生物复合材料的制备及性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,全世界塑料年产量已经超过2亿吨,相应的,塑料废弃物逐渐增加,已引起严重的环境污染。减少废塑料污染的重要方法之一是使用在自然界和生物体内外都可以自然降解、不会对环境造成污染的生物降解材料。在已开发的生物降解材料中,聚乳酸(PLA)和淀粉由于来源于天然资源,具有可完全生物降解,对环境无污染等优点,成为最有前途的可生物降解高分子材料。聚乳酸作为新型完全生物降解脂肪族聚酯,具有良好的生物相容性、力学性能和耐水性,但生产成本远高于传统塑料,限制了它的应用。淀粉作为天然高分子具有来源广泛、价格低廉、可完全生物降解、再生周期短等优点,是重要的生物降解材料之一。但是淀粉是多羟基聚合物,能够形成大量的分子内、分子间氢键,使其本身不具备热塑性,难以成型加工,同时纯淀粉塑料由于其强亲水性使其对湿度敏感,耐水性差。采用廉价的淀粉和性能优良的聚乳酸复合体系成为解决性能与成本之间矛盾的有效办法,国内外学者也在这方面做了一些研究。目前聚乳酸与淀粉共混体系中最主要的问题是疏水性的聚乳酸与亲水性的淀粉之间的界面结合力太弱,即两者相容性较差。热塑性淀粉(TPS)是采用天然淀粉、高直链淀粉或直链淀粉在不添加聚合物,在高温、高压和高湿条件下添加有效的增塑剂进行挤塑或注塑得到的全生物降解新材料。
     本文在总结国内外相关研究的基础上,提出并制备了一种由可降解无毒聚乙二醇400(PEG400)改性的聚乳酸/热塑性淀粉复合材料,该材料是先经造粒后经注塑加工而成的复合材料。研究了PEG400加入量的不同对PLA/TPS复合材料加工流变性能、力学性能的影响,并且采用差示扫描量热(DSC)仪和扫描电子显微镜(SEM)对复合材料的微观结构进行分析以及研究了加工工艺条件对复合材料的影响。结果表明所制备的PEG400改性的复合材料在一定程度上改善了聚乳酸和热塑性淀粉之间的相容性,提高了复合材料的塑性。当PEG400的加入量达到3%时,其力学性能达到最佳。另外从加工工艺条件对复合材料的影响可以得出冷却时间为60s,注射压力为10MPa,注射速度为80mm/s时,复合材料体系的力学性能达到最佳。材料有望用于可降解餐具、性能要求不太高的可降解塑料包装等领域。为了进一步对比研究,分析比较了不同改性剂对复合材料力学性能的影响。
     另外通过对土埋法和堆肥法降解5个月的复合材料进行力学性能及重量损失测定,可以得出在改性前,样条的降解性能随着热塑性淀粉含量的增加而变得更好;经过PEG400改性后,样条的降解率随着PEG400含量的增加而增加,说明PEG400在一定程度上促进了复合材料的降解。把本次采用的堆肥法和土埋法进行对比,可以得出堆肥法虽然在一定程度上提高了样条的降解率,但对样条降解速率的提高很小,所以还需进一步改进堆肥实验,从而进一步提高样条的降解速度。综合分析样条的力学性能与降解性能,找出了两者的最佳平衡点,即当PEG400的加入量达到3%时,其力学性能和降解性能达到最佳,从而确定了复合材料的最优配方。
World plastics production has more than 200 million tons, its extensive application dues to the rapid increase of waste, have caused serious environmental pollution problems. One important way of waste plastic pollution reduction is to use biodegradable material both in nature and organisms, the biodegradable material will not cause environmental pollution. During the biodegradable materials, poly (lactic acid) and starch become the most promising biodegradable polymer materials as derived from natural resources, with full bio-degradable, environmental pollution, etc. poly (lactic acid) is derived from renewable resources as a new type of fully biodegradable aliphatic polyester, have good biocompatibility, mechanical properties and water resistance, but the cost of production is far higher than traditional plastic, limiting its application. Starch is also one important biodegradable materials with its inexpensive, completely biodegradable, renewable short cycle. However, starch is a polyhydroxy polymer, can form a large number of intermolecular hydrogen bonds, so that it does not have the thermoplastic and is difficult to process, while pure starch plastics is sensitive to moisture and water, so its hydrophilic nature is strong. Cheap starch and poly (lactic acid) composite system is the way to resolve this contradictory of performance and cost effective, foreign scholars have done some research. Present blends of polylactic acid and starch, the most important issue is the poor interface compatibility between the hydrophobic of poly(lactic acid) and hydrophilic of starch. Thermoplastic starch is made of natural starch, high amylose or amylose with adding an effective plasticizer using extrusion or injection molding in high temperature, high pressure and high humidity conditions.
     In this paper, PLA/thermoplastic starch (TPS) blends were produced using injection molding machine in the presence of poly(ethylene glycol)(PEG). The rheological and mechanical properties of PLA/TPS were studied by adding different amount of PEG. And thermal analysis (DSC) instrument and scanning electron microscopy (SEM) were used on the microstructure of composite materials, and researched processing conditions impact on composite materials. The results show that the composite materials modified by the PEG400 improved the compatibility between thermoplastic starch and poly(lactic acid), and enhanced plasticity of composite materials. when the addition of polyethylene glycol reach to 3%, the mechanical properties of composite materials achieved the best. From processing conditions we can conclude that mechanical properties of composites will be the best when cooling time 60 seconds, injection pressure 10MPa, injection speed 80mm/s. The composite materials could be used in the biodegradable tableware, biodegradable plastic bags and other fields. For further comparative studies, I analyzed the mechanical properties of composite materials using different modifiers.
     By assessment of mechanical properties and weight loss through five months of degradation of composite materials, Results show that:Before the modification, degeneration performance increases along with TPS content increases. After the modification with PEG400, degradation rate increases with the increase of PEG400 concentration, indicating PEG400 promoted the compound materials degeneration to a certain extent. Comparison with soil burial test and composting degradation, we can conclude that although composting degradation increased the degradation rate of samples, but effects is little. Therefore, we need improve composting degradation experiment. Though analyzing the mechanical properties and degradation of samples, I found the optimal balance point of the mechanical properties and degradation of the performance, when the addition of polyethylene glycol reach to 3%, the mechanical properties and degradation of composite materials achieved the best, so I determined the optimal formulation of composite materials.
引文
[1]张志永等.生物降解材料-聚乳酸改性研究进展[J].橡塑技术与装备,2007,33(7):38-42
    [2]张坤玉,吴航,庄宇钢,董丽松.聚乳酸/淀粉基热塑性弹性体共混物的力学性能研究.2005:全国高分子学术论文报告会
    [3]徐兆瑜.前景璀璨的新型生物降解材料-聚乳酸[J].合成材料老化与应,2003,(2):3944
    [4]闫有旺.环境友好材料聚乳酸[J].知识介绍,2004,(12):37-40
    [5]张美洁,李树材.聚乳酸的增韧改性及其与淀粉共混物的研究进展[J].塑料加工,2002,2(36):25-28
    [6]Hoogsteen W, Postema R A, Pennings J A. Crystal structure, conformation and morphology of solution-spun poly(1-lactide) fibers[J].Macromolecules,1990,23(2):634-642
    [7]SanctisDe P, KovacsA J. Molecular conformation of poly(s-lactic acid)[J].Biopolymers, 1968(6):299-306
    [8]Marega C, Marigo A, Dinoto V, et al. Structure and crystallization kinetics of poly(1-lactic acid)[J].DieMakromolekulare Chemie,1992,193(7):1599-1606
    [9]Eling B, Gogolewski S, Pennings A J. Biodegradable materials of poly(1-lactic acid):I.Melt-spun and solution-spun fibres [J].Polymer,1982,23 (11):1587-1593
    [10]Puiggali J, Ikada Y, Tsuji H, et al. The frustrated structure of poly(1-lactide)[J].Polymer,2000, 41(25):8921-8930
    [11]Cartier L, OkiharaT, IkadaY, et al. Epitaxial crystallization and crystalline Polymorphism of Polylactides[J].Polymer,2000,41(25):8909-8919
    [12]Madalena Dionlsio, Maria Teresa Viciosa, Yaming Wang, Joao F. Mano. Glass Transition Dynamics of Poly(L-lactic acid) during Isothermal Crystallisation Monitored by Real-Time Dielectric Relaxation Spectroscopy Measurements [J]. Macromolecular Rapid Communication.2005;26(17):1423-1427
    [13]J.F.Manor, J.L.Gomez Ribelles, N.M.Alves, M.Salmeron Sanchez. Glass transition dynamics and structural relaxation of PLLA studied by DSC:Influence of crystallinity[J].Polymer,2005,46(19):8258-8265
    [14]Kazuyo Takahashi, Daisuke Sawai, Takafumi Yokoyama, Tetsuo Kanamoto, Suong-Hyu Hyon. Crystal transformation from the α-to the β-form upon tensile drawing of poly(L-lactic acid)[J].Polymer,2004,45(14):4969-4976
    [15]Hiroshi Urayama, Takeshi Kanamori, Kazuki Fukushima, Yoshiharu Kimura. Controlled crystal nucleation in the melt-crystallization of poly(L-lactide) and poly(L-lactide)/poly(D-lactide) stereocomplex[J].Polymer 2003;44(19):5635-5641
    [16]Toshihiro Kasuga, Yoshio Ota. Masayuki Nogami, Yoshihiro Abe. Preparation and mechanical properties of polylactic acid composites containing hydroxyapatite fibers[J].Biomaterials, 2001,2(1):19-23
    [17]齐锦刚,曹丽云,王建中,苍大强.碳纤维增强聚乳酸复合材料体外降解特性[[J].复合材料学报,2005,2(22):34-37
    [18]A.Saikku-Backstram, R.M.Tulamo, J.E.Raiha, T.Pohjonen, T. Toivonen, P.Tormala, P.Rokkanen. Intramedullary fixation of femoral cortical osteotomies with interlocked biodegradable self-reinforced poly-96L/4d-lactide (SR-PLA96) nails[J).Biomaterials,2004, 25(13):2669-2677
    [19]K.Oksman, M.Skrifvars, J.F.Selin. Natural fibres as reinforcement in polylactic acid (PLA) composites[J]. Composites Science and Technology,2003,63(9):1317-1324
    [20]Z.Kulinski, E.Piorkowska. Crystallization, structure and properties of plasticized poly(L-lactide)[J]. Polymer,2005,46(25):10290-10300
    [21]O.Martin, L.Averous. Poly(lactic acid):plasticzation and properties of biodegradable multiphase systems[J].Polymer,2001,42(14):6209-6219
    [22]Annette C. Renouf-Glauser, John Rose David Farrar, Ruth E. Cameron. A degradation study of PLLA containing lauric acid[J]. Biomaterials,2005,26(15):2415-2422
    [23]Xiaoqiang Yang, Minglong Yuan, Wei Li, Gaoyong Zhang. Synthesis and Properties of Collagen/polylactic Acid Blends[J]. Journal of Applied Polymer Science,2004,94(4):1670-1675
    [24]Carl G.. Simon Jr, Naomi Eidelman, Scott B. Kennedy, Amit Sehgal, Chetan A. Khatri,Newell R. Washburn. Combinatorial screening of cell proliferation on poly(L-lactic acid)/poly(D, L-Lactic acid) blends[J]. Biomaterials,2005,26(34):6906-6915
    [25]Christoph Sebastian Leiggener, Raymond Curtis, Andreas A. Mullear, Dominik Pfluger, Sylwester Gogolewski, Berton A. Rahn. Influence of copolymer composition of polylactide implants on cranial bone regeneration[J]. Biomaterials,2006,27(2):202-207
    [26]Chin-San Wu, Hsin-Tzu Liao. A new biodegradable blends prepared from polylactide and hyaluronic acid[J]. Polymer.2005,46(13):10017-10026
    [27]D. Raghavan, A. Emekalam. Characterization of starch/polyethylene and starch/polyethylene/poly(lactic acid) composites[J]. Polymer Degradation and Stability,2001,72(3):509-517
    [28]Richard Gattin. Alain Copinet, Yves Couturier. Biodegradation study of starch and poly(lactic acid) co-extruded material in liquid composting and inert mineral media[J]. International Biodeterioration& Biodegradation,2002,50(1):25-31
    [29]R.L. Shogren, W.M. Doane, D. Garlotta, J.W. Lawton. J.L. Willett. Biodegradation of starch/polylactic acid/poly(hydroxyester-ether) composite bars in soil[J]. Polymer Degradation and Stability,2003,79(3):405-411
    [30]G.H. Yew, A.M. Mohd Yusof, Z.A. Mohd Ishak,U.S. Ishiaku. Water absorption and enzymatic degradation of poly(lactic acid)/rice starch composites[J]. Polymer Degradation and Stability.2005, 90(3):488-500
    [31]Marie-Amelie Paul Michael Alexandre, Philippe Degee. Catherine Henrist, Andre Rulmont, Philippe Dubois. New nanocomposite materials based on plasticized poly(L-lactide) and organo-modified montmorillonites:thermal and morphological study[J]. Polymer. 2003,44(2):443-450
    [32]Jin-Hae Chang, Yeong Uk An. Donghwan Cho, Emmanuel P. Giannelis. Poly(lactic acid) nanocomposites:comparison of their properties with montmorillonite and synthetic mica (Ⅱ) [J]. Polymer 2003,44(13):3715-3720
    [33]Tzong-Ming Wu, Ming-Feng Chiang. Fabrication and Characterization of Biodegradable Poly(Lactic Acid)/Layered Silicate Nanocomposites[J].Polymer Engineering and Science 2005,45(12):1615-1621
    [34]Toshihiro Kasuga, Hirotaka Maeda, Katsuhito Kato, Masayuki Nogami, Ken-ichiro Hata, Minoru Ueda. Preparation of poly(lactic acid) composites containing calcium carbonate (vaterite) [J]. biomateriais,2003,24(19):3247-3253
    [35]Nenad Ignjatovic, Dragan Uskokovic. Synthesis and application of hydroxyapatite/polylactidecomposite biomaterial[J]. Applied Surface Science,2004.238(1-4):314-319
    [36]M.Viljanmaa, A.Sodergard, R.Mattila, P.Tormala. Hydrolytic and environmental degradation of lactic acid based hotmelt adhesives[J]. Polymer Degradation and Stability.2002,78(2):269-278
    [37]Satoru Nishino, Yoshiro Kitamura, Akio Kishida, Hidekazu Yoshizawa. Preparation And Interfacial Properties of a Novel Biodegradable Polymer Surfactant:Poly(ethylene oxide monooleate-block-DL-lactide) [J].Macromolecular Bioscience,2005,5(11):]066-1073
    [38]Christine Hiemstra, Zhiyuan Zhong, Pieter J, Dijkstra, Jan Feijen. Stereocomplex Mediated Gelation of PEG-(PLA)2 and PEG-(PLA)8 Block Copolymers[J].2005 International Union of Pure and Applied Chemistry,2005,224(1):119-131
    [39]Johanna Holmbom, Anders Sodergard, Erika Ekholm, Matis Martson, Asko Kuusilehto, Pekka Saukko, Risto Penttinen. Long-term evaluation of porous Poly (-caprolactone-co-Llactide) as a bone-filling material[J]. Wiley Periodicals, Inc,2005,75(2):308-315
    [40]Yodthong Baimark, Robert Molloy. Synthesis and characterization of poly(L-lactide-co- ε-caprolactone) (B)-poly(L-lactide) (A) ABA block copolymers[J].Polymers for Advanced Technologies,2005,16(4):332-337
    [41]陈红丽,贝建中,王身国.生物降解高分子-聚己内酯/聚氧乙烯/聚丙交酯三元共聚物水解行为的 研究[J].高分子学报,2000,10(5)626-631
    [42]Ming-Hsi Huang, Suming Li, Michel Vert. Synthesis and degradation of PLA-PCL-PLA triblock copolymer prepared by successive polymerization of ε-caprolactone and DL-lactide[J]. Polymer,2004,45(26):8675-8681
    [43]Li Chen, Xueyu Qiu, Mingxiao Deng, Zhongkui Hong, Rui Luo, Xuesi Chen, Xiabin Jing.The starch grafted poly(L-lactide) and the physical properties of its blending composites [J]. Polymer,2005,46(15):5723-5729
    [44]Qingliang Zhou, Yihong Gong, Changyou Gao. Microstructure and Mechanical Properties of Poly(L-lactide) Scaffolds Fabricated by Gelatin Particle Leaching Method[J]. Journal of Applied Polymer Science.2005,98(3):1373-1379
    [45]Taek Kyoung Kim, Jun Jin Yoon, Doo Sung Lee, Tae Gwan Park. Gas foamed open porous biodegradable polymeric microspheres[J]. Biomateriais,2006,27(2):152-159
    [46]John J.A. Barry, Marta M.C.G..Silva, Kevin M.Shakesheff, Steven M.Howdle, Morgan R.Alexander. Using Plasma Deposits to Promote Cell Population of the Porous Interior of Three-Dimensional Poly(D, L-Lactic Acid) Tissue-Engineering Scaffolds[J]. Advanced Functional Material. 2005,15(7):1134-1140
    [47]冯宏伟,王延军等.国产聚乳酸材料的体外降解性研究[J].生物骨科材料与临床研究,2005,2(6):11-14
    [48]中晓青等.低聚左旋聚乳酸的降解性能研究[J].广东医学,2005,26(6):764-768
    [49]陈长春,程海涛,孙康等.生物可吸收性甲壳素纤维增强聚乳酸复合材料体内体外降解性研究[J].生物医学工程杂志,2000,17(2):117-119
    [50]麦杭珍,赵耀明.聚乳酸的成型加工及其降解性能[J].塑料工业,2000,28(1):28-30
    [51]朱莉芳,闫玉华.聚乳酸的合成与降解机理[J].生物骨科材料与临床研,2006,3(1):42-47
    [52]刘晓霞,邱建辉.模拟自然环境状态下聚乳酸的降解性能研究,2005年全国高分子学术论文报告会
    [53]杨斌.绿色塑料聚乳酸.化学工业出版社[M],2007:53-93,154-159,136-143,203-210.
    [54]姚军燕,杨青芳,马强.生物高分子材料聚乳酸的改性研究进展[J].高分子材料科学与工程,2004,20(4):29-30
    [55]张晓静.聚乳酸的改性研究进展[J].金山油化纤,2005,24(5):33-34
    [56]Mihir S.,KumarR,A.,Vipul D.,et al. Biodegradable Polymer blends of Poly(laetie acid) and Poly(ethylene glycol)[J].Journal of Applied Polymer Seienee,1997,66(8):149511505
    [57]NijenhuisA.J.,ColsteeE.,GrijpmaD.W.,et al. High molecular weight Poly(L-laetide) and Poly(ethylene oxide)blends:thermal characterization and physical properties[J].Polymer,1996,37(26):5849-5857
    [58]Martin O.,Averous L. Poly(lactic acid):plastieization and properties of Biodegradable multiphase systems[J].Polylmer,2001,42(14):6209-6219
    [59]Wei-Chi Lai,Wen-Bin Liau,Tai-Tso Lin,et al.The effect of end groups of PEG On the crystalzation behaviors of binary crystalline polylmer blends PEG/PLLA[J].Polyymer.2004,45(9):3073-3080
    [60]Blumm E.,Owen A.J. Miseibility,crystallization and melting of poly(3-hydroxybutyrate)/Poly(L-lactide)blends[J].Polylmer,1995,36(21):4077-4081
    [61]Ohkoshi I.,Abe H.,Doi Y. Miscibility and solid-state structures for blends of Poly[(S)-lactide] with atactic poly[(R,S)-3-hydroxybutyrate][J].Polymer.2000,41(15):5985-5992
    [62]石雪萍,赵陆萍.叶朝阳淀粉类可降解塑料的现状与发展[J].延安大学学报(自然科学版),2004,23(4):55-58
    [63]王莉.生物降解塑料的研究进展-淀粉基塑料、聚乳酸塑料、聚羟基烷酸酯塑料[J].化工文摘,2007,(2):50-51
    [64]李平,周玉根.淀粉与丙烯酸甲酯共聚物材料的生物降解性能的研究[J].精细化工,1993,10(2):30-32
    [65]吴俊,谢笔钧.淀粉基热塑性生物降解塑料的研制[J].精细化工,2001,18(7):423-425
    [66]Baljit Singh, Nisha Shanna. Optimized synthesis and characterization of polystyrene graft copolymers and preliminary assessment of their biodegradability and application in water pollution alleviation technologies[J]. Polym Degrad Stab,2007,92(5):876
    [67]柳明珠等.热塑性淀粉的制备及其结构与性能[J].应用化学,2004,21(3):235-238
    [68]戴李宗,李万利等.淀粉基可环境降解塑料研究Ⅲ-现场环境降解研究[J].厦门大学学报(自然科学版),2000,39(5):647-652
    [69]Park J.W, YooE.S. Biodegradable polymer blends of poly(lactic acid)and starch[J].Korea Polymer Journal,1999,7(2):93-101
    [70]Tianyi K, Xiuzhi S. Effects of moisture content and heat treatment on the physical properties of starch and Poly(lactic acid)blends[J].Journal of Applied Polymer Science,2001,81(12):3069-3082
    [71]Tianyi K.,Xiuzhi S. Melting behavior and crystallization kinetics of starch and poly(lacctie acid) composites[J]. Journal of Applied Polymer Science,2003,89(5):1203-1210
    [72]魏巍.热塑性淀粉/聚乳酸共混材料的制备及性质研究[D].陕西:西北农林科技大学.2007.5
    [73]戴文琪,涂克华,王利群.聚乙二醇对淀粉原位熔融接枝聚乳酸的影响[J].高分子材料科学与工程,2005,21(4):73-75
    [74]沈一丁,赖小娟.聚乙二醇改性淀粉/聚乳酸薄膜的结构与性质研究[J].现代化工,2006,26(5):35-37
    [75]张永伟,郭少华,吴智华.几种增塑剂增塑聚乳酸的性能研究[J].现代塑料加工应用,2007,19(6):38-40
    [76]王素玉,苏一凡,王艳芳,耿存国.内外EVA产品的发展及应用[J].石化技术.2005,12(2):5
    [77]冀玲芳,张巧珍,赵彦丽.TPS/EVA共混物的性能研究[J].塑料科技,2003,(5):1-3
    [78]付学俊,刘涛,张盈盈,王国成,蒋涛.EVA增韧聚乳酸的性能研究[J].塑料科技,2007,35(7):50-52
    [79]潘丽军,桂蕾,李延红,李世勋.改性淀粉/聚乳酸复合材料的制备[J].塑料科技,2009,37(2):28-30
    [80]何益艳,张吉,杜仕国.偶联剂在橡胶中的应用[J].弹性体,2002,12(4):55-59
    [81]董斌斌,陈静波,申长雨,苏彬.影响注射成型冷却时问的因素分析[J].塑料工业,2005,33(8):33-35
    [82]周殿明主编.注射成型中的故障与排除[M].化学工业出版社,2007:21-23
    [83]吴选军,袁继祖,余永富,周月.聚乳酸/聚乙二醇共混材料的性能研究[J].武汉工程大学学报,2009,31(5):60-62
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.