卤代芳烃的Heck和Suzuki偶联反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳—碳键的构建一直都是许多有机化学品合成中的关键步骤,卤代烃的碳碳偶联是其中一种重要的方法,自从被发现以来,由于其高效性以及原料底物的广泛适用性,逐渐引起了人们的关注与深入研究,因此,它已经成为现代有机合成中不可缺少的重要工具,近年来被广泛应用于医药、农药,以及精细化工产品的各种合成实践中。
     本文对卤代芳烃的Heck偶联反应分别在均相和非均相催化体系中进行了研究和比较,并将使用效果较好的负载型钯催化剂和一些非钯金属催化剂应用于Suzuki偶联反应中。另外,也研究了钴络合物催化卤代烷烃的Heck羰基化反应。
     对于均相催化体系存在下卤代芳烃的Heck偶联反应,本文使用环钯催化剂,以季膦盐PPh_4Br为助催化剂,催化氯代芳烃与苯乙烯的Heck芳基化反应。讨论了不同的催化剂和助催化剂对反应的影响,并优化了反应条件以及催化剂与助催化剂的比例等。结果表明,在环钯—PPh_4Br催化体系中,以Na_2CO_3作为碱性试剂,使用0.3 mol%Pd的环钯催化剂催化氯苯与苯乙烯的Heck反应,就可得到比较高的产率(88%)和转化率(90%)。其中助催化剂PPh_4Br的使用使钯催化剂的用量有了大幅度的降低,在未加入PPh_4Br时,需要大于1 mol%Pd的环钯催化剂催化反应才能达到相似的效果,另外,助催化剂PPh_4Br在反应中对环钯催化剂也起着一定的稳定作用。对于大部分卤代芳烃Heck反应而言,环钯—PPh_4Br是一种有效的催化体系,即使是对含推电子基团的不活泼的氯代芳烃,也能获得比较好的结果。
     对于非均相催化体系存在下卤代芳烃的Heck偶联反应,本文首次以氟离子插层的水滑石LDH—F为载体制备新型无配体负载型钯催化剂Pd/LDH—F,并将其应用于卤代芳烃的Heck偶联反应中。以溴苯和苯乙烯的Heck反应为模型反应,使用负载型钯催化剂Pd/LDH—F催化反应,在低钯用量下(0.1 mol%Pd),就可以得到86%的产率。在文中,与其它负载型催化剂(包括氟离子修饰的其它载体上负载钯得到的催化剂)比较,催化剂Pd/LDH—F展示出了更高的催化活性和选择性。在简单处理后,催化剂Pd/LDH—F可以被循环使用,并且在回用过程中催化剂的催化活性保持稳定。另外,使用X射线衍射(XRD)表征催化剂的晶相,分光光度法测定了水滑石LDH—F中氟离子的含量,并用等离子
The carbon-carbon bond forming reactions are always the key steps in many syntheses of organic chemicals. The coupling reaction of the alkyl halides is one of the most fundamental methods. Since its invention, numerous efforts have been devoted to further development of the reactions because of its usefulness and especially the wide applicability to substrates. It has become an excellent tool for the modern organic synthesis. In the past years, the coupling reaction has been extensively utilized in the preparations of medicines, pesticides, and many fine chemicals.In the dissertation, the Heck reaction of aryl halides in the homogeneous and heterogeneous catalyst systems has been investigated. The Suzuki reaction which catalyzed by some supported palladium catalysts and other supported catalysts with non-palladium has been studied. In addition, the carbonylation reaction of alkyl halides catalyzed by cobalt complex has been explored.In the study of the Heck reaction in the homogeneous system, a phosphonium salt, PPh_4Br, was used as co-catalyst in the pailadacycle catalyst system for the Heck reaction of the aryl chlorides. The influence of different catalyst and co-catalyst on reaction performance was also discussed. The reaction conditions and the ratio of PPh_4Br/Pd were optimized. In the case of Palladacycle-PPh4Br catalyst system, the amount of 0.3 mol % palladium can afford high yield (88%) and conversion (90%) for the Heck reaction of chlorobenzene with styrene by using Na_2CO_3 as the base. The presence of PPh_4Br was able to decrease the required amount of palladium catalyst and stabilize the palladium complex during the reaction. Palladacycle-PPh_4Br is an efficient catalyst system for the most aryl halides, even some aryl chlorides with electron-donating groups.In the study of the Heck reaction in the heterogeneous system, LDH-F hydrotalcite was achieved, for the first time, as an efficient and selective basic support in palladium catalyst for the Heck reaction. Small amounts of Pd/LDH-F (0.1 mol % of Pd) are required to perform the Heck reaction of bromobenzne and styrene with
    high yield (86%) in the absence of any ligands. The ligand-free heterogeneous catalyst Pd/LDH-F exhibits higher activity and selectivity compared with the other supported palladium catalysts (including some supports modified by fluorine) in the Heck reaction of aryl bromides with styrene. The structure of catalysts and the leaching of Pd in the solution were characterized by XRD and ICP. The results revealed that the catalyst could easily be separated from the reaction mixture and reused after washing without loss in catalytic activity in four runs.The supported palladium catalysts e.g. Pd/LDH —F, which performed high activity in the Heck reaction also were applied in the Suzuki reaction of aryl halides. The effects of different catalysts and reaction conditions were discussed. The catalyst Pd/LDH-F also performed high activity in the Suzuki reaction. The almost equivalent production could be obtained in the Suzuki reaction of bromobenzene and phenylboronic acid catalyzed by Pd/LDH-F (0.1 mol % of Pd) under the optimal reaction conditions: a mixture solution of DMF/H2O (1/2, v/v), K2CO3 as base,, in air and at room temperature for 2 h. Similarly, the catalyst Pd/LDH-F could also be recovered and reused after washing without loss in activity in the Suzuki reactions.Because of the expensive price of palladium, an attempt was made to apply the other metals in the coupling reaction of aryl halides. Several transition metals were supported on the supports with hydrotalcite-like structure such as HAP, FAP and LDH et al. The relevant catalysts were utilized in the Suzuki reaction. A 70% yield was achieved in the Suzuki reaction of bromobenzene and phenylboronic acid under refluxing 6 h catalyzed by MnFAP in the mixing solvent of DMF/H2O (1/3, v/v). At the same reaction conditions, the catalyst CoFAP also afforded 40% yield. These results have not been reported in literature so far.In addition, a new approach for the synthesis of methyl acetoacetate by selective carbonylation of chloroacetone catalyzed by Na[Co(CO)4] was developed. The cobalt complex, Na[Co(CO)4], was prepared in situ and was used to instead of palladium catalyst. The reaction was carried out under mild conditions with good yield (65%) and the chloroacetone was almost completely converted. The influences of reaction temperature, pressure and base on reaction performance were discussed. Meanwhile,
    the possible reaction mechanism catalysed by cobalt complex was also proposed.
引文
[1] D. Baranano, G. Anm, J.F. Hartwig, Curr. Org. Chem. 1 (1997) 287.
    [2] Z.F. Zhang, W.C. Zhou, Chin. J. Org. Chem. 22 (2002) 685.
    [3] R.R. Tykwinski, Angew. Chem. Ind. Ed. 42 (2003) 1566.
    [4] S.V. Ley, A,W. Thomas, Chem. Ind. Ed. 42 (2003) 5400.
    [5] M.S. Kharasch, O. Reinmuth, Grignard.Reagents of Nonmetallic Substances, Prentice-Hall Inc., New York, 1954.
    [6] M. Tamura, J. Kochi, J. Am. Chem. Soc. 93 (1971) 1487.
    [7] M. Uchino, A. Yamamoto, S. Ikeda, J. Organomet. Chem. 24 (1970) C63.
    [8] R.J.P. Corriu, J.P. Masse, Chem. Commun, (1972) 144.
    [9] K. Tamao, K. Sumitani, M. Kumada, J. Am. Chem. Soc. 94 (1972) 4374.
    [10] E.I. Negishi, J. Organomet. Chem. 653 (2002) 34.
    [11] S.I. Murahashi, S.G, Davies, Transition Metal Catalysed Reactions, Lackwell Science, 1999.
    [12] H.A. Dieck, R.F. Heck, J. Org. Chem. 40 (1975) 1083.
    [13] J.-I.I. Kim, B.A. Patel, R.F. Heck, J. Org. Chem. 46 (1981) 1067.
    [14] D.D. Bender, F.G. Stakem, R.F. Heck, J. Org. Chem. 47 (1982) 1278.
    [15] R.F. Heck, Org. React. 27 (1982) 345.
    [16] R.A. Abramovitch, D.H.R. Barton, J.P. Finer, Tetrahedron 44 (1988) 3039.
    [17] A. Zapf, M. Beller, Topic in catalysis 19 (2002) 101.
    [18] D. Morales-morales, R. Redon, C. Yung, et al. Chem. Commun. (2000) 1619.
    [19] L. Eriksson, K.J. Winberg, R.T. Claro, et al. J. Org. Chem. 68 (2003) 3569.
    [20] J.A. Loch, M. Albrecht, E. Peris, et al. Organometallics 21 (2002) 700.
    [21] D. Kovala-Demertzi, P.N. Yadav, M.A. Demertzis, et al. Tetrahedron Lett. 45 (2004) 2923.
    [22] M.T. Reetz, G. Lohmer, R. Schwickardi. Angew. Chem. Int. Ed. 37 (1998) 481.
    [23] W.A. Herrmarm, C. Brossmer, K. Ofele, C-P. Reisinger, T. Priermeier, M. Beller, H. Fischer, Angew. Chem. Int. Ed. Engl. 34 (1995) 1844.
    [24] W.A. Herrmann, V.P.W. Bohm, J. Organomet. Chem. 572 (1999) 141.
    [25] W.A. Herrmann, V.P.W. Bohm, C-P. Reisinger, J. Organomet. Chem. 576 (1999) 23.
    [26] A.F. Littke, G.C. Fu, J. Am. Chem. Soc. 123 (2001) 6989.
    [27] A. Ehrentraut, A. Zapf, M. Beller, Synlett. (2000) 1589.
    [28] A.L. Lapidus, O.L. Eliseev, T.N. Bondarenko, O.E. Sizan, A.G. Ostapenko, Russ. Chem. Bull. 50 (2001) 2239.
    [29] W.R. Moser, A.W. Wang, N.K. Kildahl, J. Am. Chem. Soc. 110 (1988) 2816.
    [30] 燕远勇,金子林,精细石油化工,1(1993)27.
    [31] Y. Ben-David, M. Portnoy, D. Milstein, J. Am. Chem. Soc. 111 (1989) 8742.
    [32] T. Miyawaki, K. Nomura, M. Hazama, et al. J. Mol Catal A: Chem. 120 (1997) L9.
    [33] W. Magerlein, A. F. Indolese, M. Beller, Angew. Chem. Int. Ed. 40 (2001) 2856.
    [34] B. Mutin, C. Lucas, J. Thivolle-Cazat, et al. J. Chem. Soc. Chem. Commun. (1988) 896.
    [35] V. Dufaud, J. Thivolle-Cazat, J-M. Basset, Organometallics 10 (1991) 4005.
    [36] Y.G. Noskov, E.S. Patrov, React. Kinet. Catal. Lett. 64 (1998) 359.
    [37] R.J. Chambers, A. Marfat, Syhth. Lett. 27 (1997) 515.
    [38] M. Foa, F. Francalanci, E. Bencini, et al. J. Organomet. Chem. 285 (1985) 293.
    [39] M. Miura, F. Akase, M. Nomura, J. Org. Chem. 52 (1987) 2623.
    [40] 李光兴,刘勇,应用化学,15(1998)116.
    [41] 卫晓红,成忠,上海化工,23(1998)44.
    [42] 龚军芳,段家荣,王恩来,等,化学通报,1(1999)20.
    [43] M. J. Payne, D. J. Cole-Hamilton, J. Chem. Soc. Dalton. Trans. 18 (1997) 3:167.
    [44] 万伯顺,廖世健,徐筠,等,分子催化,13(1999)209.
    [45] Z. Yu, Y. Xu, S. Liao, et al. React. Funct. Polym. 31 (1996) 201.
    [46] C.W. Kolpainter, M. Beller, J. Mol Catal A: Chem. 116 (1997) 259.
    [47] H. Jiang, Y. Xu, S. Liao, et al. J. Mol Catal A: Chem. 130 (1998) 79.
    [48] M. Ocafrain, E. Dolhem, J. Y. Nedelec, et al. J. Organomet. Chem. 57 (1998) 37.
    [49] K. Kudo, T. Shibata, T. Kashimura, et al. Chem. Lett. (1987) 577.
    [50] 高大彬,伊静梅,由业诚,厦门国际催化会议,2001-12.
    [51] T. Mizoraki, K. Mori, A. Ozaki, Bull. Chem. Soc. Jpn. 44 (1971) 581.
    [52] R. F. Heck, J.P. Nolley, J. Org. Chem. 14 (1972) 2320.
    [53] R. Ferraccioli, D. Carenzi, Synthesis. 9 (2003) 1383.
    [54] R. Amengual, E Genin, V. Michelet, et al. Adv. Syhth. Catal. 344 (2002) 393.
    [55] N.C. Yang, D.h. Such, Poly. Bull, 46 (2001) 29.
    [56] H. Schlick, F. Stelzer, G. Leising, Monatshefte fur Chemin Chemical Monthly. 132 (2001) 441
    [57] 麻生明,金属参与的现代有机合成反应,广东科技出版社,广州,2001.
    [58] W. A. Herrmann, C. Broβmer, K. Ofele, C.-P. Reisinger, T. Pfiermerier, M. Beller, H. Fischer, Angew. Chem. Int. Ed. Engl. 34 (1995) 1844.
    [59] W.A. Herrmann, M. Elison, J. Fischer, C. Kocher, G.R.J. Arms, Angew. Chem. Int. Ed. Engl. 34 (1995) 2371.
    [60] M. Ohff, A. Ohff, M.E. van der Boom, D. Milstein, J. Am. Chem. Soc. 119 (1997) 11687.
    [61] D. Morales-morales, C. Grause, K. Kasaoka, R. Redon, R.E. Cramer, C.M. Jensen, Inorg. Chinm. Acta. 300-302 (2000) 958.
    [62] D. Morales-morales, R. Redon, C. Yung, C.M. Jensen, Chem. Commun. (2000) 1619.
    [63] A.S. Gruber, D. Pozebon, A.L. Monteiro, J. Dupont, Tetrahedron Lett. 42 (2001) 7345.
    [64] K.R. Reddy, K. Surekha, G-S. Lee, S-M. Peng, S-T. Liu, Organometallics. 19 (2000) 2637.
    [65] J.A. Loch, M. Albrecht, E. Peris, J. Mata, J.W. Faller, R.H. Crabtree, Organometallics. 21 (2002) 700.
    [66] Q. W. Yao, E. P. Kinney, C. Zheng, Org. Lett. 6 (2004) 2997.
    [67] L. Fan, B.M. Foxman, O. V. Ozerov, Organometallics. 23 (2004) 326.
    [68] D. Kovala-Demertzi, P. N. Yadav, M. A. Demertzis, J. P. Jasiski, F.J. Andreadaki, I. D. Kostas, Tetrahedron Lett. 45 (2004) 2923.
    [69] C. Niu, J. Li, T. W. Doyle, S.-H. Chen, Tetrahedron 54 (1998) 6311.
    [70] A. F. Littke, G. C. Fu, J. Org. Chem. 64 (1999) 10.
    [71] A. F. Littke, G. C. Fu, J. Am. Chem. Soc. 123 (2001) 6989.
    [72] A. Ehrentraut, A. Zapf, M. Beller, Synlett. (2000) 1589.
    [73] M. Feuerstein, H. Doucet, M. Santelli, Tetrahedron Lett. 43 (2002) 2191.
    [74] C. Yang, H. M. Lee, S.P. Nolan, Org. Lett. 3 (2001) 1511.
    [75] D. Yang, Y-C. Chen, N-Y. Zhu, Org. Lett. 6 (2004) 1577.
    [76] M. T. Reez, G. Lohmer, R. Schwickardi, Angew. Chem. Int. Ed. 37 (1998) 481.
    [77] W. A. Herrmann, V. P. W. Bohm, C. -P. Reisinger, J. Orgnomet. Chem. 576 (1999) 23.
    [78] W. A. Herrmann, V. P. W. Bohm, J. Organomet. Chem. 572 (1999) 141.
    [79] A. Hallberg, L. Westfelt, J. Chem. Soc. Perkin, Transe. 1 (1984) 933.
    [80] C-M. Andersson, A. Hallberg, J. Org. Chem. 53 (1988) 235.
    [81] R. G. Heidenreich, J. G. E. Krauter, J. Pietsc, K. Kohler, J. Mol Catal A: Chem. 182-183 (2002) 499.
    [82] K. Kohler, R.G. Heidenreich, J.G.E. Krauter, J. Pietsc, et al. Chem. Eur. J. 8 (2002) 622.
    [83] F-Y. Zhao, B.M . Bhanage, M. Arai, et al. Chem. Eur. J. 6 (2000) 843.
    [84] F-Y. Zhao, K. Murakami, M. Arai, et al. J. Catal. 194 (2000) 479.
    [85] C. P. Mehert, D. W. Weaver, J. Y. Ying, J. Am. Chem. Soc. 120 (1998) 12289.
    [86] 周健民,周仁贤,郑小明,化学通报,7(2002)472.
    [87] B. M. Choudary, R.M. Sarma, K.K. Rao, Tetrahedron. 48 (1992) 719.
    [88] R. S. Varma, K.P. Naicker, P.J. Liesen, Tetrahedron Lett. 40 (1999) 2075
    [89] K. Kohler, W. Magner, L. Djakovitch, Catal. Today. 66 (2001) 105.
    [90] A. Biffs, M. Zecca, M. Basato, Eur. J. Inorg. Chem. (2001) 1131.
    [91] L. W. Davies, L. Matty, D.L. Hughes, ea al. J. Am. Chem. Soc. 123 (2001) 10139.
    [92] B. M. Choudary, S.M. Madhi, N.S. Chowdari, M.L. Kantam, B. Sreedhar, J. Am. Chem. Soc. 124 (2002) 14127.
    [93] L. Djakovitch, K. Kohler, J. Am. Chem. Soc. 123 (2001) 5990.
    [94] J-T. Li, A.W-H. Mau, C.R. Stauss, Chem. Commun. (1997) 1275.
    [95] C-M. Andersson, K. Karabelas, A. Hallberg, J. Org. Chem. 50 (1985) 3891.
    [96] P-W. Wang, M.A. Fox, J. Org. Chem. 59 (1994) 5358.
    [97] J. Schwarz, V-P.W. Boham, M.G. Gardiner, et al. Chem. Eur. J. 6 (2000) 1773.
    [98] J. Kiviaho, T. Hanaoka, Y. Kubota et al. J. Mol. Catal. A: Chem. 101 (1995) 25.
    [99] 蔡明中,徐曲,宋才生,高分子学报,5(1999)540.
    [100] 蔡明中,赵红,黄义争,高分子学报,4(2002)530.
    [101] 胡荣华,夏俊,蔡明中,应用化学,20(2003)254.
    [102] I. K. Yeung, K.P. Johnston, R.M. Crooks, et al, Chem. Commun. (2001) 2290.
    [103] T. R. Early, R. S. Gordon, M. A. Carroll, et al, Chem. Commun. (2001) 1966.
    [104] R. Zhang, F-Y. Zhao, M. Sato, et al, Chem. Commun. (2003) 1548.
    [105] P. Nilsson, H. Gold, M. Larhed, et al, Synthesis. 11 (2002) 1611.
    [106] J.P. Stambuli, S.R. Stauffer, K.H. Shaughnessy, et al, J. Am Chem. Soc. 123 (2001) 2677.
    [107] M. Feuerstein, D. Laurenti, C. Bougeant, H. Doucet, M. Santelli, Chem. Commun. (2001) 325
    [108] G. A. Grasa, A. C. Hillier, S.P. Nolan, Org. Lett. 3 (2001) 1077.
    [109] C. Najera, J. Gil-Molto, S. Karlstrom, L. R. Falvello, Org. Lett. 5 (2003) 1451.
    [110] R. B. Bedford, S. L. Welch, Bhem. Commun. (2001) 129.
    [111] S. Y. Liu, M. J. Chio, G. C. Fu, Chem. Commun. (2001) 2408.
    [112] G. Adjabeng, T. Brenstrum, J. Wilson, C. Frampton, A. Roberton, J. Hillhouse, J. McNulty, A. Capretta, Org. Lett. 5 (2003) 953.
    [113] V. P. W. Bohm, C. W. K. Gstottmagyr, T. Weskamp, W.A. Herrmann, J. Organomet. Chem. 595 (2000) 186.
    [114] X. Bei, H. W. Turner, W. H. Weinberg, A. S. Guram, J. L. Petersen, J. Org. Chem. 64 (1999) 6797.
    [115] J. P. Wolfe, R. A. Singer, B. H. Yang, S. L. Buchwald, J. Am Chem. Soc. 121 (1999) 9550.
    [116] M. G. Andreu, A. Zapf, M. Beller, Chem. Commun. (2000) 2475.
    [117] G. Marck, A. Villiger, R. buchecker, Tetrahedron Lett. 35 (1994) 3277.
    [118] C. R. LeBlond, A.T. Andrews, Y. Sun, J.R. Sowa, Org. Lett. 3 (2001) 1555.
    [119] R. G. Heidenreich, K. Kohler, J.G.E. Karauter, J. Pietsch, Synlett. (2002) 1118.
    [120] H. Sakurai, T. Taukuda, T. Hirao, J. Org. Chem. 67 (2002) 2721.
    [121] K. Shimizu, T. Kanno, T. Kodama, H. Hagiwara, Y. Kitayama, Tetrahedron Lett. 43 (2002) 5653.
    [122] L. Artok, H. Bulut, Tetrahedron Lett. 45 (2004) 3881.
    [123] H. Kosslick, I. Monnich, E. Paezold, H. Fuhrmann, R. Fricke, D. Muller, G. Oehme, Microporous Mesoporous Mater. 44-45 (2001) 537.
    [124] C. Baleizao, A. Corma, H. Garcia, A. Leyva, Chem. Commun. (2003) 606.
    [125] C. J. Mathews, P. J. Smith, Y. Welton, Chem. Commun. (2000) 1249.
    [126] R. Rajagopal, D.V. Jarikote, K.V. Srinivasan, Chem. Commun. (2002) 616.
    [127] J. McNulty, A. Catretta, J. Wilson, J. Dyck, G. Adjabeng, A. Robertson, Chem. Commun. (2002) 1986.
    [128] B. H. Lipshutz, J.A. Sclafani, P.A. Blomgren, Tetrahedron. 56 (2000) 2139.
    [129] K. Inamoto, J. Kuroda, T. Danjo, T. Sakamoto, Synlett. (2005) 1624.
    [130] Z. Y. Tang, Q.S. Hu, J. Org. Chem. 71 (2006) 2167.
    [131] J. H. Li, D.P. Wang, Y.X. Xie, Tetrahedron lett. 46 (2005) 4941.
    [132] Y. Ikeda, T. Nakamura, H. Yorimitsu, K. Oshima, J. Am. Chem. Soc. 124 (2002) 6514.
    [133] 李哲,傅尧,刘磊,郭庆祥,有机化学,25(2005)1508.
    [134] S. Oi, K. Sakai, Y. Inoue, Org. Lett. 7 (2005) 4009.
    [135] G. P. Boldrini, D. Savoia, E. Tagliacini, C. Trombini, A.U. Ronchi, J. Organomet. Chem. 301 (1986) C62.
    [136] S. Iyer, C. Ramesh, A. Ramani, Tetrahedron Lett. 38 (1997) 8533.
    [137] B. M. Bhanage, F. G. Zhao, M. Shirai, M. Arai, Tetrahedron Lett. 39 (1998) 9509.
    [138] B. M. Bhanage, F. G. Zhao, M. Shirai, Catal. Lett. 54 (1998) 195.
    [139] S. Saito, S. Oh-tani, N. Miyaura, J. Org. Chem. 62 (1997) 8024.
    [140] J.C. Galland, M. Sclafani, J. P. Genet, Tetrahedron Lett. 40 (1999) 2323.
    [141] D. Zim, A. L. Monteiro, Tetrahedron Lett. 43 (2002) 4049.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.