生长分化因子-5诱导人脂肪基质细胞成骨的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
外伤、肿瘤切除、先天畸形造成的颌骨缺损在临床较常见,目前常采用自体骨移植、异体骨移植、异种骨移植、金属及人工合成材料替代等治疗方法,尚不能完全满足临床的需要。组织工程技术的发展为颌骨缺损的修复提供了新的途径。种子细胞,生长因子和支架材料是组织工程的三大要素。近年来研究发现脂肪组织中存在一些具有自我更新和多向分化潜能的脂肪基质细胞(adipose derived stromal cells, ADSCs),这些细胞在一定条件下可分化为脂肪细胞、成骨细胞、软骨细胞、肌细胞和神经细胞等多种细胞,具有成骨、成脂、成软骨、成肌肉、成神经等多种潜能。而且脂肪组织还具有取材简便、来源丰富等优势,被认为是组织工程中最有前途的种子细胞。其中,ADSCs用于骨缺损的修复倍受关注。生长因子在ADSCs成骨分化中起关键作用。常用的骨生长因子有骨形态发生蛋白2(bone morphogenetic proteins 2, BMP2),骨形态发生蛋白7(bone morphogenetic proteins 7, BMP7),生长分化因子5(Growth differentiation factor 5, GDF-5),转化生长因子-β(transforming growth factor-β, TGF-β),血小板衍生生长因子(platelet-derived growth factor, PDGF),胰岛素样生长因子(insulin-like growth factor, IGF)等。GDF-5是转化生长因子超家族、骨形态发生蛋白亚家族中的一员,在软骨发生和长骨发育中具有重要作用。目前研究主要集中于其促进软骨分化和形成,对于其促进成骨分化和骨形成的作用,国内外的研究较少。因此本实验应用GDF-5诱导hADSCs向成骨细胞分化,并将诱导后的细胞复合纳米羟基磷灰石/胶原/L-聚乳酸(nHAC/PLA)支架植入裸鼠体内,构建组织工程骨三维培养模型,并通过体内体外研究观察成骨情况,为其将来在颌骨组织工程中的应用奠定实验基础。
     全文共分为三部分:
     第一部分:hADSCs分离、培养及生物学特性研究
     目的:研究hADSCs的生长特性、表面抗原特点,横向分化潜能,在此基础上对其进行鉴定。
     方法:取健康人吸脂术中取出的新鲜脂肪组织,胶原酶消化法分离其中脂肪基质细胞,倒置相差显微镜观察其形态特征;MTT法测hADSCs的生长增殖状况;流式细胞仪分析其表面抗原;波形丝蛋白、角蛋白免疫荧光染色鉴定其来源;在细胞鉴定基础上矿化液诱导其向成骨细胞分化,通过碱性磷酸酶染色、OPN及Ⅰ型胶原免疫荧光染色、钙结节茜素红染色分析其成骨分化潜能;同时,采用成脂诱导液诱导其向脂肪细胞方向分化,油红0染色进行成脂分化鉴定。
     结果:原代及传代培养的hADSCs形态均匀,呈类成纤维细胞样形态,生长能力旺盛;P3、P5、P10代hADSCs的增殖曲线大致相同,呈近似“S”形;P2代hADSCs表达CD29、CD44、CD105等间充质细胞表面相对特异性标志蛋白,CD14、CD45阴性表达;P4代hADSCs免疫荧光染色波形丝蛋白阳性,角蛋白为阴性。成骨诱导21d后,碱磷酶染色、OPN、Ⅰ型胶原免疫荧光染色阳性,钙结节茜素红染色表现为红色结节。成脂诱导14d后油红0染色有红色着色的脂滴形成。
     结论:吸脂术来源的细胞具有未分化hADSCs的特征,在体外诱导条件下,可向成骨、成脂方向分化,具有横向分化潜能。
     第二部分:GDF-5诱导hADSCs成骨分化作用的体外研究
     目的:研究GDF-5对hADSCs体外成骨分化能力的影响。
     方法:将GDF-5分成0,1,10,100,500ng/ml 5个浓度,通过MTT法分析不同浓度GDF-5对hADSCs增殖的影响,通过碱性磷酸酶活性、茜素红染色检测GDF-5对其成骨分化能力的影响,确定GDF-5促进成骨的最适浓度。然后取所确定的GDF-5浓度,分成对照组、矿化组、GDF-5三组,通过测定RT-PCR检测成骨诱导后Runx2、OPN、ColI、VEGF基因的表达;Western Blot检测其成骨诱导后Runx2、OPN、ColI、VEGF蛋白的表达,分析该浓度GDF-5对P4代hADSCs的增殖、分化效应。
     结果:100ng/ml为GDF-5促进hADSCs成骨的最适浓度;三组培养基均能促进hADSCs增殖,但GDF-5组促增殖作用显著低于另两组(P<0.05);GDF-5组促成骨分化作用最为显著,碱磷酶活性,Runx2、OPN、colI、VEGF基因及蛋白的表达均高于矿化组和细胞组,统计学上有显著性差异(P<0.05)。
     结论:体外研究表明100ng/mlGDF-5有诱导hADSCs分化为成骨细胞的潜能。
     第三部分:GDF-5诱导hADSCs复合纳米羟基磷灰石/胶原/聚乳酸体内成骨的研究
     目的:观察GDF-5诱导的hADSCs复合纳米羟基磷灰石/胶原/L-聚乳酸裸鼠皮下成骨的能力
     方法:取对数生长期hADSCs,接种于纳米羟基磷灰石/胶原/L-聚乳酸支架材料上,构建细胞/支架材料三维培养模型,扫描电镜(SEM)观察细胞在支架上的生长情况。然后,将其分别置于L-DMEM、矿化液、GDF-5体外培养一周后,移植入裸鼠背部皮下,4w、12w后取材,HE染色、Goldner's染色观察支架材料复合体在裸鼠皮下成骨情况。
     结果:hADSCs能粘附在纳米羟基磷灰石/胶原/L-聚乳酸(nanohydroxyapatite/collagen/L-poly lactic acid, nHAC/PLA)支架材料的表面,生长良好;细胞/支架材料复合体经GDF-5诱导后4w、12w后取材均可见类骨质形成,并逐渐取代支架材料,周围未见明显炎症反应。其中GDF-5组成熟的骨及血管形成数量明显多于其他两组。
     结论:纳米羟基磷灰石/胶原/L-聚乳酸是有利于ADSCs成骨分化的良好的支架材料;GDF-5可促进hADSCs复合纳米羟基磷灰石/胶原/L-聚乳酸异位成骨效应。
Bone defects caused by wound, tumour and malformation are common in dental clinic. The main treatment methods, such as autograft, allograft, and bone-grafting materials, couldn't completely meet the clinical needs. The bone tissue engineering provided novel methods for restoring bone defects. The content of bone tissue engineering includes three elements:seed cells, scaffolds and growth factors. It is hypothesized that human adipose tissue is an abundant reservoir of adult stem cells, which have potent to differentiate into many mature cell lineages varying from adipogenic precursors, osteogenic precursors, chondrogenic precursors to myogenic precursors. ADSCs are easier to obtain, carry relatively lower donor site morbidity, and are available in large numbers of stem cells at harvest. Growth factors play important role in the ADSCs'osteogenic differentiation. The common growth factors were BMP2, BMP7, GDF-5, TGF-βPDGF, IGF and so on. Growth differentiation factor-5 (GDF-5) is a divergent member of the bone morphogenetic proteins(BMPs) subfamily which belongs to the transforming growth factor-β(TGF-β) superfamily. It plays a very important role in the chondrogenesis and long bone development. GDF-5 can promote the osteochondrogenic differentiation of mesenchymal progenitor cells in vitro and in vivo. In order to further elucidate the biological activities of GDF-5 and to expend its applications in bone tissue engineering. Our investigations were presented as followings:
     Part 1:Experimental study of the isolation, culture and biological characteristics of hADSCs.
     Objective:To investigate methods for the isolation, culture and biological characteristics of hADSCs in order to provide seed cells for bone tissue engineering.
     Methods:Human adipose tissues from liposuction were excised and digested with 0.1% collagenase I, and then the cells were cultured in L-DMEM with 20% FBS. The morphology of hADSCs was observed under inserted microscope. The proliferation of the 3rd,5th and 10th passage cells were examined using MTT. The antigens of CD29, CD44, CD 14, CD45, CD 105, the markers of the mesenchymal stem cells, on the 2nd passage cells were examined using flow cytometric methods. The antigen of vimentin was detected by immunofluorescence. ALP, OPN, Col I and calcified nodules of the 4th passage cells were assessed by cytochemical and immunocytochemical staining. Adipogenic differentiation of the 4th passage cells was assessed by Oil Red O staining.
     Results:The primary hADSCs had long or short spindle-shape, later fibroblast-like. The proliferation curve showed that the 3rd,5th,10th passage cells proliferated rapidly, there were no differences between them. The 4th cells expressed CD29, CD44, CD 105 and vimentin. ALP, OPN and collagen I were positively expressed with histological and immunohistochemic staining. Calcified nodules formed were formed based on the alizarin red stainning. After induction for 14 days, the lipid droplets were presented in the differentiated cells by Oil Red O staining.
     Conclusions:The hADSCs have the characters of stromal cells and can be used as a source of seed cells for bone tissue engineering.
     Part II:The effects of GDF-5 on osteogenic differentiation of hADSCs in vitro
     Objective:To explore the effects of GDF-5 on osteogenic differentiation potential of hADSCs in vitro and make preparations for further research about bone tissue construction in vivo.
     Methods:Human adipose-derived stromal cells were divided into 5 groups by different concentration of GDF-5 (0,1,10,100,500 ng/ml), MTT, ALP activity and Alizarin red S were used to determine the appropriate concentration. The 4th passage cells were divided into three groups:control group, mineral group and GDF-5 group, their osteogenic differentiation was assessed by MTT, ALP activity respectively. The mRNA expressions of Runx2, OPN, Col I and VEGF were examined by RT-PCR. The protein expressions of Runx2, OPN, Col I and VEGF were examined by Western-blot.
     Results:The 100ng/ml GDF-5 was the optimal concentration. MTT value in the GDF-5 were significantly lower than the other groups, but ALP activity, mRNA expression and protein expression in the GDF-5 were significantly higher than other groups(P<0.05).
     Couclusions:The hADSCs could be induced into osteoblast by GDF-5 in vitro.
     Part III:The effects of GDF-5 on bone formation of hADSCs/nHAC/PLA construct in vivo.
     Objective:To explore the effects of GDF-5 on bone formation of hADSCs/nHAC/PLA construct in vivo.
     Methods:The 4th passage hADSCs were seeded onto nHAC/PLA in vitro to construct cells-scaffold composites. They were divided into the control group, mineral group and GDF-5 group respectively. Then the composites were implanted into the back of immunodeficiency disease (SCID) mice.4 weeks and 12 weeks later. The implantation were observed using HE, Goldner's staining and scanning electron microscope.
     Results:The hADSCs could adhere and grow on the surfaces of the implants. Bone-like tissues were found to form in the constructs at 4 weeks and 12 weeks in comparison to the control group. The pencentage of newly-formed bone areas in GDF-5 group was signficently higher than those in the other groups.
     Conclusions:The nHAC/PLA is an ideal scaffold; GDF-5 could enhance 'bone formation of hADSCs/nHAC/PLA in vivo.
引文
[1]Kern S, Eichler H, Stoeve J, et al. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006,24(8):1294-1301
    [2]Wickham MQ, Erickson GR, Gimble JM, et al. Multipotent stromal cells derived from the infrapatellar fat pad of the knee. Clin O rthop.2003, 412:196-212
    [3]Rangappa S, Fen C, Lee EH, et al. Transformation of adult mesenchymal stem cells isolated from the fatty tissue into cardiomyocytes. Ann Thorac Surg. 2003,75(3):775-779
    [4]Rodriquez AM, Elabd C, Amri EZ, et al. The human adipose tissue is a source of multipotent stem cells. Biochimie.2005,87(1):125-128
    [5]Strem BM, Hicok KC, Zhu M, et al. Multipotential differentiation of adipose tissue-derived stem cells. Keio J Med.2005,54(3):132-141
    [6]Xu Y, Malladi P, Wagner DR, et al. Adipose-derived mesenchymal cells as a potential cell source for skeletal regeneration. Curr Opin Mol Ther.2005, 7(4):300-305
    [7]Yang LY, Liu XM, Sun B, et al. Adipose tissue-derived stromal cells express neuronal phenotypes. Chin Med J (Engl).2004,117(3):425-429
    [8]Ning H, Lin G, Lue TF, et al. Neuron-like differentiation of adipose tissue-derived stromal cells and vascular smooth muscle cells. Differentiation.2006,74(9-10):510-518
    [9]Mitchell JB, Zvonic S et al. Immunophenocyte of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cell.2006,24(2):376-385
    [10]Guilak F, Lott KE, Awad HA, et al. Clonal analysis of the differentiation potential of human adipose-derived adult stem cells. J Cell Physiol.2006, 206(1):229-237
    [11]De Uqarte DA, Morizono K, Elbarbarv A, et al. Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tis sues Organs. 2003,17,4(3):101-109
    [12]Liu TM, Martina M, Hutmacher DW, et al. Identification of common pathways mediating differentiation of bone marrow and adipose tissue-derived human mesenchymal stem cells into three mesenchymal lineages. Stem Cells.2007,25(3):750-760
    [13]Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue:implication for cell-based therapies.Tissue Engineering. 2001,7(2):211-227
    [14]Gronthos S, Franklin DM, Leddy HA, et al. Surface protein characterization of human adipose tissue-derived stromal cells. J Cell Physiol.2001, 189(1):54-63.
    [15]Ogawa R, Mizuno H, Watanabe A, et al.Osteogenic and chondrogenic differentiation by adipose-derived stem cells harvested from GFP transgenic mice. Biochem Biophys Res Commun.2004,313(4):871-817
    [16]贺慧霞,刘洪臣,王东胜等.矿化液促进犬牙周膜细胞异位成骨实验.中华老年口腔医学杂志.2008,6(3):159-163
    [17]贺慧霞,金岩,史俊南等.矿化液对人牙髓干细胞生物学特性的影响.现代口腔医学杂志.2008,22(6):590-592
    [18]McQuillan DJ, Richardson MD, Bateman JF. Matrix deposition by a calcifying human osteogenic sarcoma cell line(SAOS-2). Bone.1995, 16(4):415-26
    [19]Yoshikawa T, Ohgushi H. Autogenous cultured bone graft-bone reconstruction using tissue engineering approach. Ann Chir Gynaecol.1999, 88(3):186-92.
    [20]McCulloch CA, Tenenbaum HC. Dexamethasone induces proliferation and terminal differentiation of osteogenic cells in tissue culture. Anat Rec.1986, 215(4):397-402.
    [21]Malaval L, Modrowski D, Gupta AK, et al. Cellular expression of bone-related proteins during in vitro osteogenesis in rat bone marrow stromal cell cultures. J Cell Physiol.1994,158(3):555-72.
    [22]Otsuka E, Yamaguchi A, Hirose S, et al. Characterization of osteoblastic differentiation of stromal cell line ST2 that is induced by ascorbic acid. Am J Physiol.1999,277(1 Pt 1):C132-8.
    [1]Storm EE, HuynhTV, CoPeland NG, et al. Limb alterations in brachydpodism mice due to mutations in a new member of the TGF beta-superfamily. Nature, 1994,368(6472):639-643
    [2]Hotten G, Neidhardt H, Jacobowsky B, et al. Cloning and expression of recombinant human growth/differentiation factor 5.Biochem Biophys Res Commun.1994,204(2):646-652.
    [3]Chang SC, Hoang B, Thomas JT, et al. Cartilage-derived morphogenetic proteins. New members of the transforming growth factor-beta superfamily predominantly expressed in long bones during human embryonic development. J BiolChem.1994,269(45):28227-28234
    [4]Sanyal A, Sarkar G, Fitzsimmons JS, et al. Isolation of a cDNA sequence of rabbit GDF5 (mature form)and pattern of its mRNA expression during periosteal chondrogenesis. Mol Biotechnol.2000,16(3):203-210
    [5]] Mikic, T clark, T C, Battaglia, et al. Altered hypertrophic chondrocyte kinetics in GDF-5 deficient murine tibial growth plates. Journal of orthopaedic Research.2004,223(3):552-556
    [6]Henning T, Lorenz H, Thiel A, et al. Reduced chondrogenic potential of adipose tissue derived stromal cells correlates with an altered TGF-beta recepor and BMP profile and is overcome by BMP-6. J Cell Physiol.2007,211(3):682-91
    [7]Gruber R, Mayer C, Schulz W, et al. Stimulatory effects of cartila derived morphogenetic proteins 1 and 2 on osteogenic differentiation bone marrow stromal cells. Cytokine.2000,12:1630-1638
    [8]Puleo D A. Dependence of mesenchymal cell responses on duration of exposure to bone morphogenetic protein-2 in vitro. J Cell Phys.1997,173:93-101
    [9]Yamaguchi A, Ishizuya T, Kintou N, et al. Effects of BMP-2, BMP-4 and BMP-6 on osteoblastic differentiation of bone marrow-derived stromal cell lines, ST2 and MC3T3-G2/PA6. Biochem. Biophys.Res. Commun,1996,220:366-371
    [10]Eriacher L, McCartney J, ten Piek, et al. Cartilage-derived morphogenetic proteins and osteogenic protein-1 differentially regulate osteogensis. J Bone Miner Res.1998,13:383-392
    [11]Reddi A H. Role of morphogenetic protein in skeletal tissue engineering and regeneration. Nat Biotechnol.16:247-252
    [12]McCartney J, Piek E, ten Dijke P, et al. Cartilage-derived morphogenetic proteins and osteogenic protein-1 differentially regulate osteogensis. J Bone Miner Res.1998,13(2):383-392
    [13]Shimaoka H, Dohi Y, Ohgushi H, et al. Recombinant growth/differentiation factor-5(GDF-5) stimulates osteogenic differentiation of marrow mesenchymal stem cells in porous hydroxyapatite ceramic. J Biomed. Mater Res A.2004,68(1): 168-176
    [14]Gruber R, Mayer C, Schulz W, et al. Stimulatory effects of cartila derived morphogenetic proteins 1 and 2 on osteogenic differentiation bone marrow stromal cells. Cytokine.2000,12:1630-1638
    [15]Komori T, Yagi H, Nomura S, et al. Targeted disruption of Cbfal results in a complete lack of bone formation owing to maturational arrest of osteoblast. Cell. 1997,89:755-764
    [16]Romero-PradoM, Blazquez C, Rodriguez-Navas C, et al. Functional characterization of human mesenchymal stem cells that maintain osteochondral fates. J Cell Bio-chem.2006,15,98(6):1457-1470
    [17]JagerM, Feser T, Denck H, et al. Proliferation and osteo-genic differentiation ofmesenchymal stem cells cultured on-to three different polymers in vitro. Ann Biomed Eng.2005,33(10):1319-1332.
    [18]Andrea I, Alford, Kurt D. Hankenson.Matricellular proteins:Extracellular modulators of bone development,remodeling,and regeneration.Bone.2006, 38:749-7578
    [19]Gericke A, Qin C, Spevak L, et al. Importance of phosphorylation for osteopontinre gulation of biomineralization. Calcif Tissue Int.2005,77(1):45-54
    [20]Huang W B, Carlsen B, Rudkin G, et al. Osteopontin is a negative regulator of proliferation and differentiation in MC3T3-E1 pre-osteoblastic cells. Bone. 2004,34:799-808.
    [21]Haylock DN, Nilsson SK, Osteopontin:a bridge between bone and blood. Br J Haematol.2006, Sep;134(5):467-74
    [22]Sittichockechaiwut A, Scutt AM, Ryan AJ, et al. Use of rapidly mineralising osteoblasts and short periods of mechanical loading to accelerate matrix maturation in 3D scaffolds. Bone.2009,44 (5):822-829
    [23]Ferguson C, Alpern E, Miclau T, et al. Does adult fracture repair recapitulate embryonic skeletal formation? Mech Dev.1999,87:57-66
    [24]Glowacki J. Angiogenesis in fracture repair. Clin Orthop Relat Res.1998, S 82-9
    [25]Zelzer E, McLean W, Ng YS, et al. Skeletal defects in VEGF(120/120) mice reveal multiple roles for VEGF in skeletogenesis. Development.2002, 129:1893-904
    [1]Yoshimoto T, Yamamoto M, Kadomatsu H. Recombinant human growth/differentiation factor-5(rhGDF-5) induced bone formation in murine calvariae. J Periodont Res.2006,41:140-147
    [2]Simank HG, Manggold J. Bone morphogenetic protein-2 and growth and differentiation factor-5 enhance the healing of necrotic bone in a sheep model. Growth Factors.2001,19(4):247-257.
    [3]Spiro RC, Liu L, Heidaran MA, et al. Inductive activity of recombi-nant human growth and differentiation factor-5. Biochem Soc Trans. 2000,28(4):362-368
    [4]Laurent David, Jean-Jacques Feige, Sabine Bailly. Cytokine & Growth Factor Reviews.2009,20:203-212
    [5]Colnot CI, Helms JA. A molecular analysis of matric remodeling and angiogenesis during long bone development. Mech Dev.2001,100:245-250
    [6]Yamashita H, Shimizu A, Kato M, et al. Growth/differentiation factor-5 induces angiogenesis in vivo. Exp Cell Res.1997,235:218-226
    [7]Carmeliet P. Angiogenesis in life, disease and medicine. Nature. 2005,438:932-6 [8] Reddi AH. Interplay between bone morphogenetic proteins and cognate binding proteins in bone and cartilage development:noggin, chordin and DAN. Arthritis Res.2001,3:1-5.
    [9]Groppe J, Hinck CS, Samavarchi-Tehrani P, et al. Cooperative assembly of TGF-beta superfamily signaling complexes is mediated by two disparate mechanisms and distinct modes of receptor binding. Mol Cell.2008,29:157-68
    [10]Valdimarsdottir G, Goumans MJ, Rosendahl A, et al. Stimulation of Idl expression by bone morphogenetic protein is sufficient and necessary for bone morphogenetic protein-induced activation of endothelial cells. Circulation.2002, 106:2263-70.
    [11]Frank DB, Lowery J, Anderson L, et al. Increased susceptibility to hypoxic pulmonary hypertension in Bmpr2 mutant mice is associated with endothelial dysfunction in the pulmonary vasculature. Am J Physiol Lung Cell Mol Physiol. 2008,294:L98-109.23.
    [12]Kozawa O, Matsuno H, Uematsu T. Involvement of p70 S6 kinase in bone morphogenetic protein signaling:vascular endothelial growth factor synthesis by bone morphogenetic protein-4 in osteoblasts. J Cell Biochem.2001;81:430-6.
    [13]Yeh LC, Lee JC. Osteogenic protein-1 increases gene expression of vascular endothelial growth factor in primary cultures of fetal rat calvaria cells. Mol Cell Endocrinol.1999,153:113-24.
    [14]Nakamura T, Yamamoto M, Tamura M, et al. Effects of growth/differentiation factor-5 on human periodontal ligament cells. J Periodont Res.2003,38:597-605
    [1]Hotten G, Neidhardt H, Jacobowsky B, et al. Cloning and expression of recombinant human growth and differentiation factor-5. Biochem Biophys Res Commun.1994,204(2):646-652
    [2]Nickel J, Kotzsch A, Sebald W, et al. A single residue of GDF-5defines binding specificity to BMP receptor IB. J Mol Biol.2005,349(5):933-947
    [3]Mikic B, Clarkr T, Battaglia TC, et al. Altered hypertrophic chondrocyte kineties in GDF-5 Deficient murine tibial growth Plates. J Orthop Res. 2004,22(3):552-556
    [4]吕学敏,邓廉夫,杨庆铭.GDF-5在小鼠肢体骨骼发育中的表达及对肢芽细胞影响的研究.中国矫形外科杂志.2004,12(7):521-523
    [5]Frencis-West PH, Abdelfattah A, Chen P et al. Mechanisms of GDF-5 action during skeletal development. Development.1999,126(6):1305-1315
    [6]Mikic B, Battaglia Tc, Taylor, et al. The effect of growth/differentiation factor-5 deficiency on femoral composition and mechanical behavior in mice. Bone.2002,30(5):733-737
    [7]Takahara M, Harada M, Guan D, et al. Development failure of phalanges in the absence of growth/differentiation factor 5. Bone.2004,35(5):1069-1076
    [8]Douzgou S, Lehmann K, Mingarelli R, et al. Compound hetelrozygosity for GDF5 in Du Pan type chondrodysplasia.Am J Med Genet A.2008 Aug 15, 146A(16):2116-2121
    [9]Dobbs MB, Gurnett CA, Robarge J, et al. Variable hand and foot abnormalities in family with congenital vertical talus and CDMP-1 gene mutation. J Orthop Res.2005 Nov,23(6):1490-1494
    [10]Coleman CM, Tuan RS. Functional role of growth differentiation factor5 in chondrogenesis of limb mesenchymal cells. Mech Dev.2003,120(7):823-827
    [11]Simank HG, Sergi C, Jung M, et al. Effects of local application of growth and differentiation factor-5(GDF-5) in a full thickness cartilage defect model.J Biomed Mater Res A.2004,68(1):168-174
    [12]Katayamar, Wakitanis, Tsumakin, et al. Repair of articular cartilage defects in rabbits using CDMPlgene-transfected autologous mesenchymal cells derived from bone marrow.Rheumatology (Oxford).2004,43(8):980
    [13]Anikar Chhabra, David Zijerdi, Jianxin Zhang, et al. BMP-14 Deficiency Inhibits Long Bone Fracture Healing A Biochemical, Histologic, and Radiographic Assessment. J Orthop Trauma.2005,19(9):629-634
    [14]Dupoirieux L, Pohl J, Hanke M, et al. A preliminary report on the effect of dimeric rhGDF-5 and its monomeric form rhGDF-5C465A on bone healing of rat cranial defects. Journal of Cranio-Maxillofacial Surgery.2009,37:30-35
    [15]Kadomatsu H, Matsuyama T, Yoshimoto T, et al. Injectable growth/differentiation factor-5-recombinant human collagen composite induces endochondral ossification via Sry-related HMG box 9 (Sox9) expression and angiogenesis in murine calvariae. J Periodont Res.2008,43: 483-489
    [16]Rothamel, Daniel, Herten, et al. Lateral ridge augmentation using particulated or block bone substitutes biocoated with rhGDF-5 and rhBMP-2:an immuohistochemical study in dogs. Clin Oral Impl Res.2008,19(7):642-652
    [17]Qing Zeng, Xudong Li, Luke Choi, et al. Recombinant Growth/Differentiation Factor-5 Stimulates Osteogenic Differentiation of Fat-Derived Stromal.Connetctive Tissue Research.2006,47:264-270
    [18]鄂玲玲,刘洪臣,苏方等。Beagle犬脂肪基质干细胞的培养及分化研究.中华老年口腔医学杂志.2008,6(4):196-199
    [19]Herberg S, Siedler M, Pippig S, et al. Development of an injectable composite as a carrier for growth factor-enhanced periodontal regeneration. J Clin Periodontol.2008,35:976-984
    [1]Boo JS, Yamada Y, Okazaki Y, et al. Tissue-engineered bone using mesenchymal stem cells and a biodegradable scaffold. J Craniofac Surg (2002) 13(2):231-239.
    [2]Ikeuchi M, Dohi Y, Horiuchi K, et al. Recombinant human bone morphogenetic protein-2 promotes osteogenesis within atelopeptide type I collagen solution by combination with rat cultured marrow cells. J Biomed Mater Res (2002) 60(1):61-69.
    [3]Saito N, Okada T, Horiuchi H, et al. Biodegradable poly-D,L-lactic acid-polyethylene glycol block copolymers as a BMP delivery system for inducing bone. J Bone Joint Surg Am (2001) 83-A(Suppl 1 Pt 2):S92-S98.
    [4]Mulliken JB, Glowacki J:Induced osteogenesis for repair and construction in the craniofacial region. Plast Reconstr Surg (1980)65(5):553-560.)
    [5]Fong KD, Nacamuli RP, Song HM, et al. New strategies for craniofacial repair and replacement:A brief review. J Craniofac Surg (2003) 14(3):333-339.
    [6]Strem BM, Hedrick MH. The growing importance of fat in regenerative medicine. Trends Biotechnol (2005) 23(2):64-66.
    [7]Otto WR, Rao J. Tomorrow's skeleton staff:Mesenchymal stem cells and the repair of bone and cartilage. Cell Prolif (2004) 37(1):97-110.
    [8]Baksh D, Song L, Tuan RS. Adult mesenchymal stem cells:Characterization, differentiation, and application in cell and gene therapy. J Cell Mol Med (2004) 8(3):301-316
    [9]Lee RH, Kim B, Choi I, et al. Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell Physiol Biochem (2004) 14(4-6):311-324.
    [10]Urbich C, Dimmeler S. Endothelial progenitor cells functional characterization.Trends Cardiovasc Med 2004; 14:318-322.
    [11]Charrie're G, Cousin B, Arnaud E et al. Preadipocyte conversion to macrophage. Evidence of plasticity. J Biol Chem 2003;278:9850-9855.
    [12]Gronthos S, Franklin DM, Leddy HA, Robey PG, Storms RW, Gimble JM: Surface protein characterization of human adipose tissuederived stromal cells. J Cell Physiol (2001) 189(1):54-63.
    [13]Gronthos S, Zannettino AC, Hay SJ, et al:Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. J Cell Sci (2003) 116(9):1827-1835.
    [14]Winter A, Breit S, Parsch D,et al.Cartilage-like gene expression in differentiated human stem cell spheroids:A comparison of bone marrow-derived and adipose tissue-derived stromal cells. Arthritis Rheum (2003) 48(2):418-429.
    [15]Bianchi G, Banfi A, Mastrogiacomo M, et al. Ex vivo enrichment of mesenchymal cell progenitors by fibroblast growth factor 2. Exp Cell Res (2003)287(1):98-105.
    [16]De Ugarte DA, Morizono K, Elbarbary A, et al:Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs (2003) 174(3):101-109.· This study provides an in vitro comparison of BMCs and AMCs.
    [17]. Lin TM, Tsai JL, Lin SD, et al:Accelerated growth and prolonged lifespan of adipose tissue-derived human mesenchymal stem cells in a medium using reduced calcium and antioxidants. Stem Cells Dev (2005) 14(1):92-102.
    [18]Kang SK, Putnam L, Dufour J, et al. Expression of telomerase extends the lifespan and enhances osteogenic differentiation of adipose tissue-derived stromal cells. Stem Cells (2004) 22(7):1356-1372
    [19]Salim A, Giaccia AJ, Longaker MT. Stem cell differentiation. Nat Biotechnol (2004) 22(7):804-805.
    [20]Jun ES, Lee TH, Cho HH, et al. Expression of telomerase extends longevity and enhances differentiation in human adipose tissue-derived stromal cells. Cell Physiol Biochem (2004) 14(4-6):261-268.
    [21]Shi YY, Nacamuli RP, Salim A, et al. The osteogenic potential of adipose-derived mesenchymal cells is maintained with aging. Plast Reconstr Surg 2005 Nov; 116(6):1686-96
    [22]Salim A, Giaccia AJ, Longaker MT:Stem cell differentiation. Nat Biotechnol (2004) 22(7):804-805.
    [23]Danet GH, Pan Y, Luongo JL, Bonnet DA, Simon MC:Expansion of human SCID-repopulating cells under hypoxic conditions. J Clin Invest (2003) 112(1):126-135.
    [24]Peterson B, Zhang J, Iglesias R, et al:Healing of critically sized femoral defects, using genetically modified mesenchymal stem cells from human adipose tissue. Tissue Eng (2005) 11(1-2):120-129.
    [25]Lin TM, Tsai JL, Lin SD et al. Accelerated growth and prolonged lifespan of adipose tissue-derived human mesenchymal stem cells in a medium using reduced calcium and antioxidants. Stem Cells Dev 2005; 14:92-102.
    [26]Kang SK, Putnam L, Dufour J,et al.Expression of telomerase extends the lifespan and enhances osteogenic differentiation of adipose tissue-derived stromal cells.Stem Cells (2004) 22(7):1356-1372.
    [27]Jun ES, Lee TH, Cho HH, et al. Expression of telomerase extends longevity and enhances differentiation in human adipose tissue-derived stromal cells. Cell Physiol Biochem (2004) 14(4-6):261-268.
    [28]Smith P, Adams WP Jr., Lipschitz AH et al. Autologous human fat grafting: Effect of harvesting and preparation techniques on adipocyte graft survival. Plast Reconstr Surg 2006; 117:1836-1844.
    [29]Zaragosi LE, Ailhaud G, Dani C. Autocrine fibroblast growth factor 2 signaling is critical for self-renewal of human multipotent adiposederived stem cells. STEM CELLS 2006;24:2412-2419.
    [30]Gimble JM, Guilak F. Differentiation potential of adipose derived adult stem (ADAS) cells. Curr Top Dev Biol (2003) 58:137-160.
    [31]Peterson B, Zhang J, Iglesias R,et al. Healing of critically sized femoral defects, using genetically modified mesenchymal stem cells from human adipose tissue. Tissue Eng (2005) 11(1-2):120-129.
    [32]Lee JA, Parrett BM, Conejero JA,et al. Biological alchemy:Engineering bone and fat from fat-derived stem cells. Ann Plast Surg (2003) 50(6):610-617.
    [33]Hicok KC, Du Laney TV, Zhou YS,et al. Human adipose-derived adult stem cells produce osteoid in vivo. Tissue Eng (2004) 10(3-4):371-380.
    [34]Brittberg M, Tallheden T, Sjogren-Jansson B,et al.Autologous chondrocytes used for articular cartilage repair:An update. Clin Orthop Relat Res (2001) 391(Suppl):S337-S348.
    [35]Barbero A, Grogan S, Schafer D,et al.Age related changes in human articular chondrocyte yield,proliferation and post-expansion chondrogenic capacity. Osteoarthritis Cartilage (2004) 12(6):476-484.
    [36]Nathan S, Das De S, Thambyah A,et al. Cell-based therapy in the repair of osteochondral defects:A novel use for adipose tissue. Tissue Eng (2003) 9(4):733-744.
    [37]Gimble JM, Franklin DM et al. Chondrogenic potential of adipose tissue-derived stromal cells in vitro and in vivo. Biochem Biophys Res Commun 2002;290:763-769.
    [38]Muneta T, Sakaguchi Y et al. Higher chondrogenic potential of fibrous synovium-and adipose synovium-derived cells compared with subcutaneous fat-derived cells:Distinguishing properties of mesenchymal stem cells in humans. Arthritis Rheum 2006;54:843-853.
    [39]Nishihara A, Fujii M, Sampath TK et al. Bone morphogenetic protein signaling in articular chondrocyte differentiation. Biochem Biophys Res Commun 2003;301:617-622.
    [40]Klein-Nulend J, Louwerse RT, Heyligers IC et al. Osteogenic protein (OP-1, BMP-7) stimulates cartilage differentiation of human and goat perichondrium tissue in vitro. J Biomed Mater Res 1998;40:614-620.
    [41]Knippenberg M, Helder MN, Zandieh Doulabi B et al. Osteogenesis versus chondrogenesis by BMP-2 and BMP-7 in adipose stem cells.Biochem Biophys Res Commun 2006;342:902-908.
    [42]Chiou M, Xu Y, Longaker MT. Mitogenic and chondrogenic effects of fibroblast growth factor-2 in adipose-derived mesenchymal cells. Biochem Biophys Res Commun 2006;343:644-652.
    [43]Im GI, Shin YW, Lee KB. Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells. Osteoarthritis Cartilage 2005;13:845-853.
    [44]B Malafaya PP, Pedro AJ, Peterbauer A et al. Chitosan particles agglomerated scaffolds for cartilage and osteochondral tissue engineering approaches with adipose tissue derived stem cells. J Mater Sci Mater Med 2005;16:1077-1085.
    [45]Hattori H, Masuoka K, Sato M et al. Bone formation using human adipose tissue-derived stromal cells and a biodegradable scaffold. J Biomed Mater Res B Appl Biomater 2006;76:230-239.
    [46]Choi YS, Park SN, Suh H. Adipose tissue engineering using mesenchymal stem cells attached to injectable PLGA spheres. Biomaterials 2005;26:5855-5863.
    [47]Miyahara Y, Nagaya N, Kataoka M, et al. Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat Med 2006; 12:459-465. [48] Strem BM, Zhu M, Alfonso Z et al. Expression of cardiomyocytic markers on adipose tissue-derived cells in a murine model of acute myocardial injury. Cytotherapy 2005;7:282-291.
    [49]Yamada Y, Wang XD, Yokoyama S et al. Cardiac progenitor cells in brown adipose tissue repaired damaged myocardium. Biochem Biophys Res Commun 2006;342:662-670.
    [50]Rodriguez AM, Pisani D, Dechesne CA, et al. Transplantation of a multipotent cell population from human adipose tissue induces dystrophin expression in the immunocompetent mdx mouse. J Exp Med 2005;201:1397-1405.
    [51]Di Rocco G, Iachininoto MG, Tritarelli A et al. Myogenic potential of adipose-tissue-derived cells. J Cell Sci 2006; 119:2945-2952.
    [52]Lee JH, Kemp DM. Human adipose-derived stem cells display myogenic potential and perturbed function in hypoxic conditions. Biochem Biophys Res Commun 2006;341:882-888.
    [53]Urbich C, Dimmeler S. Endothelial progenitor cells functional characterization.Trends Cardiovasc Med 2004; 14:318-322.
    [54]Planat-Benard V, Silvestre JS, Cousin B et al. Plasticity of human adipose lineage cells toward endothelial cells:Physiological and therapeutic perspectives. Circulation 2004; 109:656-663.
    [55]Moon MH, Kim SY, Kim YJ et al. Human adipose tissue-derived mesenchymal stem cells improve postnatal neovascularization in a mouse model of hindlimb ischemia. Cell Physiol Biochem 2006; 17:279-290.
    [56]Rehman J, Traktuev D, Li J et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 2004; 109:1292-1298.
    [57]Cao Y, Sun Z, Liao L et al. Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo. Biochem Biophys Res Commun 2005;332:370-379.
    [58]Nakagami H, Morishita R, Maeda K et al. Adipose tissue-derived stromal cells as a novel option for regenerative cell therapy. J Atheroscler Thromb 2006;13:77-81.
    [59]Nakagami H, Maeda K, Morishita R et al. Novel autologous cell therapy in ischemic limb disease through growth factor secretion by cultured adipose tissue-derived stromal cells. Arterioscler Thromb Vasc Biol 2005;25:2542-2547.
    [60]Planat-Benard V, Silvestre JS, Cousin B et al. Plasticity of human adipose lineage cells toward endothelial cells:Physiological and therapeutic perspectives. Circulation 2004; 109:656-663.
    [61]Moon MH, Kim SY, Kim YJ et al. Human adipose tissue-derived mesenchymal stem cells improve postnatal neovascularization in a mouse model of hindlimb ischemia. Cell Physiol Biochem 2006; 17:279-290.
    [62]Miranville A, Heeschen C, Sengenes C et al. Improvement of postnatal neovascularization by human adipose tissue-derived stem cells. Circulation 2004;110:349-355.
    [63]Romanov YA, Darevskaya AN, Merzlikina NV et al. Mesenchymal stem cells from human bone marrow and adipose tissue:Isolation,characterization, and differentiation potentialities. Bull Exp Biol Med 2005; 140:138-143.
    [64]KM, Hicok KC, Safford SD, et al. Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochem Biophys Res Commun 2002;294:371-379.
    [65]Kang SK, Lee DH, Bae YC et al. Improvement of neurological deficits by intracerebral transplantation of human adipose tissue-derived stromal cells after cerebral ischemia in rats. Exp Neurol 2003;183:355-366.
    [66]Timper K, Seboek D, Eberhardt M et al. Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells. Biochem Biophys Res Commun 2006;341:1135-1140.
    [67]Seo MJ, Suh SY, Bae YC et al. Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo. Biochem Biophys Res Commun 2005;328:258-264.
    [68]Kim DH, Je CM, Sin JY et al. Effect of partial hepatectomy on in vivo engraftment after intravenous administration of human adipose tissue stromal cells in mouse. Microsurgery 2003;23:424-431.
    [69]Corre J, Barreau C, Cousin B et al. Human subcutaneous adipose cells support complete differentiation but not self-renewal of hematopoietic progenitors. J Cell Physiol 2006;208:282-288.
    [70]Fang B, Song YP, Liao LM et al. Treatment of severe therapy-resistant acute graft-versus-host disease with human adipose tissue-derived mesenchymal stem cells. Bone Marrow Transplant 2006;38:389-390.
    [71]Yanez R, Lamana ML, Garcia-Castro J et al. Adipose tissue-derived mesenchymal stem cells have in vivo immunosuppressive properties applicable for the control of the graft-versus-host disease. STEM CELLS 2006;24:2582-2591.
    [72]Peterson B, Zhang J, Iglesias R, et al.Healing of critically sized femoral defects, using genetically modified mesenchymal stem cells from human adipose tissue. Tissue Eng (2005) 11(1-2):120-129.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.