垂叶榕非传粉小蜂Walkerella属两个种及其雄性类型的形态和分子学鉴别
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
榕树(桑科:榕属)和榕小蜂(昆虫纲:膜翅目:小蜂总科)是研究适应、雄性多型等进化问题的理想材料。榕小蜂由于长期生活在榕果(榕树的果状隐头花序)里,它们的外部形态特征和生活方式等都发生了很多适应性的变化。传粉小蜂和部分非传粉小蜂的雌虫需要穿过榕小孔进行产卵,其头部发生了显著的特化;雄虫由于生活在黑暗潮湿的榕果内,其形态结构也发生了明显的特化。
     在这些变化里面,最引人注目的两大特征就是极端雌雄异型和雄性多型现象。在榕小蜂的生活史中,成熟的雌虫出果并飞到合适的产卵地点进行产卵,它们都具有发达的复眼和翅;而大部分的雄虫由于终生生活在黯淡无光的榕果里,所以它们相比较同种的雌蜂来说,个小、体光滑、无翅、且复眼退化。由于生殖策略的分化,榕小蜂的雄虫还出现了种内的异型现象。有些个体有翅且复眼发达,有些却无翅且复眼退化,甚至无翅雄虫还会出现个体大小、形态和行为上的多态性。
     雌雄异型现象在生物界中广泛存在,而大多数榕小蜂拥有的雌雄异型现象可能是动物界中最极端的事例之一。同一榕果内一般都有几种以上的榕小蜂生活在其中,有的甚至多达几十种。小小的榕果里出现这么多小蜂物种本来就给鉴定工作带来了很大的困难,而普遍存在的极端异型和雄性多型现象又使得问题大大复杂化。传统的形态鉴定很难将同一榕果内的所有物种明确区分并将同种的雌雄虫正确归类到一起。本研究试图找到最适合于对榕小蜂进行身份识别的分子标记,从而推进榕小蜂的鉴定工作。我们选取了垂叶榕上的Walkerella属2种共计40个个体的雌雄榕小蜂,比较了两个DNA序列片段(COI及ITS2 )在榕小蜂物种鉴定、雌雄虫归类的适用情况。结果表明: ITS2序列能够将同种的个体高支持率地聚成一枝,它相比于COI分子标记更合适用于物种鉴定的一个。我们的结果还暗示,COI序列虽然也能将大部分个体很好的聚类,但可能会由于Numts或内共生菌的影响而产生错误信号。
Fig wasps (Insecta: Hymenoptera: Chalcidoidea) and their host figs (Moraceae: Ficus) is an excellent model for the study of such evolutionary topics as adaptation, male polymorphism, etc. Fig wasps have many adaptive evolution on their morphological characters and lifestyles due to their long-time hosted life in the syconium of fig. The head of pollinators and some non-pollinators females are extraordinarily specialized for crawling through the ostiole; the diversity of ovipositing places and styles resulted in the diversity of the ovipositor length and the timing of ovipositing; males have peculiar respiratory organs and other morphological changes in relation with their habitat in the enclosed fig cavity.
     The two most outstanding characteristics of these adaptive changes are distinct sexual dimorphism (SD) and male polymorphism. Mature females emerge from the syconium and fly to appropriate ovipositing places, so they have developed compound eyes and wings. But the life cycle of most males is restricted to the cavity of the fig, so they are wingless and have vestigial eyes. Different male species may have different morphs and behaviors since they adopt different strategies. There can also be two or more male phenotypes intra-species with different phenotype having different mating tactics.
     Sexual dimorphism is common among various species, and some fig wasps are perhaps among the most extreme cases of sexual dimorphism in the animal kingdom. Each fig shelters a very diverse assemblage of fig wasps species in TIS enclosed inflorescence- syconium, which makes the taxonomy of fig wasps a difficult task. What’s more, the prevalent phenomena of sexual dimorphism and male polymorphism bring much intricacy to the problem. So the species identification of fig wasps based on traditional morphology is not only difficult but also fuzzy and false-prone. Assistance from other measure besides morphology is requisite for well fulfilling the species identification in the complex assemblage of fig wasps. We here want to compare the practicability of several gene fragments with different evolution rates in species identification of fig wasps. We amplified four fragments of COI and ITS2 from 40 individuals of 2 species of Walkerella associated with Ficus benjamini (Ficus, Moraceae) and analyzed their utilization in species identification. Our results showed that ITS2 can cluster all the individuals of the same species into a highly supported clade, so it is the best marker used in species classification of these fig wasps. COI could also act well but with a few unordinary exceptions, which indicates TIS deficient use in DNA barcoding due to the possible effect of Numts or symbionts.
引文
朱玉贤and李毅纺.现代分子生物学.高等教育出版社, 1997: 74-79.
    余道坚and邓中平.昆虫分子标记基因和序列及应用.植物检疫, 2003, 17(3).
    邵红光.关于节肢动物系统分类与进化的分子佐证.动物分类学报, 2000, 01.
    Beardsley W. J. Chalcid wasps (Hymenoptera: Chalcidoilea) associated with fruit of Ficus microcarpa in Hawai'i. Proceedings of the Hawaiian Entomological Society, 1998, 33: 19-34.
    Beier P. and McCullough D. R. Factors influencing white-tailed deer activity patterns and habitat use. Wildlife Monographs, 1990, 54(2): 44-47.
    Bensasson D., Zhang D.-X., Hartl D. L., et al. Mitochondrial pseudogenes: evolution's misplaced witnesses. Trends in Ecology & Evolution, 2001, 16(6): 314-321.
    Bou?ek Z. (1988). Australian Chalcidoidea (Hymenoptera): A Biosystematic Revision of Genera and Fourteen Families, with a Reclassification of Species (Fig wasp section), CAB, International, Wallingford, UK. Bou?ek Z. The genera of chalcidoid wasps from Ficus fruit in the New World. Journal of Natural History, 1993, 27(1): 173-217.
    Compton S. G. One way to be a fig. African Entomology, 1993, 1(2): 151-158.
    Compton S. G. and McLaren F. A. C. Respiratory adaptations in some male fig waps. Proc. Kon. Ned. Akad. Wet, 1989, 92: 57-71.
    Compton S. G. and Robertson H. G. Complex interactions between mutualisms: Ants tending homopterans protect fig seeds and pollinators. Ecology, 1988, 69(4): 1302-1305.
    Conradt L., Clutton-Brock T. H. and Guinness F. E. Sex differences in weather sensitivity can cause habitat segregation:red deer as an example. Animal Behaviour, 2000, 59(5): 1049-1060
    Cook J. M., Compton S. G., Herre E. A., et al. Alternative mating tactics and extreme male dimorphism in fig wasps. Proceedings of the Royal Society B-Biological Sciences, 1997, 264(1382): 747-754.
    Cook J. M. and Power S. A. Effect of within-tree flowering asynchrony on the dynamics of seed and wasp production in an Australian fig species. Journal of Biogeography, 1996, 23(4): 487-493.
    Darwin C. The Descent of Man: Selection in Relation to Sex 1874. Demment M. W. and Soest P. J. V. A Nutritional Explanation for Body-Size Patterns of Ruminant and Nonruminant Herbivores. The American Naturalist, 1985, 125(5): 641.
    Dopman E. B., Sword G. A. and Hillis D. M. The importance of the ontogenetic niche in resource-associated divergence: evidence from a generalist grasshopper. Evolution, 2002, 56(4): 731-740.
    Dover G. A. Molecular drive: A cohesive mode of species evolution. Nature 1982, 299: 111-117.
    Erpenbeck D. Mitochondrial Diversity of Early-Branching Metazoa Is Revealed by the Complete mt Genome of a Haplosclerid Demosponge. Mol Biol Evol, 2007, 24(1): 19-22.
    Figuerola J. and Green A. J. The evolution of sexual dimorphism in relation to mating patterns, cavity nesting, insularity and sympatry in the Anseriformes. Funct Ecology, 2000, 14(6): 701-710.
    Frank S. A. Weapons and fighting in fig wasps. Trends in Ecology and Evolution, 1987, 2: 259-260.
    Gonzalez-Solis J., Croxall J. P. and Wood A. G. Sexual dimorphism and sexual segregation in foraging strategies of northern giant petrels, Macronectes halli, during incubation. Oikos, 2000, 90(2): 390-398.
    Greeff J. M. and Ferguson J. W. H. Mating ecology of the nonpollinating fig wasps of Ficus ingens. Animal Behaviour, 1999, 57(1): 215-222.
    Greeff J. M., Van Noort S., Rasplus J.-Y., et al. Dispersal and fighting in male pollinating fig wasps. Comptes Rendus Biologies, 2003, 326(1): 121-130.
    Harvell C. D. The evolution of polymorphism in colonial invertebrates and social insects. Quarterly Review of Biology, 1994, 69(2): 155-185.
    Hazkani-Covo E. and Graur D. A Comparative Analysis of numt Evolution in Human and Chimpanzee. Mol Biol Evol, 2007, 24(1): 13-18.
    Hebert P. D. N., Cywinska A., Ball S. L., et al. Biological identifications through DNA barcodes. Proceedings of the Royal Society B-Biological Sciences, 2003, 270(1512): 313-321.
    Hebert P. D. N., Ratnasingham S. and deWaard J. R. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society B: Biological Sciences (Suppl.), 2003, 270: S96-S99.
    Herre E. A. Coevolution of reproductive characteristics in 12 species of New World figs and their pollinator wasps. Experientia, 1989, 45(7): 637-646.
    Herre E. A. Population structure and the evolution of virulence in nematode parasites of fig wasps. Science, 1993, 259(5100): 1442-1445.
    Herre E. A. Factors affecting the evolution of virulence: Nematode parasites of fig wasps as a case study. Parasitology., 1995, 111(SUPPL.): S179-S191.
    Herre E. A. An overview of studies on a community of Panamanian figs. Journal of Biogeography, 1996, 23(4): 593-607.
    Ishii T. Fig chalcidoids of Japan. Konty, 1934, 8: 84-100.
    Jiang Z.-F., Huang D.-W., Zhu C.-D., et al. New insights into the phylogeny of fig pollinators using Bayesian analyses. Molecular Phylogenetics and Evolution, 2006, 38(2): 306-315.
    Joseph K. J. Le Parasitisme de philotrypesis caricae L. et l'influence de la vie parasitaire sur le parasite. C.r. hebb.seanc. Acad. Sci. Paris, 1957, 244: 1269-1272.
    Jousselin E., Rasplus J.-Y. and Kjellberg F. Convergence and coevolution in a mutualism: evidence from a molecular phylogeny of Ficus. Evolution, 2003, 57(6): 1255-1269.
    Jousselin E., van Noort S. and Greeff J. M. Labile male morphology and intraspecific male polymorphism in the Philotrypesis fig wasps. Molecular Phylogenetics and Evolution, 2004, 33(3): 706-718.
    Jousselin E., Van Noort S., Rasplus J. Y., et al. Patterns of diversification of Afrotropical Otiteselline fig waSPS: phylogenetic study reveals adouble radiation across host figs and conservatism of host association. Journal of Evolutionary Biology, 2006, 19(1): 253-266.
    Kerdelhue C., Le Clainche I. and Rasplus J. Y. Molecular phylogeny of the Ceratosolen species pollinating Ficus of the subgenus Sycomorus sensu stricto: biogeographical history and origins of the species-specificity breakdown cases. Molecular Phylogenetics And Evolution, 1999, 11(3): 401-414.
    Krüger O., Davies N. B. and Sorenson M. D. The evolution of sexual dimorphism in parasitic cuckoos: sexual selection or coevolution? Proceedings of the Royal Society B: Biological Sciences, 2007, 274(1617): 1553-1560.
    Kumar S., Tamura K. and Nei M. MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform, 2004, 5(2): 150-163.
    Lopez-Vaamonde C., Rasplus J. Y., Weiblen G., D, et al. Molecular phylogenies of fig wasps: partial cocladogenesis of pollinators and parasites. Molecular Phylogenetics and Evolution, 2001, 21(1): 55-71.
    Machado C. A., Herre E. A., McCafferty S. S., et al. Molecular phylogenies of fig pollination and non-pollinating wasps and the implications for the origin and evolution of the fig-fig wasp mutualism. Journal of Biogeography., 1996, 23(4): 531-542.
    Machado C. A., Jousselin E., Kjellberg F., et al. Phylogenetic relationships, historical biogeography and character evolution of fig-pollinating wasps. roceedings of the Royal Society B-Biological Sciences, 2001, 268(1468): 685-694.
    Main M. and Coblentz B. Sexual segregation among ungulates:a critique. Wildlife Society Bulletin, 1990, 18(2): 204-210.
    Michael, Soowon and Felis. The CurrentState of Insect Molecular Systematics:Athriving towre of bable. Annual Reviews in Entomology, 2000, 45: 1-45.
    Miquelle D. G., Peek J. M. and Van Ballenberghe V. Sexual segregation in Alaskan moose. Wildlife Society Bulletin, 1992, 56(3): 45-49.
    Muraji M. and Nakahara S. Phylogenetic relationships among fruit flies, Bactrocera (Diptera, Tephritidae), based on the mitochondrial rDNA sequences. Insect Molecular Biology, 2001 10 (6): 549-559.
    Murray M. G. The closed environment of the fig receptacle and TIS influence on male conflict in the old World fig wasp, Philotrypesis pilosa. Animal Behaviour, 1987, 35: 488-506.
    Murray M. G. Environmental constraints on fighting in flightless male fig wasps. Animal Behaviour, 1989, 38(2): 186-193.
    Neff B. D. Alternative reproductive tactics and sexual selection. Trends in Ecology & Evolution, 2001, 16(12): 669.
    Nijhout H. F. Development and evolution of adaptive polyphenisms. Evolution & Development, 2003, 5(1): 9-18.
    Otto S. P. Eliminating the cost of sex with sexual selection. Trends in Ecology & Evolution, 2001, 16(11): 602.
    Panhuis T. M., Butlin R., Zuk M., et al. Sexual selection and speciation. Trends in Ecology & Evolution, 2001, 16(7): 364-371.
    Penton E. H., Hebert P. D. N. and Crease T. J. Mitochondrial DNA variation in North American populations of Daphnia obtusa: continentalism or cryptic endemism? Molecular Ecology, 2004, 13(1): 97-107.
    Pienaar J. and Greeff J. M. Different male morphs of Otitesella pseudoserrata fig wasps have equal fitness but are not determined by different alleles. Ecol Letters, 2003, 6(4): 286-289.
    Pienaar J. and Greeff J. M. Maternal control of offspring sex and male morphology in the Otitesella fig wasps. J Evolution Biol, 2003, 16(2): 244-253.
    Pomiankowski A. and Hurst L. D. Driving sexual preference. Trends Ecol. Evol, 1999, 14(11): 425-426.
    Preziosi R. F. and Fairbairn D. J. Sexual size dimorphism and selection in the wild in the waterstrider Aquarius remigis: Body size, components of body size and male mating success. Evolutionary Biology, 1996 9(3 ): 317-336.
    Radwan J. The adaptive significance of male polymorphism in the acarid mite Caloglyphus berlesei Behavioral Ecology and Sociobiology, 1993, 33(3): 201-208.
    Ramírez B. W. Evolution of mechanisms to carry pollen in Agaonidae (Hymenoptera Chalcidoidea). Tijdschr. Ent., 1978, 121(6): 279-293.
    Rasplus J. Y., Kerdelhue C., Le Clainche I., et al. Molecular phylogeny of fig wasps Agaonidae are not monophyletic. Comptes Rendus De l'Academie Des Sciences. Serie III, Sciences De La Vie, 1998, 321(6): 517-526.
    Reece S. E. and Shuker D. M. Kin discrimination and sex ratios in a parasitoid wasp. J Evolution Biol, 2004, 17(1): 208-216.
    Remigio E. A. and Hebert P. D. N. Testing the utility of partial COI sequences for phylogenetic estimates of gastropod relationships. Molecular Phylogenetics and Evolution, 2003, 29: 641-647.
    Ricchetti M., Tekaia F. and Dujon B. Continued Colonization of the Human Genome by Mitochondrial DNA. PLoS Biology, 2004, 2(9): e273.
    Richly E. and Leister D. NUMTs in Sequenced Eukaryotic Genomes. Molecular Biology and Evolution, 2004, 21(6): 1081-1084.
    Ruckstuhl K. E. Foraging behaviour and sexual segregation in bighorn sheep. Wildlife Monographs, 1998, 56(1): 99-106
    Shine R. Ecological causes for the evolution of sexual dimorphism: a review of the evidence. The Quarterly review of biology, 1984, 64(4): 419-461.
    Shine R. Ecological Causes for the Evolution of Sexual Dimorphism: A Review of the Evidence. The Quarterly Review of Biology, 1989, 64(4): 419-461.
    Simon and Chris. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America, 1994, 87(6): 651-701.
    Slatkin M. Gene flow in natural populations. Annu. Rev. Ecol. Syst., 1985, 16: 393-430.
    Stange L. A. and Knight R. J. J. Fig pollinating wasps of Florida (Hymenoptera: Agaonidae). Entomology Circular, Division of PlantIndusty, Florida Department of Agriculture and Consumer Services, 1987, 296: 1-4.
    Sugden A. M. Sexual Selection and Speciation. Science, 2000, 290(5494): 1055a-.
    Suzuki Y. and Nijhout H. F. Evolution of a Polyphenism by Genetic Accommodation. Science, 2006, 311(5761): 650-652.
    Thompson J. D., Higgins D. G. and Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 1994, 22(22): 4673-4680.
    WA. S. Polymorphism in Plastosciara perniciosa. Science, 1973, 182: 1265-66.
    Weckerly F. Intersexual resource partitioning in black-tailed deer. Wildlife Management, 1993, 57(3): 475-494.
    Weiblen G. D. Phylogenetic relationships of fig wasps pollinating functionally dioecious Ficus based on mitochondrial DNA sequences and morphology. Systematic Biology, 2001, 50(2).
    Weiblen G. D. How to be a fig wasp. Annual Review Of Entomology, 2002, 47(1): 299-330.
    Weiblen G. D. Correlated Evolution in Fig Pollination. Syst Biol, 2004, 53(1): 128-139.
    Weiblen G. D. and Bush G. L. Speciation in fig pollinators and parasites. Molecular Ecology, 2002, 11(8): 1573-1578.
    West S. A., Herre E. A., Windsor D. M., et al. The ecology and evolution of the New World non-pollinating fig wasp communities. Journal of Biogeography, 1996, 23(4): 447-458.
    Westwood J. O. Further descriptions of insects infesting figs. Transactions of the Entomological Society of London, 1883: 29-47.
    Wiens J. J. Polymorphism in systematics and comparative biology. Annual Review of Ecology and Systematics, 1999, 30(1): 327-362.
    Zera A. J. and Denno R. F. Physiology and ecology of dispersal polymorphism in insects. Annual Review of Entomology, 1997, 42(1): 207-230.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.