 128: 988-996.
    [54] Brown A P., Slabas A R., Denton H. Substrate selectivity of plant and microbial lysophosphatidic acid acyltransferases[J]. Phytochemistry, 2002, 61 :493-501.
    [55]丁勇,刘英,杨鸯鸯,等.油菜种子高质量总RNA提取的一种有效方法[J].华中农业大学学报,2006,25(5):465-468.
    [56] Thompson J D, Gibson T J, Plewniak F, et al. The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools[J]. Nucleic Acids Research, 1997, 25(24): 4876-4882.
    [57] Nicholas K B, Nicholas H B, Deerfield D W. GeneDoc:Analysis and visualization of genetic variation[J]. EMBnet. news, 1997, 4: 1-4.
    [58] Harju S, Fedosyuk H, Peterson K. Rapid isolation of yeast genomic DNA: Bust n' Grab[J]. BMC Biotechnology, 2004, 4: 8-13.
    [59] Scorer C A, Clare J J, McCombie W R, et al. Rapid selection using G418 of high copy number transformants of Pichia Pastoris for high-level foreign gene expression[J]. Nature Biotechnology, 1994, 12: 181-184.
    [60] Hajduch M, Ganapathy A, Stein J W, et al. A Systematic Proteomic Study of Seed Filling in Soybean.Establishment of High-Resolution Two-Dimensional Reference Maps, Expression Profiles, and an Interactive Proteome Database[J]. Plant Physiology, 2005, 137: 1397-1419.
    [61] Krebbers E, Herdies L, Clercq A E. Determination of the Processing Sites of an Arabidopsis 2S Albumin and Characterization of the Complete Gene Family[J]. Plant Physiology, 1988, 87: 859-866.
    [62] Boutilier K, Hattori J, Baum B R. Evolution of 2S albumin seed storage protein genes in the Brassicaceae[J]. Biochemical Systematics and Ecology, 1999, 27: 223-234.
    [63] Guerche P, Tire C, Fatima G S, et al. Differential Expression of the Arabidopsis 2S Albumin Genes and the Effect of lncreasing Gene Family Size[J]. Plant Cell, 1990, 2: 469-478.
    [64] Clercq A D, Vandewiele M, Rycke R D. Expression and Processing of an Arabidopsis 2S Albumin in Transgenic Tobacco[J]. Plant Physiology, 1990, 92: 899-907.
    [65] Vigeolas H, Waldeck P, Zank T. Increasing seed oil content in oil-seed rape(Brassica napus L.) by over-expression of a yeast glycerol-3-phosphate dehydrogenase under the control of a seed-specific promoter[J]. Plant Biotechnology Journal, 2007, 5: 431-441.
    [66] Klei H, Damme J V, Casteels P. A Fifth 2s Albumin Isoform is Present in Arabidopsis thaliana [J]. Plant Physiology, 1993, 101: 1415-1416.
    [67] Steven J Clough, Andrew F Bent. Floral dip: a simplified method for agrobacterium-mediated transformation of Arabidopsis thaliana [J]. Plant Journal, 1998, 16(6): 735-743.
    [68] Zhang X R, Henriques R, Lin S S. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method[J]. Nature Protocols, 2006, 1(2): 1-6.
    [69] Wu G H, Trksa M, Datla N, et al. Stepwise engineering to produce high yields ofvery long-chain polyunsaturated fatty acids in plants[J]. Nature Biotechnology, 2005, 23(8): 1013-1016.
    [70] Tzen J T, Cao Y Z, Laurent P, et al. Lipids, Proteins, and Structure of Seed Oil Bodies from Diverse Species[J]. Plant Physiology, 1993, 101: 267-276.
    [71] Moreno Pérez A J, García A S, Salas J J, et al. Acyl-ACP thioesterases from macadamia (Macadamia tetraphylla) nuts: Cloning, characterization and their impact on oil composition[J]. Plant Physiology and Biochemistry, 2011, 49: 82-87.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.