GABA_A受体参与地西泮引起的小鼠镇痛作用的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为经典的苯并二氮类(Benzodiazepines)药物之一,地西泮(Diazepam)有着很广泛的药理学作用,临床上常用作治疗焦虑症,癫痫,睡眠障碍和肌肉僵直等。苯并二氮类药物的大多数作用是通过其与γ-氨基丁酸(GABA)_A受体上的苯并二氮结合位点所介导的,常见的有抗焦虑,抗惊厥,肌松和致健忘的作用。近年来,大量证据已经表明GABA在痛觉的传递过程中起着很重要的作用,然而地西泮对痛觉的影响一直未确定。所以通过两种不同的疼痛模型,我们研究了地西泮对痛觉的作用并且探讨了其痛觉作用的机制。
     采用小鼠热甩尾试验和福尔马林实验,我们研究了地西泮对小鼠的镇痛作用。在热甩尾实验中,腹腔注射地西泮(1 mg/kg)显著地引起了小鼠甩尾潜伏期的延长,且这种延长作用能被提前腹腔注射氟马西尼(一种GABA_A受体上的苯并二氮结合位点的特异性拮抗剂),荷包牡丹碱(一种GABA_A受体的竞争性拮抗剂)和印方己毒素(一种氯离子通道阻断剂)所阻断。在小鼠福尔马林实验中,腹腔注射低剂量的地西泮(0.25和0.5 mg/kg)明显地减少了第二相总的舔/咬足时间,但第一相的时间并没有显著性变化。另外与小鼠热甩尾实验得到的结果一样,腹腔注射荷包牡丹碱和印方己毒素均能不同程度地逆转地西泮的镇痛作用。因此根据我们的实验结果,我们认为一定剂量的地西泮能够产生抗疼痛作用,属于一种弱效的镇痛药物;而且实验结果也证明了地西泮的抗疼痛作用是通过体内的γ-氨基丁酸A(GABA_A)受体所介导的。
As one of benzodiazepine drugs, diazepam has a wide spectrum of pharmacological effects in clinic and usually used as treatment of anxiety, epilepsies sleep disorders and muscle rigor and so on. Most of benzodiazepines effects are mediated by interaction with benzodiazepine binding site of GABA_A receptors. Recently, several lines of evidence had indicated that neurotransmission involving the GABAergic system plays an important role in the modulation of pain pathways. Besides the effect of diazepam on pain was unclear, we investigated its effects and approached the mechanisms on pain with two different nocicepiton tests.
     The antinociceptive effects of diazepam were investigated using tail-immersion test and the formalin test in mice. Intraperitoneal (i.p.) injection of diazepam (1 mg/kg) significantly increased the tail-withdrawal latency in the tail-immersion test. The diazepam induced prolongation of tail-withdrawal latency could be reversed by systemic administrations of flumazenil(a special antagonist of benzodiazepine binding site associated with GABA_A receptors), bicuculline(a competitive antagonist of GABA_A receptor), and picrotoxin (a blocker of chlorine ion channel), respectively. In the formalin test, low doses of diazepam (0.5 mg/kg and 0.25 mg/kg, i.p.) markedly decreased the cumulative licking/biting time of the second phase (10-45 min), whereas the first phase (0-10 min) was not affected. In addition, the reduction of the cumulative licking/biting time of the second phase was abolished by pretreatment with bicuculline or picrotoxin. Therefore, these data indicated that intraperitoneal administration of diazepam could produce antinociceptive effects, and endogenous GABA and GABA_A receptors may be involved in the antinociception of diazepam.
引文
[1].McKeman RM;Rosahl TW,Reynolds DS,Sur C,Wafford KA,Atack JR,Farrar S,Myers J,Cook G,Ferris P,Garrett L,Bristow L,Marshall G,Macaulay A,Brown N,Howell O,Moore KW,Carling RW,Street LJ,Castro JL,Ragan CI,Dawson GR,Whiting PJ.,2000.Sedative but not anxiolytic properties of benzodiazepines are mediated by the GABA(A)receptor alphal subtype.Nature neuroscience.3,587-92.
    [2].Bulach R,Myles,P.S.,Russnak M,2004.Double-blind randomized controlled trial to determine extent of amnesia with midazolam given immediately before general anaesthesia.Br.J.Anaesth.94,300-330.
    [3].Greenbatt,D.J.,Shader,R.I.,1981.Clinical use of the benzodiazepines.Ration Drug Ther.15,1-6.
    [4].Pyre L J,Cook SM,Rosahl T,MeKeman RM,Atack JR,2005.Selective labelling of diazepam-insensitive GABAA receptors in vivo using[3H]Ro-15-4513".Br.J.Pharmacol.146,817-25.
    [5].金有豫(主编),2001.“药理学”第五版.人民卫生出版社.pp.103-108.
    [6].Wildmann,J.,Vetter,W.,Ranalder,U.B.,Schmidt,K.,Maurer,R.,Mohler,H.,1988.Occurrence of pharmacologically active benzodiazepines in trace amounts in wheat and potato.Biochem Pharmacol.37,3549-59.
    [7].Earley,J.V.,Fryer,R.I.,Ning,R.Y.,1979.Quinazolines and 1,4-benzodiazepines.LXXXIX:Haptens useful in benzodiazepine immunoassay development.J Pharm Sci.68,845-50.
    [8].Battistin L.,Varotto M,Berlese G,Roman G.,1984.Effects of some anticonvulsant drugs on brain GABA level and GAD and GABA-T activities.Neurochem Res 9,225-31.
    [9].Cantor,E.H.,Kenessey,A.,Semenuk,G.,Spector,S.,1984.Interaction of calcium channel blockers with non-neuronal benzodiazepine binding sites.Proc Natl Acad Sci USA 81,1549-52.
    [10].Taft,W.C.,DeLorenzo,R.J.,1984.Micromolar-affinity benzodiazepine receptors regulate voltage-sensitive calcium channels in nerve terminal preparations. Proc Natl Acad Sci U S A 81, 3118-22.
    [11]. Usami, N.,Yamamoto, T., Shintani, S., Ishikura, S., Higaki, Y., Katagiri, Y., Hara A., 2002. Substrate specificity of human 3(20)alpha-hydroxysteroid dehydrogenase for neurosteroids and its inhibition by benzodiazepines. Biol Pharm Bull. 25,441-5.
    [12]. Miller JA; Richter J.A., 1985. Effects of anticonvulsants in vivo on high affinity choline uptake in vitro in mouse hippocampal synaptosomes. Br J Pharmacol 84, 19-25.
    [13]. Gallager, D.W., Mallorga, P., Oertel, W., Henneberry, R., Tallman, J., 1981. [3HDiazepam binding in mammalian central nervous system: a pharmacological characterization]. J Neurosci 1, 218-225.
    [14]. Wang, J.K., Morgan J.I., Spector, S., 1984. Benzodiazepines that bind at peripheral sites inhibit cell proliferation. Proc Natl Acad Sci U S A 81, 753-6.
    [15]. Matthew, E., Laskin, J.D., Zimmerman, E.A., Weinstein, I.B., Hsu, K.C., Engelhardt, D.L .,1981. Benzodiazepines have high-affinity binding sites and induce melanogenesis in B16/C3 melanoma cells. Proc Natl Acad Sci U S A 78, 3935-9.
    [16]. Oishi, R., Nishibori, M., Itoh, Y, Saeki, K., 1986. Diazepam-induced decrease in histamine turnover in mouse brain. Eur J Pharmacol. 124, 337-342.
    [17]. Grandison L.,1982. Suppression of prolactin secretion by benzodiazepines in vivo. Neuroendocrinology 34, 369-373.
    [18]. Holmes, J.H., Kanfer, I., Zwarenstein, H., 1978. Effect of benzodiazepine derivatives on human blood cholinesterase in vitro. Res Common Chem Pathol Pharmacol. 21, 367-70.
    [19]. Nabeshima T; Tohyama K, Ichihara K, Kameyama T., 1990. Effects of benzodiazepines on passive avoidance response and latent learning in mice: relationship to benzodiazepine receptors and the cholinergic neuronal system. J Pharmacol Exp Ther. 255, 789-94.
    [20]. Krnjevic, K., Schwartz S., 1967. The action of γ-aminobutyric acid on cortical neurones. Expl Brain Res 3, 320-336.
    
    [21]. Bowery, N.G., Enna, S.J., 2000. γ-Aminobutyric AcidB Receptors: First of the Functional Metabotropic Heterodimers. J. Pharmacol. Exp. Ther. 292,2-7.
    [22]. Enna, S.J., 1997. GABAB receptor agonists and antagonists: pharmacological properties and therapeutic possibilities. Expert Opin Investig Drugs. 6,1319-25.
    [23]. Mohler, H., Crestani, F., Rudolph,U., 2001. GABA(A)-receptor subtypes: a new pharmacology. Curr Opin Pharmacol, 1, 22-5.
    [24]. Hill, D.R., Bowery, N.G., 1981. 3H-baclofen and 3H-GABA bind to bicuculline-insensitive GAB A B sites in rat brain. Nature. 290,149-52.
    [25]. Chebib, M, Johnston, G.A.R, 2000. GABA-activated ligand gated ion channels: Medicinal chemistry and molecular biology. J Med Chem. 43, 1427-1447.
    [26]. Bormann, J., 2000. The 'ABC of GABA receptors, Trends Pharmacol Sci. 21, 16-19.
    
    [27]. Le Novere, N., Changeux, J.P., 2001. The Ligand Gated Ion Channel database: an example of a sequence database in neuroscience, Phil.Trans. Roy Soc London - Series B: Biol Sci. 356,1121-1130.
    [28]. Whiting, P.J., 2003. GABA-A receptor subtypes in the brain: a paradigm for CNS drug discovery? Drug Discov Today. 8,445-50.
    [29]. Binet, V., Goudet, C., Brajon, C., Le Corre, L., Archer, F., Pin, J.P., and Prezeau, L., 2004. Molecular mechanisms of action of GABAB receptor activation: New insights from the mechanism of action of CGP7930, a positive allosteric modulator. Biochem. Soc. Trans.32, 871-872.
    [30]. Kubo, Y., Tateyama, M., 2005. Towards a view of functioning dimeric metabotropic receptors. Curr. Opin. Neurobiol. 15,289-295.
    [31]. Chronwall, B. M., Davis, T. D., Severidt, M. W., Wolfe, S. E., McCarson, K.E., Beatty, D. M., Low, M. J., Morris, S. J., and Enna, S. J., 2001. Constitutive expression of GABAB receptors in mIL-tsA58 cells requires both GABAB1 and GABAB2 genes. J. Neurochem. 77,1237-1247.
    [31]. Enna, S. J., 2001. A GABAB mystery: The search for pharmacologically distinct GABAB receptors. Mol. Interv. 1, 208-218.
    [33]. Jones, K. A., Borowsky, B., Tamm, J. A., Craig, D. A., Durkin, M. M., Dai, M., Yao, W. J., Johnson, M., Gunwaldsen, C., Huang, L. Y., Tang, C., Shen, Q., et al. 1998. GABAB receptors function as a heterodimeric assembly of the subunits of GABABR1 and GABABR2. Nature 396, 674-679.
    [34]. Kaupmann, K., Malitschek, B., Schuler, V., Heid, J., Froestl,W., Beck, P., Mosbacher, J., Bischoff, S., Kulik, A., Shigemoto, R., Karschin, A., and Bettler, B. 1998. GABA-B receptor subtypes assemble into functional heterodimeric complexes. Nature 396, 683-687.
    [35]. Kerr, D.I., Ong, J., 1992. GABA agonist and antagonists. Med Res Rev. 12, 593-6.
    [36]. Smith, G.B., Olsen, R.W., 1995. Functional domains of GABAA receptors. 16, 162-8.
    [37]. Frolund, B., Ebert, B., Kristiansen, U., Liljefors, T., Krogsgaard-Larsen, P., 2002. GABA(A) receptor ligands and their therapeutic potentials. 26,419-30.
    [38]. Adkins, C.E., Pillai, G.V., Kerby, J., Bonnert, T.P., Haldon, C., McKernan, R.M., Gonzalez, J.E., Oades, K., Whiting, P.J., Simpson, P.B., 2001. α4β3δ GABAA Receptors Characterized by Fluorescence Resonance Energy Transfer-derived Measurements of Membrane Potential. J. Biol Chem. 276, 38934-9.
    [39]. Ebert, B., Wafford, K.A., Whiting, P.J., Krogsgaard-Larsen, P., Kemp, J.A., 1994. Molecular pharmacology of gamma-aminobutyric acid type A receptor agonists and partial agonists in oocytes injected with different alpha, beta, and gamma receptor subunit combinations. 46, 957-63.
    [40]. Luddens, H., Korpi, E.R., 1995. GABA antagonists differentiate between recombinant GABAA/benzodiazepine receptor subtypes. J. Neurosci. 15, 6957-62.
    [41]. Krogsgaard-Larsen, K., Frolund, B., Liljefors, T., and Ebert, B. 2004. GABA(A) agonists and partial agonists: THIP (Gaboxadol) as a non-opioid analgesic and a novel type of hypnotic. Biochem Pharmacol. 68, 1573-80.
    [42]. Curtis, D.R., Duggan, A.U, Felix, D., Johnston, G.A.R., 1970. Bicuculline and central GABA receptors. Nature. 228, 676-7.disinhibition contributes to the sensitization of primate spinothalamic tract neurons. J. Neurophysiol.81, 1086-94.
    [43]. Polc, P., Haefely, W., 1976. Effects of two henzodiazepines, phenoharbitone, and baclofen on synaptic transmission in the cat cuneate nucleus. Naunyn Schmledehergs Arch Pharmacol. 294,121-131.
    [44]. Squires, R.F., Brastrup, C., 1977. Benzodiazepine receptors in brain. Nature. 266, 732-4.
    [45]. Woods, J.H., Katz, J.L., Winger, G., 1992. Benzodiazepines: use, abuse and consequences. Pharmacol Rev. 44, 151-347.
    [46]. Macdonald, R. L., Olsen, R. W, 1994. GABA, receptor channels. Annu Rev Neurosci. 17,569-602.
    [47]. Study, R.E., Barker, J.L., 1981. Diazepam and (-)-pentobarbital: Fluctuation Analysis Reveals Different Mechanisms for Potentiation of " -aminobutyric Acid Responses in Cultured Central Neurons. 78, 7180-4.
    [48]. Sigel, E., 2002. Mapping of the benzodiazepine recognition site on GABA(A) receptors. 2, 833-9.
    [49]. Johnston, G.A.R., 1996. GABAA receptor Pharmacology. Pharmacol Ther, 69, 173-198.
    [50]. Sieghart, W., 1995. Structure and pharmacology of g-aminobutyric acidA receptor subtypes. Pharmacol. Rev. 47,181-234.
    [51]. Barnard, E.A., Skolnick, P., Olsen, R. W., Mohler, H., Sieghart, W., Biggio, G., Braestrup, C., Bateson, A. N., and Langer, S. Z., 1998. International Union of Pharmacology. XV. Subtypes of g - aminobutyric acidA receptors: Classification on the basis of subunit structure and receptor function. Pharmacol. Rev. 50, 291-313.
    [52]. Hevers, W, Luddens, H., 1998. The diversity of GABAA receptors: Pharmacological and electrophysiological properties of GABAA channel subtypes. Mol. Neurobiol. 18, 35-86.[18]. Holmes, J.H., Kanfer, I., Zwarenstein, H., 1978. Effect of benzodiazepine derivatives on human blood cholinesterase in vitro. Res Commun Chem Pathol Pharmacol.
    [53]. Puia, G., Vicini, S., Seeburg, P.H., Costa, E., 1991. Influence of recombinant gammaaminobutyric acid - A receptor subunit composition on the action of allosteric modulators of gamma - aminobutyric acid-gated Cl - currents. Mol. Pharmacol. 39, 691-696.
    [54]. Wafford, K.A., Bain, C.J., Whiting, P.J., Kemp, J.A., 1993. Functional comparison of the role of gamma subunits in recombinant human gamma-aminobutyric acidA/benzodiazepine receptors. Mol. Pharmacol. 44, 437-42.
    [55]. Pirker, S., Schwarzer, C., Wieselthaler, A., Sieghart, W., Sperk, G., 2000. GABAA receptors: Immunocytochemical distribution of 13 subunits in the adult rat brain. Neuroscience 101, 815-850.
    [56]. Wafford, K. A., Thompson, S.A., Thomas, D., Sikela, J., Wilcox, A.S., and Whiting, P. J., 1996. Functional characterization of human gamma - aminobutyric acidA receptors containing the alpha 4 subunit. Mol. Pharmacol. 50, 670-678
    [57]. Tallman, F., Gallager, D.W., 1985. The GABA-ergic system: a locus of benzodiazepine action. Annual Review of Neuroscience. 8,21-44.
    [58]. Zhang, W., Koehler, K. F., Zhang, P., and Cook, J., 1995. Development of a comprehensive pharmacophore model for the benzodiazepine receptor. Harwood Academic Publishers GmbH.
    [59]. Gu, Z.Q., Wong, G., Dominguez, C., de Costa, B. R., Rice, K. C., and Skolnick, P., 1993. Synthesis and evaluation of imidazo[1,5 - a][1,4]benzodiazepine esters with high affinities and selectivities at "diazepam - insensitive" benzodiazepine receptors. J. Med. Chem. 36,1001-1006.
    [60]. Huang, Q., He, X., Ma, C., Liu, R., Yu, S., Dayer, C. A., Wenger, G. R., McKernan, R., and Cook, J. M., 2000. Pharmacophore/receptor models for GABAA/BzR subtypes (alphalbeta3gamma2, alpha5beta3gamma2, and alpha6beta3gamma2) via a comprehensive ligand-mapping approach. J. Med. Chem. 43, 71-95.
    [61]. Knoflach, F., Benke, D., Wang, Y., Scheurer, L., Luddens, H., Hamilton, B. J., Carter, D. B., Mohler, H., and Benson, J. A., 1996. Pharmacological modulation of the diazepaminsensitive recombinant gamma - aminobutyric acidA receptors alpha 4 beta 2 gamma 2 and alpha 6 beta 2 gamma 2. Mol. Pharmacol. 50,1253-1261.
    [62]. Wong, G., Koehler, K. F., Skolnick, P., Gu, Z. Q., Ananthan, S., Schonholzer, P., Hunkeler, W., Zhang, W., and Cook, J. M., 1993. Synthetic and computer - assisted analysis of the structural requirements for selective, high - affinity ligand binding to diazepam - insensitive benzodiazepine receptors. J. Med. Chem. 36, 1820-1830.
    [63]. Enna, S.J., McCarson, K.E., 2006. The role of GABA in the mediation and perception of pain. Adv Pharmacol, 54, 1-27.
    
    [64]. Reyes-Vasques, C., Enna, S., Dafny, N., 1986. The parafasciculari thalami as a site for mediating the antinociceptive response to GABAergic drugs. Brain Research 383,177-184.
    [65], Kirouac, G.j., Li, S., Mabrouk, G., 2004. GABAergic projection from the ventral tegmental area and substantia nigra to the periaqueductal gray region and the dorsal raphe nucleus. 469,170-84.
    [66]. Gilbert, A. K., and Franklin, K. B., 2001. GABAergic modulation of descending inhibitory systems from the rostral ventromedial medulla (RVM). Dose - response analysis of nociception and neurological deficits. Pain 90,25-36.
    [67]. Jasmin, L., Rabkin, S.D., Granato, A., Boudah, A., Ohara, P.T., 2003. Analgesia and hyperalgesia from GABA-mediated modulation of the cerebral cortex. Nature 424, 316-20.
    [68]. Andrews, P.R., Johnston, G.A., 1979. Conformational analysis of muscimol, a GABA agonist. Journal of Theoretical Biology 79,263-73.
    [69]. Dickenson, A.H., Chapman, V., Green, G.M., 1997. The pharmacology of excitatory and inhibitory amino acid-mediated events in the transmission and modulation of pain in the spinal cord. General Pharmacology. 28, 633-8.
    [70]. Dirig, D. M., and Yaksh, T. L. 1995. Intrathecal baclofen and muscimol, but not midazolam, are antinociceptive using the rat - formalin model. J. Pharmacol. Exp.Ther. 275, 219-227.
    [71]. Johnston, GA.R., 1992. GABAA agonists as targets for drug development. Clin. Exp. Pharmacol. Physiol. 19, 73-78.
    [72]. Kaneko, M., Hammond, D.L., 1997. Role of spinal gamma-aminobutyric acid A receptors in formalin - induced nociception in the rat. J. Pharmacol. Exp. Ther. 282, 928-938.
    [73]. Malan, T. P., Heriberto, H. P., Poerreca, F. 2002. Spinal GABAA and GABAB receptor pharmacology in a rat model of neuropathic pain. Anesthesiology 96, 1161-1167.
    [74]. Rode, F., Jensen, D. G., Blackburn-Munro, G., and Bjerrum, O. J., 2005. Centrally - mediated antinociceptive actions of GABAA receptor agonists in the rat spared nerve injury model of neuropathic pain. Eur. J. Pharmacol. 516, 131-138.
    [75]. Vaught, J.L., Pelley, K., Costa, L.G, Settler, P., and Enna, S.J., 1985. A comparison of the antinociceptive responses to the GABA receptor agonists THIP and baclofen. Neuropharmacology 24, 211-216.
    
    [76]. Zambotti, F., Zonta, N., Tammiso, R., Conci, Hafner, B., Zecca, L., Ferrario, P., Mantegazza, P., 1990. Effects of diazepam on nociception in rats. Naunyn Schmiedebergs Archives of Pharmacology 344, 84-9.
    [77]. Zorn, S. H., and Enna, S. J. 1987. The GABA agonist THIP attenuates antinociception in the mouse by modifying central cholinergic transmission. Neuropharmacology 26,433-437.
    [78]. Tatsuo, M.A.K.F., Yokoro, C.M., Salgado, J.V., Pesquero, S.M.S., Santana, M.A.P., Francishi, J.N., 1999. Midazolam-induced hyperalgesia in rats: modulation via GABA(A) receptors at supraspinal level. European Journal of Pharmacology 370, 9-15.
    [79]. Yokoro, C.M., Pesquero, S.M., Turchetti-Maia, R.M., Francischi, J.N., Tatsuo, M.A., 2001. Acute phenobarbital administration induces hyperalgesia: pharmacological evidence for the involvement of supraspinal GABA-A receptors. Braz J Med Biol Res. 34, 397-405.
    
    [80]. Yanez, A., Sabbe, M.B., Stevens, C.W., Yaksh, T.L., 1990. Interaction of midazolam and morphine in the spinal cord of the rat. Neuropharmacology 29, 359-64.
    
    [81]. Plummer, J.L., Cmielewski, P.L., Gourlay, G.K., Owen, H., Cousins, M.J., 1992. Antinociceptive and motor effects of intrathecal morphine combined with intrathecal clonidine, noradrenaline, carbachol or midazolam in rats. Pain 49, 145-152.
    
    [82]. Rady, J., Fujimoto, J., 1993. Dynorphin Al-17 mediates midazolam antagonism of morphine antinociception in mice. Pharmacology Biochemistry Behavior 46, 331-339.
    
    [83]. Luger, T., Hayashi, T., Lorenz, I., Hill, H., 1994. Mechanisms of the influence ofmidazolam on morphine antinociception at spinal and supraspinal levels in rats. European Journal of Pharmacology 277,421-431.
    [84]. Niv, D., Davidovich, S., Geller, E., Urca, G., 1988. Analgesic and hyperalgesic effects of midazolam: dependence on the route of administration. Anesthesia Analgesia 67,1169-1173.
    
    [85]. Rattan, A., MacDonald, J., Tejwani, G., 1991. Differential effects of intrathecal midazolam on morphine-induced antinociception in the rat: role of spinal opioids receptors. Anesthesia Analgesia 73, 124-131.
    [86]. Tatsuo, M.A.K.F., Yokoro, C.M., Salgado, J.V., Pesquero, S.M.S., Santana, M.A.P., Francishi, J.N., 1997. Hyperalgesic effect induced by barbiturates, midazolam and ethanol: pharmacological evidence for GABAA receptor involvement. Brazilian Journal of Medical and Biological Research 30,251-256.
    [87]. Rosland, J.H., Hunskaar, S., Hole, K., 1987. The effect of diazepam on nociception in mice. Pharmacology Toxicology 61, 111-5.
    [88].徐叔云,卞如濂,陈修(主编),2003.“药理实验方法学” 第三版.人民 卫生出版社pp.884-7.
    [89]. Pang, C.S., Tsang, S.F., Yang, J.C., 2001. Effects of melatonin, morphine and diazepam on formalin-induced nociception in mice. Life Sciences 68, 943-51.
    [90]. Nishiyama, T., 2006. Analgesic effects of systemic midazolam: comparison with intrathecal administration. Canadian Journal of Anaesthesia 53,1004-1009.
    [91]. Davidovich, S., Niv, D., Geller, E., Urca, G., 1988. RO15-1788 produces naloxone-reversible analgesia in the rat. European Journal of Pharmacology 146, 175-179.
    [92]. Moreau, J.L., Pieri, L., 1988. Effects of an intrathecally administered benzodiazepine receptor agonist, antagonist and inverse agonist on morphine-induced inhibition of a spinal nociceptive reflex. British Journal of Pharmacology 93, 964-968.
    
    [93]. Serrao, J.M., Stubbs, S.C., Goodchild, C.S., Gent, J.P., 1989. Intrathecal midazolam and fentanyl in the rat: evidence for different spinal antinociceptive effects. Anesthesiology. 70, 780-6.
    [94]. Rosland, J.H., Hole, K., 1990. Benzodiazepine-induced antagonism of opioid antinociception may be abolished by spinalization or blockade of the benzodiazepine receptor. 37, 505-9.
    [95]. Tejwani, GA., Rattan, A.K., Sribanditmongkol, P., Sheu, M.J., Zuniga, J., McDonald, J.S., 1993. Inhibition of Morphine-Induced Tolerance and Dependence by a Benzodiazepine Receptor Agonist Midazolam in the Rat. Anesthesia Analgesia 76,1052-1060.
    [96]. Matsumoto, R.R., 1989. GABA receptors: are cellular differences reflected in function? Brain Res. Brain Research Review 14, 203-25.
    [97]. Malcangio, M., Bowery, N.G.., 1996. GABA and its receptors in the spinal cord. Trends in Pharmacological Sciences 17,457-62.
    [98]. Motta da, P.G., Veiga, A.P.C., Francischi, V.J.N., Tatsuo, M.A.K.F., 2004. Evidence for paricipation of GABAA receptors in a rat model of secondary hyperalgesia. European Journal of Pharmacology 483, 233-239.
    [99]. Dubuisson, D., Dennis, S.G., 1977. The formalin test: a quantitative study of the analgesic effects of morphine, meperidine, and brain stem stimulation in rats and cats. Pain. 4,161-74. 21,367-70.
    [100]. Simmonds, M.A., 1980. A site for the potentiation of GABA-mediated responses by benzodiazepines. Nature 284, 558-60.
    [101]. Akaike, N., Hattori, K., Oomura, Y., Carpenter, D.O., 1985. Bicuculline and picrotoxin block gamma-aminobutyric acid-gated Cl- conductance by different mechanisms. Experientia 41, 70-1.
    [102]. Lonart, G., Wang, J., Johnson, K.M., 1992. Nitric oxide induces neurotransmitter release from hippocampal slices. European Journal of Pharmacology 220,271-2.
    [103]. Lipton, S.A., Choi, Y.B., Pan, Z.H., Lei, S.Z., Chen, H.S.V., Sucher, N.J., et al., 1993. A redox based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitro compounds. Nature 346, 626- 32.
    [104]. Zarri, I., Bucossi, G., Cupello, A., Rapallino, M.V., Robello, M., 1994. Modulation by nitric oxide of rat brain GABAA receptors. Neuroscience Letter 180,239-42.
    [105]. Kano, T., Shimizu-Sasamata, M., Huang. P.L., Moskowitz, M.A., Lo, E.H., 1998. Effects of nitric oxide synthase gene knockout on neurotransmitter release in vivo. Neuroscience. 86, 695- 9.
    [106]. Lin, Q., Wu, J., Peng, Y.B., Cui, M., Willis, W.D., 1999. Inhibition of primate spinothalamic tract neurons by spinal glycine and GABA is modulated by guanosine 3V, 5V-cyclic monophosphate. Journal of Neurophysiology 81,1095— 103.
    [107]. Lin, Q., Wu, J., Peng, Y.B., Cui, M., Willis, W.D., 1999. Nitric oxide-mediated spinal disinhibition contributes to the sensitization of primate spinothalamic tract neurons. Journal of Neurophysiology 81,1086-94.
    [108]. Bie, B.H., Zhao, Z.Q., 2001. Nitric oxide inhibits GABA-evoked current in dorsal root ganglion neuron via PKG-dependent pathway. Brain Research Bulletin. 55,335-9.
    [109]. Lazzarin, R, Maioka, C.P., Liu, J.; Papadopoulos, V., 2006. Diazepam effects on carrageenan-induced inflammatory paw edema in rats: Role of nitric oxide. Life Sciences 78, 3027-3034.
    [110]. Lim, C., Garant, D., Gale, K., 1985. GABA agonist induced analgesia elicited from the lateral preoptic area in the rat. European Journal of Pharmacology 107, 91-94.
    [111]. Walters, R.J., Hadley, S.H., Morris, K.D., Amin, J., 2000 Benzodiazepines act on GABAA receptors via two distinct and separable mechanisms. Nature Neuroscience 3,1274-81.
    [112]. Baumeister, A., Hawkins, M., Anderson-Moore, L., Higgins, T., Griffin, P., 1988. Effects of bilateral injection of GABA into the substantia nigra on spontaneous behaviour and measures of analgesia. Neuropharmacology. 27, 817-821.
    [113]. Costa, E., Guidotti, A., 1979. Recent studies on the mechanism whereby benzodiazepines facilitate GABA-ergic transmission. Advances in Experimental Medicine Biology 123, 371-8.
    [114].Drower, E., Hammond, D., 1988. GABAergic modulation of nociceptive threshold: effects of THIP and bicuculline microinjected in the ventral medulla of the rat. Brain Research 450, 316-324.
    [115]. Fields, H., Heinricher, M., Mason, P., 1991. Neurotransmitters in nociceptive modulatory circuits. Annual Review of Neuroscience 14, 219-245.
    [116]. Heinricher, M., Hilary, J., 1991. GABA-mediated inhibition in rostral ventromedial medulla: role in nociceptive modulation in the light anesthetized rat. Pain 47,105-113.
    [117]. Johnston, G.A.R., 2005. GABAA receptor channel pharmacology. Current Pharmaceutical Design, 11, 1867-1885.
    [118]. Eisenach, J.C., (Ed.) 1999. "Textbook of Pain,"4th edn. Churchill Livingstone, London.
    [119]. Attal, N., Bouhassira, D., 1999. Mechanisms of pain in peripheral neuropathy. Acta Neurol. Scand. Suppl. 173, 12-24.
    [120]. Ossipov, M.H., Lai, J., Malan, T.P., Porreca, F., 2000. Spinal and supraspinal mechanisms of neuropathic pain. Ann. NY Acad. Sci. 909,12-24.
    [121]. Lazzarini, R., Maiorka, P.C., Liu, J., Papadopoulos, V., Palemo-Neto, J., 2006. Diazepam effects on carrageenan-induced inflammatory paw edema in rats: role of nitric oxide. Life Sci. 78, 3027-34.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.