脊椎动物中线粒体基因片段向核内转移的比较分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
线粒体基因频繁的向细胞核中转移,产生了一些与线粒体基因同源并且没有表达功能的序列。这种序列就被称为线粒体假基因,即Numts (nuclear mitochondrial DNA segments,简称Numts)。线粒体假基因目前在植物、昆虫和哺乳动物中研究较为广泛,但对于鸟类核基因组中的线粒体假基因研究却很少。随着聚合酶链式反应(PCR)和DNA测序技术的发展,线粒体DNA (mtDNA)已成为鸟类系统学和进化研究的理想分子标记。目前公共数据库(GenBank)中,鸟类仅有6个目(雁形目、鸽形目、隼形目、鸻形目、鸡形目和雀形目)存在线粒体假基因共244条(包括实验室前期获得的35条numts序列)。
     利用GenBank上9个物种的线粒体基因组的数据(家鸡(Gallus gallus,NC_001323)、小鼠(Mus musculus,NC_001665)、大鼠(Rattus norvegicus,NC_005089)、猪(Sus scrofa,NC_000845)、家牛(Bos taurus,NC_006853)、家狗(Canis familiaris,NC_002008)、猕猴(Rhesus macaque,NC_005943)、黑猩猩(Pan troglodytes,NC_001643)、人(Homo sapiens,NC_001807))为诱饵序列,在NCBI中分别与其核基因组序列进行做Blastn同源性序列比对,推断同源性较高的为线粒体假基因(numts),对其线粒体序列和numts侧翼序列分析。结果如下:家鸡、小鼠、大鼠、猪、牛、狗、猕猴、黑猩猩和人类核基因组中存在的numts数量分别为15、44、17、21、39、69、92、159及147条;在猕猴、黑猩猩和人的核基因组中的线粒体假基因序列分别涵盖了其各自线粒体基因组的全部序列;9个物种中线粒体rRNA基因向核内转移的次数最多。分析numts侧翼序列的重复元件发现:家鸡核基因组序列中仅有不到5 %的序列含有重复序列,并认为家鸡中的任何一条numt都是独立插入到核基因组中。Numts侧翼序列GC含量均小于44 %。对numts侧翼序列的分析有助于进一步了解线粒体基因向核基因组转移的机制。
Content: Mitochondrial DNA sequences are frequently transferred to the nucleus giving rise to the so-called NUMT (nuclear mitochondrial DNA segments) which not only homologous to mtDNA but also no expression functions. Mitochondrial pseudogenes are greatly researched in plants, insects and mammals, however, which in Aves has a less research. With the concurrent developments of polymerase chain reaction (PCR) and DNA sequencing technology, the mitochondrial DNA (mtDNA) has become a very useful molecular marker for studying avian systematics and evolutionary biology. Currently, there are only 244 numts containing gained by lab in six orders (Anseriformes, Columbiformes, Falconiformes, Galliformes, Charadriiformes and Passeriformes) of Aves in public database (GenBank).
     NCBI-BLASTN was carried out with mitochondrial and corresponding nuclear genome of nine species in vertebrates (Gallus gallus (NC_001323), Mus musculus (NC_001665), Rattus norvegicus (NC_005089), Sus scrofa (NC_000845), Bos Taurus (NC_006853), Canis familiaris (NC_002008), Rhesus macaque (NC_005943), Pan troglodytes (NC_001643), Homo sapiens (NC_001807)). The sequences with high homology were considered as‘numts’. In our findings, the number of numts in Gallus gallus, Mus musculus, Rattus norvegicus, Sus scrofa, Bos Taurus, Canis familiaris, Rhesus macaque, Pan troglodytes and Homo sapiens were 15, 44, 17, 21, 39, 69, 92, 159 and 147, respectively. The sequences of numts in Rhesus macaque, Pan troglodytes and Homo sapiens span 100 % of the entire mammalian mitochondrial genome. The reconstructed frequency of mitochondrial gene transfer to nucleus shows rRNA gene has more frequency than other mitochondrial gene. Using the RepeatMasker program, we detected the transposable elements in the flanking regions of each numt. The result shows less than 5 % of nuclear sequence were repetitive elements. Furthermore, these numts are considered to independent insertion from the mitochondria into the nucleus in Gallus gallus. The GC content of 5' and 3' - flanking region of numts in nine species is less than 44 %. The analysis of numts flanking sequences provides a valuable understand for future study in mechanism of motichondrial transfer to nucleus and the site of numt integration.
引文
[1] Wallin I E, On the nature of mitochondria. A J Anat, 1922, 30:203 229,451~457.
    [2] Margulis L, Origin of eukaryotic cells. New Haven, Connecticut: Yale Univ Press, 1970
    [3] Gray M W, The bacterial ancestry of plastids and mitochondria. Bio Science, 1983, 33:693~699.
    [4] Schuster W, Brennicke A, Plastid, nuclear and reverse transcriptase sequences in the mitochondrial genome of Oenothera: Is genetic information transferred between organelles via RNA. EMBOJ, 1987, 6:2857~2863.
    [5] Nugent J M, Palmer J D, RNA-mediated transfer of the gene COXII from the mitochondrion to the nucleus during flowering plant evolution. Cell, 1991, 66:473~381.
    [6] Nass M M K, Nass S, Fibrous structures within the matrix of developing chick embryo mitochondria. Exp Cell Res, 1963, 26:424~437.
    [7] Lee W J, Kocher T D, Complete sequence of a sea lamey (Petromyzon marinus) mitochondrial genome: Early establishment of the vertebrate genome organization. Genetics, 1995, 139(2):837~887.
    [8] Stern D B, Lonsdale D M, Mitochondrial and chloroplast genomes of maize have a 12-kilobase DNA sequence in common. Nature, 1982, 299: 698~702.
    [9] Blanchard J L, Schmidt G W, Pervasive migration of organellar DNA to the nucleus in plants. J Mol Evol, 1995, 41:397~406.
    [10] Collura R V, Stewart C B, Insertions and duplications of mtDNA in the nuclear genomes of Old World monkeys and hominoids. Nature, 1995, 378:485~489.
    [11] Fukuda M, et al. Mitochondrial DNA-like sequences in the human nuclear genome. J Mol Biol, 1985, 186:257~266.
    [12] Lopez J V, Yuhki N, Masuda R, et al. Numt, recent transfer and tandem amplification of mitochondrial DNA to nuclear genome of the domestic cat. J Mol Evol, 1994, 39:174~190.
    [13] Thorsness P E, Weber E R, Escape and migration of nucleic acids between chloroplasts, mitochondria, and the nucleus. Int Rev Cytol, 1996, 165:207~234.
    [14] Arabidopsis Genome Initiative, Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 2000, 408:796~815.
    [15] Wolstenholme D R, Genetic novelties in mitochondrial genomes of multicellular animals. Curr Opin Genet Dev, 1992, 2:918~925.
    [16] Adamsa K L, Palmer J D, Evolution of mitochondrial gene content: Gene loss and transfer to the nucleus. Mol Phyl Evol, 2003, 29:380~395.
    [17] Pont-Kingdon G A, Okada N A, Macfarlane J.L., et al.Mitochondrial DNA of the coral Sarcophyton glaucum contains a gene for a homologue of Bacterial MutS: A possible case of gene transfer from the nucleus to the mitochondrion. J Mol Evol, 1998, 46:419~431.
    [18] Nass M M K, Nass S, Intra mitochondrial fibers with DNA characteristics. J Cell Biol, 1963, 19:593~611.
    [19] Kocher T D, Thomas W K, Meyer A, et al. Dynamics of mitochondrial DNA evolution in animals: Amplication and sequencing with conserved primers. Proc Natl Acad Sci USA, 1989, 86:6196~6200.
    [20] DuBuy H G, Riley F L, Hybridization between the nuclear and kinetoplast DNA’s of Leishmania enriettii and between nuclaear and mitochondrial DNA’s of mouse liver. Proc Natl Acad Sci USA, 1967, 57:790~797.
    [21] Mourier T, Hansen A J, Willerslev E, et al. The human genome project reveals a continuous transfer of large mitochondrial fragments to the nuleus. Mol Biol Evo, 2001, 18(9):1833~1837.
    [22] Tourmen Y, Baris O, Dessen P, et al. Structure and chromosomal distribution of human mitochondrial pseudogenes. Genomics, 2002, 80:71~77.
    [23] Hazkani-Covo E, Sorek R, Graur D, Evolutionary dynamics of large numts in the human genome, rarity of independent insertions and abundance of post-insertion duplications. J Mol Evol, 2003, 56:169~174.
    [24] Bensasson D, Feldman M W, Petrov D A, Rates of DNA duplication and mitochondrial DNA insertion in the human genome. J Mol Evol, 2003, 57(3):343~354.
    [25] Richly E, Leister D, NUMTs in sequenced eukaryotic genomes. Mol Biol Evol, 2004, 21(6):1 081~1 084.
    [26] Bensasson D, Zhang D X, Mitochondrial pseudogenes: evolution’s misplaced witnesses. Trends in Ecology and Evolution, 2001, 16(6): 314~322.
    [27] Palmer J D, Adams K L, Cho Y, et al. Dynamics evolution of plant mitochondrial genomes: Mobile genes and introns and highly variable mutation rates. Proc Natl Acad Sci USA, 2000, 94:6960~6966.
    [28] Arctander P, Comparison of a mitochondrial gene and a corresponding nuclear pseudogene. Proceedings: Biological Sciences, 1995, 262:13~19.
    [29] Sorenson M D, Fleischer R C, Multiple independent transpositions of mitochondrial DNA control region sequences to the nuclear. Prac Natl Acad Sci, 1996, 93(26):15239~15243.
    [30] Ricchetti M, Fairhead C, Dujon B, Mitochondrial DNA repairs double-strand breaks in yeast chromosomes. Nature, 1999, 402:96~100.
    [31] Gellissen G, Michaelis G, Gene transfer: Mitochondria to nucleus. Annals New York Academy of Sciences, 1987, 503:391~401.
    [32] Henze K, Martin W, How do mitochondrial genes get into the nucleus? Trends Genet, 2001, 17(7):383~387.
    [33] Mishmar D, Ruiz-Pesini E, Brandon M. et al. Mitochondrial DNA-like sequences in the nucleus (NUMTs): Insights into our African origins and the mechanism of foreign DNA integration. Hum Mutat, 2004, 23(2):125~133.
    [34] Allende L M, Rubio I, The old world sparrows (Genus Passer) phylogeography and their ralative abundance of nulear mtDNA pseudogenes. J Mol Evol, 2001, 53:144~154.
    [35] Sato A, Figuerao F, Phylogeny of Darwin’s finches as revealed by mtDNA sequence. Proc Natl Acad Sci USA, 1999, 96:5101~5106.
    [36] van der Kuyl A C, Kuiken C L, Dekker J T, et al. Nuclear counterparts of the cytoplasmicmitochondrial 12S rRNA gene: A problem of ancient DNA and molecular phylogenies. J Mo Evol, 1995, 40(6):652~657.
    [37] Zhang D X, Hewitt G M, Highly conserved nuclear copies of the mitochondrial control region in the desert locust Schistocerca gregaria: Some implications for population studies. Mol Ecol, 1996, 5:295~300.
    [38] Pereira S L, Baker A J, Low number of mitochondrial pseudogenes in the chicken (Gallus gallus) nuclear genome: Implications for molecular inference of population history and phylogenetics. BMC Evol Biol, 2004, 25 4(1):17.
    [39] DeWoody J A, Chesser R K, Baker R J,A translocated mitochondrial cytochrome b pseudogene in voles (Rodentia:Microtus). Mol Evol, 1999, 48:380~382.
    [40] Bensasson D, Zhang D X, Hewitt G M, Frequent assimilation of mitochondrial DNA by grasshopper nuclear genomes. Mol Biol Evol, 2000, 17:406~415.
    [41] Williams S T, Knowlton N, Mitochondrial pseudogenes are pervasive and often insidious in the snapping shrimp genus Alpheus. Mol Biol Evol, 2001, 18:1484~1493.
    [42] Sunnucks P, Hales D F, Numerous transposed sequences of mitochondrial cytochrome oxidase I-II in aphids of the genus Sitobion (Hemiptera: Aphididae). Mol Biol Evol, 1996, 13(3):510~524.
    [43] Tsuzuki T, Nomiyama H, Setoyama C, et al. Presence of mitochondrial DNA-like sequences in the human nuclear DNA. Gene, 1983, 165(4):609~632.
    [44] Sheldon F H, Relative patterns and rates of evolution in Heron nuclear and mitochondrial DNA. Mol Biol Evol, 2000, 17(3):437~450.
    [45] Davis R E, Parker W D, Evidence that two reports of mtDNA cytochrome c oxidase‘mutations’in Alzheimer’s disease are based on nDNA pseudogenes of recent evolutionary origin. Biochen Biophys Res Commun, 1998, 244:877~883.
    [46] Sorenson M D, Quinn T W, Numt: A challenge for avian systematics and population biology. The Auk, 1998, 115(1):214~221.
    [47] Perna N T, Kocher T D, Mitochondrial DNA: Molecular fossils in the nucleus. CurrentBiology, 1996, 6(2):128~129.
    [48] Zhang D X, Herwitt G M, Nuclear integrations: Challenges for mitochondrial DNA markers. Trends Ecol Evol, 1996, 11:247~251.
    [49] Hirano M, Shtilbans A, Mayeux R, et al. Apparent mtDNA heteroplasmy in Alzheimers disease patients and normals due to PCR amplification of nucleus-embeded mtDNA pseudogenes. Proc Natl Acad Sci USA, 1997, 94:14894~14899.
    [50] Zischler H, Geisert H, von Haeseler A, et al. A nuclear fossil of the mitochondrial D-loop and the origin of modern humans. Nature, 1995, 378:489~492.
    [51] Brown W M, Prager E M, Wang A, et al. Mitochondrial DNA sequences of primates: tempo and mode of evolution. J Mol Evol, 1982,18:225~239.
    [52] Vartanian J P, Simon W H, Analysis of a library of macaque nuclear mitochondrial sequences confirms macaque origin of divergent sequences from old oral polio vaccine samples. Proc Natl Acad Sci USA, 2002, 99:7566~7569.
    [53] Smith M F, Thomas W K, Patton J L, Mitochondrial DNA-like sequences in the nuclear genome of an akodontine rodent. Mol Biol Evol, 1992,9:204~215.
    [54] Collura R V, Auerbach M R, Stewart C B, A quick direct method that can differentiate expressed mitochondrial genesfrom their nuclear pseudogenes. Curr Biol, 1996, 6:1337~1339.
    [55] Blanchard J L, Schmidt G W, Mitochondrial DNA migrationevents in yeast and humans: Integration by a common end-joining mechanism and alternative perspectives on nucleotide substitution pattern. J Mol Evo, 1996, 13:537~548.
    [56] Quinn T W, The genetic legacy of mother goose-phylogeographic patters of lesser snow goose chen caerulescens maternal lineages. Molecular Ecology, 1992, 1:105~117.
    [57] Cheng S, Higuchi R, Stoneking M, Complete mitochondrial genome amplification. Nature Genetics, 1994,7:350~351.
    [58] Ricchetti M, Tekaia F, Dujon B, Continued colonization of the human genome by mitochondrial DNA. PloS Biol, 2004, 2(9):e273.
    [59] Davis R E, Mutations in mitochondrial cytochrome c oxidase genes segregate with late-onset Alzheimer disease. Proc Natl Acad Sci USA, 1997, 94:4526~4531.
    [60] Wallace D C, Stugard C, Murdock D, et al. Ancient mtDNA sequences in the human nuclear genome: A potential source of errors in identifying pathogenic mutations. Pro Natl Acad Sci USA, 1997, 94:14900~14905.
    [61] Arctander P., Fjeldsa J., Andean tapaculos of the genus Scytalopus (Aves, Rhino-cryptidae): A study of speciation using DNA sequence data. in V.Loeschcke, J. Tomiuk. and SK Jain,eds. 1994, pp.205~225.
    [62] Petrov D A, Hartl D L, Patterns of nucleotide substitution in Drosophila and mammalian genomes. Proc Natl Acad Sci USA, 1999, 96:1475~1479.
    [63] Bulmer M, Neighbouring base effects on substitution rates in pseudogenes. Mol Biol Evol, 1986, 3:322~329.
    [64] Mundy N I, Pissinatti A, Woodruff D S, Multiple nuclear insertions of mitochondrial cytochrome b sequences in Callitrichine primates. Mol Biol Evol, 2000, 17(7):1075~1080.
    [65] Bensasson D, Petrov D A, Zhang D X,et al. Genomic gigantism: DNA loss is slow in mountain Grasshoppers. Mol Biol Evol, 2001, 18:246~253.
    [66] Zischler H, Nuclear integrations of mitochondrial DNA in primates: inference of associated mutational events. Electrophoresis, 2000, 21:531~536.
    [67] Zischler H, Geisert H, Castresana J, A hominoid-specific nuclear insertion of the mitochondrial D-loop: Implication for reconstructing ancestral mitochondrial sequences. Mol Biol Evol, 1998, 15:463~469.
    [68] Thomas R., Zischler H., Pssbo S., et al. Novel mitochondrial DNA insertions polymorphism and its usefulness for human population studies. Hum Biol, 1996, 68:847~854.
    [69] Ullrich H, Lattig K, Brennicke A, et al. Mitochondrial DNA variations and nuclear RFLPs reflect different genetic similarities among 23 Arabidopsis thaliana ecotypes. Plant Mol Biol, 1997, 33: 37~45.
    [70] Ayliffe M A, Scott N S, Timmis J N, Analysis of plastid DNA-like sequences within thenuclear genomes of higher plants. Mol Biol Evol, 1998, 15:738~745.
    [71] Yuan J D, Shi J X, Meng G X, et al. Nuclear pseudogenes of mitochondrial DNA as a variable part of the human genome. Cell Research, 1999, 9:281~290.
    [72] Quinn T W, White B N, Analysis of DNA sequence variation. In‘Avian genetics’: A population and ecological approach”(F Cooke and PA Buckley, eds.) Academic Press, London, 1987, 163~198.
    [73] Woischnik M, Moraes C T, Pattern of organization of human mitochondrial pseudogenes in the nuclear genome. Genome Res, 2002, 12(6):885~893.
    [74] Raes J, Vandepoele K, Simillion C, et al. Investigating ancient duplication events in the Arabidopsis genome. J Struct Funct Genomics, 2003, 3(1~4):117~129.
    [75] Eichler E E, Johnson M E, Alkan C, et al. Divergent origins and concerted expansion of two segmental duplications on chromosome 16. J Hered, 2001, 92(6):462~468.
    [76] Kamimura N, Ishii S, Ma L D, et al. Three separate mitochondrial DNA sequences are contiguous in human genomic DNA. J Mol Biol, 1989, 210:703~707.
    [77] Sato A, Tichy H, O’hUigin C, et al. On the origin of Darwin`s finches. Mol Biol Evol, 2001, 18(3):299~311.
    [78]崔博,鸻形目鸟类线粒体假基因遗传特征及其进化研究.辽宁师范大学硕士研究生学位论文,2005.
    [79] Zischler H, Hoss M, Handt O, et al. Detecting dinosaur DNA. Science, 1995a, 268:1192~1193.
    [80] Luis M A, Isabel R, The old world sparrows (Genus Passer) phylogeography and their relative abundance of nuclear mtDNA pseudogenes. J Mol Evol, 2001, 53:144~154.
    [81] Hirotsune S, Yoshida N, Chen A, et al. An expressed pseudogene regulates the messenger-RNA stability of its homologous coding gene. Nature, 2003, 423:91~96.
    [82]刘泽,鸟类线粒体假基因——numt序列的研究.辽宁师范大学硕士研究生学位论文, 2004.
    [83] Pesole G, Liuni S, Intemel resources for the functional analysis of 5′and 3′untranslated regions of eukaryotic mRNA. TIG,1999, 15(9):378.
    [84] Pennacchio L A, Rubin E M, Genomic strategies to identify mammalian regulatory sequences. Nat Rev Genet, 2001, 2(2):100~109.
    [85] Waterston R H, Lindblad-Toh K, Birney E, et al. Initial sequencing and comparative analysis of the mouse genome. Nature, 2002, 420(6915):520~562.
    [86] Antunes A, Pontius J, Ramos M J, et al. Mitochondrial Introgressions into the Nuclear Genome of the Domestic Cat. Journal of Heredity, 2007, 98(5):414~420.
    [87] Podnar M, Haring E, Pinsker W, et al. Unusual origin of a nuclear pseudogene in the Italian wall lizard: Intergenomic and interspecific transfer of a large section of the mitochondrial genome in the genus Podarcis (Lacertidae). J Mol Evol, 2007, 64:308~320.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.