鸻形目鸟类线粒体假基因遗传特征及其进化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着聚合酶链式反应(PCR)和DNA测序技术的发展,线粒体DNA(mtDNA)已成为鸟类系统学和进化研究的理想分子标记。由于线粒体假基因与mtDNA具有一定的相似性,经常有研究者用线粒体基因的通用引物从总DNA中扩增出核基因组中的线粒体假基因,即Numts(nuclear mitochondrial DNA segments,简称Numts)。如果在系统发育研究中将Numts误认为是mtDNA,就很有可能会得出不准确或错误的结论。虽然Numts序列在一定程度上给mtDNA的应用带来了干扰,然而Numts序列是联系细胞核内外两套遗传物质的重要桥梁,另外Numts序列作为核基因组中不表达的假基因也为系统发育研究提供了新的分子标记,为从一个全新的角度来探讨物种的进化机制提供了新的线索。目前人们已利用Numts作为系统发育标记对人和A.thaliana进行了探索性研究,然而对于鸟类核基因组中的线粒体假基因研究却很少。线粒体假基因已成为一个新的热点研究领域,对鸟类Numts进行深入研究对于解决鸟类系统发育中的关键问题具有重要意义。
     为了更深入地了解行鸟形目鸟类之间的进化关系以及假基因在分子系统学中的应用价值,本研究首次利用特异性引物采取PCR方法扩增鸻形目11种鸟类的线粒体ATP8/6基因(部分ATP8和部分ATP6基因)及其假基因(Numts)片段。实验中所检测的鸻形目11种鸟类线粒体ATP8/6基因的长度均为626bp,无插入缺失;Numts片段长度均为618bp,与线粒体ATPS/6基因相比存在一处长为8bp的缺失,未见插入现象,并且在序列内部含有终止密码子。鸻形目11种鸟类Numts的核苷酸变异值从0.2%到1.6%,共有14个可变核苷酸位点,转换颠换的比值为1.2,碱基替换在各密码子上发生的频率几乎相同(分别为34.6%,32.3%,33.1%),没有明显的转换倾向性;而线粒体基因的核苷酸变异值从8.7%到25.8%,共有243个可变核苷酸位点,转换颠换的比值为1.6,碱基替换在密码子三个位点发生的频率分别为20.08%,4.6%,74.6%。用线粒体ATP8/6基因和Numts序列分别构建NJ树和MP树,系统发育分析显示线粒体基因能够很好的反映
With the concurrent developments of polymerase chain reaction (PCR) and DNA sequencing technology, the mitochondrial DNA (mtDNA) has become a very useful molecular marker for studying avian systematics and evolutionary biology. Since Du Buy and Riley firstly found that the mtDNA copies might exist in nuclear genome, many research results have demonstrated that the mitochondrial pseudogenes have been integrated into the nuclear genomes. Especially researchers, in the last ten years, have amplified many nuclear mitochondrial DNA segments (Numts) from total DNA using universal primers. Numts, however, may also embarrass the applications of mtDNA. The previously study displayed that people have obtained inaccurate or false conclusions as a result of wrongly using Numts as mtDNA for phylogenetic analyses. But these Numts may also be used as a novel and powerful tool in phylogenetic studies. As a phylogenetic marker, Numts have been applied in the phylogenetic analyses of human, Arabidopsis thaliana. However, in birds, the Numts have only just a few studies as yet. It therefore is very important to further studying the Numts for revealing the molecular evolution of birds.
    For further elucidating the molecular phylogeny of Charadriiformes and the utility of Numts in molecular evolution of birds, in this study, we have amplified mitochondrial ATP8/6 genes (partial ATP8/ATP6 gene) and corresponding Numts in 11 species of Charadriiformes. Our findings demonstrated that the length of mitochondrial ATP8/6 genes and corresponding Numts is 626bp, 618bp respectively. By comparing with mitochondrial ATP8/6 genes, these Numts have 8bp deleted and no insertions were found. The percentage of sequence divergence of Numts (variety from 0.2% to 1.6%) is significantly different from mitochondrial ATP8/6 genes (variety from 8.7% to 25.8%), and the variable nucleotide sites (only 14) and ts/tv ratio (1.2.) of Numts also obviously differ from mitochondrial ATP8/6 genes (243,1.6 respectively). In addition, the percentage of variable sites of the first, second and third codon positions of these Numts are 34.6%, 32.3% and 33.1% respectively, without codon position biases. In contrast, these mitochondrial ATP8/6 genes possess clear codon position biases (i.e. 20.8%, 4.6% and 74.6%, respectively). We further reconstructed the Maximum-parsimony (MP) and Neighbor-joining (NJ) trees using mitochondrial ATP8/6 gene and Numts respectively. Phylogenetic analyses indicated that using mitochondrial ATP8/6 genes can uncover clearly
引文
[1] 张英培.分子分类的若干问题. 动物学研究. 1994,15 (1): 1-10.
    
    [2] Nass M MK, Nass S: Intra mitochondrial fibers with DNA characteristics [J] J Cell Biol, 1963,19:593-611.
    [3] Stoneking M, Soodyall H. Human evolution and the mitochondrial genome. Curr Opin Genet Dev, 1996,6(6): 731-736.
    [4] Mullis, KB, F.A. Faloona, S.J. Scharf, R.K. Saiki, GT. Horn, and H.A. Erlich. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harbor Symo. Quant. Biol. 1986,51: 263-273.
    [5] Kocher TD,Thomas WK, Meyer A,Edwards SV, Paabo S,Villablance FX,Wilscn AC: Dynamics of mitochondrial DNA evolution in animals:Amplication and sequencing with conserved primers. [J]Proc.Natl.Acad.Sci.USA, 1989, 86: 6196-6200.
    
    [6] DuBuy, HG and Riley, F.L.Hybridization between the nuclear and kinetoplast DNA's of Leishmania enriettii and between nuclaear and mitochondrial DNA's of mouse liver. Proc.Natl.Acad.Sci.U.S.A., 1967,57:790-797.
    [7] Lopez JV, Yuhki N, Masuda R, Modi WS, O'Brien SJ. Numt, recent transfer and tandem amplification of mitochondrial DNA to nuclear genome of the domestic cat. J Mol Evol. 1994,39:174-190.
    [8] Mourier T, Hansen AJ, Willerslev E, Arctander P. The human genome project reveals a continuous transfer of large mitochondrial fragments to the nuleus. Mol Biol Evo, 2001, 18(9): 1833-1837.
    [9] Yves Tourmen, Oliver Baris. Structure and chromosomal distribution of human mitochondrial pseudogenes. Genomics, 2002,80: 71-77.
    [10] Hazkani-lovo. Evolutionary dynamics of large numts in the human genome, rarity of independent insertions and abundance of post-insertion duplications. J Mol Evol, 2003,56: 169-174.
    
    [11] Bensasson D, Zhang DX. Mitochondrial pseudogenes: evolution's misplaced witnesses. Trends in Ecology and Evolution, 2001,16(6): 314-322.
    
    [12] Ricchetti M, Fairhead C and Dujon B. 1999. Mitochondrial DNA repairs double-strand breaks in yeast chromosomes. Nature, 402:96-100.
    [13] DeWoody JA, Chesser RK, Baker RJ. A translocated mitochondrial cytochrome b pseudogene in voles (Rodentia:Microtus). Mol Evol,1999,48: 380-382.
    [14] Allende LM, Rubio I. The old world sparrows (Genus Passer) phylogeography and their ralative abundance of nulear mtDNA pseudogenes. J. Mol.Evol, 2001,53:144-154.[15] Arctander, P. Comparison of a Mitochondrial Gene and a corresponding Nuclear Pseudogene. Proceedings: Biological Sciences, 1995,262:13-19.
    [16] Sato A, Figuerao F. Phylogeny of Darwin's finches as revealed by mtDNA sequence. Proc Natl Acad Sci USA, 1999,96:5101-5106.
    [17] Sorenson MD, Eeischer RC. Multiple independent transpositions of mitochondrial DNA control region sequences to the nuleus. Proc Natl Acad Sci USA, 1996,93:15239-15243.
    [18] Quinn TW, White BN. Analysis of DNA sequence variation. In "Avian Genetics: A Population and Ecological Approach" (F Cooke and PA Buckley, eds.) 1987,163-198. Academic Press, London.
    [19] Hans Zischler, Helga Geisert, Jose Castresana. A Hominoid-Specific Nuclear Insertion of the Mitochondrial D-loop: Implications for Reconstrctiong Ancestral Mitochondrial Sequences.Mol.Biol.Evol, 1998,15(4): 463-469.
    [20] Sorenson MD, Quinn TW. Numt: A challenge for avian systematics and population biology. The Auk, 1998,115(1): 214-221.
    [21] Davis RE, Parker WD. Evidence that two reports of mtDNA cytochrome c oxidase "mutations"in Alzheimer's disease are based on nDNA pseudogenes of recent evolutionary origin. Biochen.Biophys.Res.Commun, 1998,244:877-883.
    [22] Sheldon, F. H. Relative patterns and Rates of Evolution in Heron Nuclear and Mitochondrial DNA. Mol.Biol.Evol, 2000,17(3): 437-450.
    [23] Perna NT, Kocher TD. Mitochondrial DNA: molecular fossils in the nucleus. Current Biology, 1996,6(2): 128-129.
    [24] Zhang DX, Herwitt GM. Nuclear integrations: challenges for mitochondrial DNA markers. Trends Ecol Evol, 1996,11:247-251.
    [25] Davis, RE. Mutations in mitochondrial cytochrome c oxidase genes segregate with late-onset Alzheimer disease. Proc Natl Acad Sci USA, 1997,94:4526-4531.
    [26] Wallace DC, Stugard C, Murdock D, Schurr T, Brown MD. Ancient mtDNA sequences in the human nuclear genome: A potential source of errors in identifying pathogenic mutations. Pro Natl Acad Sci USA, 1997, 94:14900-14905.
    [27] Arctander, P, and Fjeldsa J. Andean tapaculos of the genus. Scytalopus (Aves, Rhinocryptidae): a study of speciation using. DNA sequence data. Pp. 1994,205-225 in V. Loeschcke, J. Tomiuk. and SK Jain, eds.
    [28] Hirano M, Shtilbans A, Mayeux R, Davidson MM, DiMauro S, Knowles J, Schon EA.??Apparent mtDNA heteroplasmy in Alzheimers disease patients and normals due to PCR amplification of nucleus-embeded mtDNA pseudogenes. Proc Natl Acad Sci USA. 1997, 94:14894-14899.
    [29] Zischler H, Geisert H, von Haeseler A, Paabo S. A nuclear fossil of the mitochondrial D-loop and the origin of modern humans. Nature, 1995,378:489-492.
    [30] van der Kuly AC, Kuiken CL, Dekker JT, Perizonius WRK, Goudsmit J. Nuclear counterparts of the cytoplasmic mitochondrial 12S rRNA gene: problem of ancient DNA and molecular phylogenies. J Mol Evol, 1995,40:652-657.
    [31] Smith M F, Thomas W K, Patton J L. Mitochondrial DNA-like sequences in the nuclear genome of an akodontine rodent. Molecular Biology and Evolution, 1992,9 :204-215.
    [32] Collura RV, Stewart CB, 1995. Insertions and duplications of mtDNA in the nuclear genomes of Old World monkeys and hominoids. Nature, 378:485-489.
    [33] Quinn TW. The genetic legacy of Mother Goose-phylogeographic patters of Lesser Snow Goose Chen caerulescens maternal lineages. Molecular Ecology, 1992,1:105—117.
    [34] Cheng S , Higuchi R , Stoneking M. Complete mitochondrial genome amplification. Nature Genetics, 1994,7:350-351.
    [35] Collura RV, Auerbach M R, Stewart C B. A quick direct method that can differentiate expressed mitochondrial genesfrom their nuclear pseudogenes. Curr Biol, 1996, 6 :1337-1339.
    [36] Blanchard J L, Schmidt G W. Mitochondrial DNA migrationevents in yeast and humans: integration by a common end-joining mechanism and alternative perspectives on nucleotide substitution pattern. J Mol Evo, 1996,13:537-548.
    [37] Vartanian J P, Simon W H. Analysis of a library of macaque nuclear mitochondrial sequences confirms macaque origin of divergent sequences from old oral polio vaccine samples. ProcNatl Acad Sci USA, 2002,99:7 566-7 569.
    [38] Brown WM, Prager EM, Wang A, et al. Mitochondrial DNA sequences of primates: tempo and mode of evolution. J Mol Evol, 1982,18 :225-239.
    [39] Simon C. Molecular systematics at species boundary: Exploiting conserved and variable regions of the mitochondrial genome of animals via direct sequencing from amplified DNA. In: Hewitt G M, Johnston A W B, Young J P W, eds. Molecular Techniques in Taxonomy. NATO Advanced Studies Institute. Springer-Verlag, 1991.
    
    [40] Tourmen Y, Baris O, Dessen P, et al. Structure and chromosomal distribution of??human mitochondrial pseudogenes. Genomics,2002,80 (1) :71-77.
    [41] Gillham N W. Organelle Genes and Genomes. Oxford University Press, 1994.
    [42] Fukuda M, et al. Mitochondrial DNA21ike sequences in the human nuclear genome. J Mol Biol, 1985,186:257-266.
    [43] Kamimura N, Ishii S, Ma L D, et al. Three separate mitochondrial DNA sequences are contiguous in human genomic DNA. J Mol Biol, 1989,210 :703-707.
    [44] Eichler E E, Johnson M E, Alkan C, et al. Divergent origins and concerted expansion of two segmental duplications on chromosome 16. J Hered, 2001,92(6): 462—468.
    [45] Raes J, Vandepoele K, Simillion C, et al. Investigating ancient duplication events in the Arabidopsis genome. J Struct Funct Genomics, 2003,3(1 - 4) :117—129.
    [46] Petrov D A, Haiti D L. Patterns of nucleotide substitution in Drosophila and mammalian genomes. Proc Natl Acad Sci USA, 1999,96 :1475-1479.
    [47] Buhner M. Neighbouring base effects on substitution rates in pseudogenes. Mol Biol Evol, 1986,3:322-329.
    [48] Mundy N I, Pissinatti A, Woodruff D S. Multiple Nuclear Insertions of Mitochondrial Cytochrome b Sequences in Callitrichine Primates. Mol Biol Evol, 2000,17 (7):1075— 1080.
    [49] Bensasson D, Dmitri A P, Zhang D X, et al. Genomic gigantism: DNA loss is slow in mountain grasshoppers. Mol Biol Evol, 2001,18:246—253.
    [50] Zischler H. Nuclear integrations of mitochondrial DNA in primates: inference of associated mutational events. Electrophoresis, 2000,21:531—536.
    [51] Zischler H, Geisert H, Castresana J. A hominoid-specific nuclear insertion of the mitochondrial D-loop: implication forreconstructing ancestral mitochondrial sequences. Mol BiolEvol, 1998,15:463-469.
    [52] Thomas R, Zischler H, Pssbo S, Stoneking M. Novel mitochondrial DNA insertions polymorphism and its usefulness for human population studies. Hum Biol, 1996, 68 847-854.
    [53] Ullrich H, Lattig K,Brennicke A, Knoop V. Mitochondrial DNA variations and nuclear RFLPs reflect different genetic similarities among 23 Arabidopsis thaliana ecotypes. Plan Mol Biol, 1997,33:37-45.
    [54] Ayliffe MA, Scott N S , Timmis J N. Analysis of plastid DNA-like sequences within the nuclear genomes of higher plants. Mol Biol Evol, 1998,15: 738—745.[55] Zischler H, Hoss M, Handt O, et al. Detecting dinosaur DNA. Science, 1995a, 268: 1192~1193.
    [56] Sato A, Tichy H, O'hUigin C, Grant PR, Klein J, 2001. On the origin of Darwin's finches. Mol. Biol. Evol, 18(3): 299~311.
    [57] 郑作新。中国鸟类系统检索。北京:科学出版社,2002,288~303.
    [58] 郑作新.中国鸟类种和亚种分类名录大全.北京:科学出版社,1994,278~345.
    [59] 卞小庄,李庆伟,张恒庆.鸟类核型研究Ⅳ.鸻形目10种.动物学研究,1989,10(1):9~14.
    [60] 卞小庄,蔡含钧,李庆伟,邵铁忠.鸟类核型研究ⅩⅣ.鹆形目14种.动物学研究,1993,14(1):86~90.
    [61] Sibley, C. G., J. E. Ahlquist and B. L Monroe Jr. A classification of the living birds of the world based on DNA-DNA hybridization studies. Auk, 1990, 105(3): 409~423.
    [62] 陈晓芳,王翔,袁晓东,汤敏谦,李玉祥,郭玉梅,李庆伟.鸻形目15种鸟类线粒体ND6基因序列差异及其系统进化关系.动物学报,2003,49(1):61~67.
    [63] 陈晓芳,王翔,袁晓东,汤敏谦,李玉祥,郭玉梅,李庆伟.鸻形目12种鸟类线粒体细胞色素b基因序列差异及其系统发育关系.遗传学报,2003,30(5):419~424.
    [64] Paton TA, Baker A.J, Groth JG, Barrowclough GF. RAG-1 sequences resolve phylogenetic relationships within Charadriiform birds. Mol.Phylogenet.Evol. 2003, 29(2): 268~278.
    [65] Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman D J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 1997, 25: 3389~3402.
    [66] Thompson JD, Gibson TJ, Plewniak F, Jeanmougin P, Higgins DG. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res, 1997, 24: 4876~4882.
    [67] Kumar SK, Jakobsen I, Nei M. MEGA: Molecular Evolutionary Genetics Aanalysis, Version 2. 0. University Park, Pennsylvania State University, 2000.
    [68] Swofford DL. PAUP~*: phylogenetic analysis using parsimony (and other methods). Sinauer, Sunderland, MA, 2000.
    [69] Ricchetti M, Tekaia F, Dujon B. Continued Colonization of the Human Genome by Mitochondrial DNA. PIoS Biol, 2004, 2(9): e273.
    [70] Crick F H. Codon-anticodon pairing: the Wobble Hypothesis. J Mol Biol, 1966, 19: 548~555.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.