HIF-1α和VEGF小干扰RNA抑制鼠视网膜新生血管的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一章:HIF-1α和VEGF小干扰RNA对人血管内皮细胞HIF-1αl和VEGF表达的抑制
     目的:探讨缺氧诱导因子-1α(HIF-1α)和血管内皮生长因子(VEGF)小片段干扰性RNA(siRNA)对人血管内皮细胞HIF-1α和VEGF表达的影响。
     方法:构建HIF-1αsiRNA重组质粒。将体外培养的人脐静脉血管内皮细胞(HUVEC-12)分成常氧(20%)组和低氧(1%)组。低氧组中,采用脂质体Lipofectamine~(TM)2000(LF2000)分别转染空载体质粒(空载体组)、HIF-1αsiRNA(HIF-1α组)、VEGF_(165)siRNA(VEGF组)和HIF-1αsiRNA+VEGF_(165)siRNA(共转染组),低氧组中未转染的细胞为低氧对照组。常氧组细胞不做转染。采用逆转录-聚合酶链反应(RT-PCR)检测转染后重组质粒的表达;RT-PCR和免疫细胞化学法检测细胞中HIF-1α和VEGF基因和蛋白表达的变化。
     结果:成功构建HIF-1αsiRNA重组质粒。人脐静脉血管内皮细胞转染24h后,HIF-1αsiRNA和VEGF_(165)siRNA重组质粒有表达。细胞HIF-1αmRNA及蛋白表达水平:常氧组细胞HIF-1αmRNA有表达,但未见明显HIF-1α蛋白表达,低氧对照组和空载体组细胞HIF-1αmRNA和蛋白表达较常氧组增强,而HIF-1α组较低氧对照组明显减弱(P<0.01),mRNA抑制效率为59.8%。细胞VEGF mRNA及蛋白表达水平:常氧组细胞仅见微弱的VEGF mRNA和蛋白表达,而缺氧后表达明显上调(P<0.01);HIF-1α组、VEGF组和共转染组表达较低氧对照组减弱(P<0.01),mRNA抑制效率分别为39.7%、68.1%和82.3%,其中共转染组抑制效果最明显。
     结论:HIF-1α和VEGF_(165)siRNA能有效抑制人脐静脉血管内皮细胞HIF-1α和VEGF的表达。
     第二章:HIF-1a和VEGF小干扰RNA对鼠视网膜新生血管的抑制
     目的:探讨缺氧诱导因子-1α(HIF-1α)和血管内皮生长因子(VEGF)小片段干扰性RNA(siRNA)对小鼠视网膜新生血管的抑制作用。
     方法:C57BL/6J小鼠玻璃体腔注射pEGFP-N1-脂质体复合物,1d后视网膜铺片观察GFP的表达。选7d龄C57BL/6J小鼠117只,其中21只为正常组;另96只建立氧诱导的视网膜新生血管模型,并随机分为:模型对照组、空载体组和基因治疗组(HIF-1α组、VEGF组和共转染组)。于出舱前1d,采用脂质体介导的转染方法,向空载体组小鼠玻璃体腔注射空载体质粒;HIF-1α组注射HIF-1αsiRNA;VEGF组注射VEGF_(165)siRNA;共转染组注射HIF-1αsiRNA+VEGF_(165)siRNA。RT-PCR检测转染后重组质粒的表达;采用荧光造影视网膜铺片方法观察血管形态变化;组织切片观察并计算突破视网膜内界膜的血管内皮细胞核数;RT-PCR、免疫组化和Western blot检测视网膜HIF-1α和VEGF的表达。
     结果:RT-PCR检测发现小鼠视网膜中HIF-1αsiRNA和VEGF_(165)siRNA重组质粒有表达;pEGFP-N1经脂质体介导转染视网膜后1d即可见GFP表达;视网膜铺片可见基因治疗组较模型对照组和空载体组新生血管丛明显减少,荧光渗漏明显减轻,共转染组效果最明显;组织切片可见基因治疗组较其他三组突破视网膜内界膜的细胞核数量减少,差异均有统计学意义(P<0.01);视网膜HIF-1αmRNA及蛋白表达水平:模型对照组和空载体组较正常组上调,而HIF-1α组较模型对照组下调,抑制效率分别为57.4%和52.5%,差异有统计学意义(P<0.01)。VEGF mRNA及蛋白表达水平:模型对照组和空载体组较正常组明显上调,而基因治疗组较模型对照组明显下调,差异均有统计学意义(P<0.01),共转染组下调最明显,抑制效率分别为85.6%和80.9%。
     结论:HIF-1α和VEGF_(165)siRNA均能有效抑制小鼠视网膜新生血管的形成,两者共转染抑制效果更明显。
Chapter one:The inhibition of expression of HIF-1αand VEGF by small interfering RNA targeting HIF-1αand VEGF in the human vascular endothelial cells
     Objective:To investigate the effect of small interfering RNA (siRNA)targeting hypoxia inducible factor-1α(HIF-1α)and vascular endothelial growth factor(VEGF)on expression of HIF-1αand VEGF in the human umbilical vein endothelial cells.
     Methods:HIF-1αsiRNA recombinant plasmid was constructed. Human umbilical vein endothelial cells were cultured in vitro and divided into normoxia group(20%)and hypoxia group(1%).Hypoxia group was then divided into control hypoxia group,vector group,HIF-1αgroup, VEGF group and co-transfection group randomly.The cells were transiently transfected with vector plasmids(vector group),HIF-1αsiRNA recombinant plasmid(HIF-1αgroup),VEGF_(165)siRNA recombinant plasmid(VEGF group),HIF-1αsiRNA and VEGF_(165)siRNA recombinant plasmids(co-transfection group)by the Lipofectamine 2000 (LF2000)method.No transfection were performed in the normoxia group and control,hypoxia group.The expression of HIF-1αsiRNA and VEGF_(165)siRNA recombinant plasmids were identified by reverse transcriptase- polymerase chain reaction(RT-PCR).The expression of HIF-1αand VEGF were detected by RT-PCR and immunocytochemical methods.
     Results:The expression of HIF-1αsiRNA and VEGF_(165)siRNA recombinant plasmids were identified by RT-PCR after 24 hours of transfection to the cells.The exression of HIF-1αmRNA was observed in the normoxia group,whereas nearly no expression of HIF-1αprotein was observed.HIF-1αmRNA and protein levels of control hypoxia goup and vector group were increased compared to normoxia group.HIF-1αmRNA and protein levels of HIF-1αgroup decreased compared to control hypoxia group(P<0.01),mRNA level was reduced by 59.8%.The expression of VEGF mRNA and protein were faint in the normoxia group, but increased obviously after hypoxia(P<0.01).The expression of VEGF mRNA and protein in HIF-1αgroup,VEGF group and co-transfection group were decreased as compared with control hypoxia group(P<0.01), mRNA levels were reduced by 39.7%,68.1%and 82.3%,respectively. Co-transfection group showed the highest inhibitory effect.
     Conclusions:HIF-1αand VEGF_(165)siRNAs effectively inhibit the expression of HIF-1αand VEGF in the human umbilical vein endothelial cells.
     Chapter two:Inhibitory effect of small interfering RNA targeting HIF-1αand VEGF on retinal neovascularization in the mouse
     Objective:To evaluate the inhibitory effects of small interfering RNA(siRNA)targeting hypoxia inducible factor-1α(HIF-1α)and vascular endothelial growth factor(VEGF)on retinal neovascularization in the mouse.
     Methods:Liposome mediated pEGFP-N1 complex was injected into the vitreous of C57BL/6J mice.The expression of GFP was observed in retinal flat-mounts one day after injection.There were 21 seven-day-old C57BL/6J mice in the normal group and 96 mice which were divided into five groups randomly including control model group,vector group and gene therapy group(HIF-1αgroup,VEGF group and co-transfection group)were induced for retinal neovascularization by hypoxia.The mice received an intravitreous injection of vector plasmids(vector group), HIF-1αsiRNA(HIF-1αgroup),VEGF_(165)siRNA(VEGF group),HIF-1αsiRNA and VEGF siRNA(co-transfection group)by the Lipofectamine 2000(LF2000)method 1 day before mice were moved out to room air from the oxygen chamber.The expression of HIF-1αsiRNA and VEGF_(165) siRNA recombinant plasmids were identified by RT-PCR.Fluorescein angiography was used to assess the vascular pattern.The proliferative neovascular response was quantified by counting the nuclei of new vessels extending from retinas into the vitreous in cross-sections.HIF-1αand VEGF levels in retinas were measured by RT-PCR,Western blot and immunohistochemical methods.
     Results:The expression of HIF-1αsiRNA and VEGF_(165)siRNA recombinant plasmids were identified by RT-PCR.The GFP expression in retinal cells was observed one day after injection of liposome mediated pEGFP-N1 complex.Neovascular tufts and fluorescein leakage were decreased in gene therapy group especially co-transfection group compared to control model group and vector group.The neovascular nuclei were decreased in gene therapy group compared to the other three groups(P<0.01).The expression of HIF-1αmRNA and protein in retinas were increased in control model group and vector group as compared with normal group,while decreased 57.4%and 52.5%respectively in HIF-1αgroup as compared with control model group(P<0.01).The expression of VEGF mRNA and protein in retinas were increased significantly in control model group and vector group as compared with normal group,while decreased significantly in gene therapy group especially co-transfection group(decreased 85.6%and 80.9% respectively)as compared with control model group(P<0.01).
     Conclusions:HIF-1αand VEGF_(165)siRNAs can inhibit retinal neovascularization in the mouse effectively.Co-transfection of these two siRNAs shows the greatest inhibitory effect.
引文
[1] Keck PJ, Hauser SD, Krivi G, et al.Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science, 1989, 246 (4935): 1309-1312.
    
    [2] Frank RN. Diabetic retinopathy. N Engl J Med, 2004, 350(1): 48-58.
    
    
    [3] Ozaki H,Yu AY, Delia N, et al. Hypoxia inducible factor-1 alpha is increased in ischemic retina:temporal and spatial correlation with VEGF expression.Invest Ophthalmol Vis Sci, 1999,40 (1): 182-189.
    
    [4] Robinson GS, Pierce EA, Rook SL, et al. Oligodeoxynucleotides inhibit retinal neovascularization in a murine model of proliferative retinopathy. Proc Natl Acad Sci USA, 1996, 93(10): 4851-4856.
    
    [5] Bainbridge JW, Mistry A, De Alwis M, et al. Inhibition of retinal neovascularization by gene transfer of soluble VEGF receptor sFlt-1. Gene Ther, 2002, 9(5): 320-360.
    
    [6] Hangai M, Moon YS, Kitaya N, et al. Systemically expressed soluble Tie2 inhibits intraocular neovascularization. Hum Gene Ther, 2001, 12(10):1311-1321.
    
    [7] Ozaki H, Seo MS, Ozaki K, et al. Blockade of vascular endothelial cell growth factor receptor signaling is sufficient to completely prevent retinal neovascularization. Am J Pathol, 2000, 156 (2): 697-707.
    
    [8] Semenza GL, Roth PH, Fang HM. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem, 1994, 269 (38): 23757-23763.
    
    [9] Wang GL, Semenza GL. Purification and characterization of hypoxia-inducible factor 1. J Biol Chem, 1995, 270(3): 1230-1237.
    
    [10] Mousa SA, Lorelli W, Campochiaro PA. Role of hypoxia and extracellular matrix-integrin binding in the modulation of angiogenic growth factors secretion by retinal pigmented epithelial cells. J Cell Biochem, 1999, 74(1): 135-143.
    
    [11] Makino Y, Cao Renhai, Svensson K, et al. Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature, 2001, 414 (6863): 550-554.
    
    [12] Talks KL, Turley H, Garter KC, et al. The expression and distribution of the hypoxia-inducible factors HIF-1 alpha and HIF-2 alpha in normal human tissues, cancers, and tumor-associated macrophages. Am J Pathol, 2000, 157(2): 411-421.
    [13] Chen C, Pore N. Regulation of glut 1 mRNA by hypoxia-inducible factor-1, Interaction between H-ras and hypoxia.J Biol Chem,2001,276(12):9519-9525.
    [14]Lukiw WJ,Ottlecz A,Lambrou G,et al.Coordinate activation of HIF-1 and NF-kappaB DNA binding and COX-2 and VEGF expression in retinal cells by hypoxia.Invest Ophthalmol Vis Sci,2003,44(10):4163-4170.
    [15]Luhmann UF,Lin J,Acar N,et al.Role of the Norrie disease pseudoglioma gene in sprouting angiogenesis during development of the retinal vasculature.Invest Ophthalmol Vis Sci,2005,46(9):3372-3382.
    [16]Fire A,Xu S,Montgomery MK,et al.Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans.Nature,1998,391(6669):806-811.
    [17]Downward J.RNA interference.BMJ,2004,328(7450):1245-1248.
    [18]Knight SW,Bass BL.A role for the RNase Ⅲ enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans.Science,2001,293(5538):2269-2271.
    [19]Zamore PD,Tuschl T,Sharp PA,et al.RNAi:double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals.Cell,2000,101(1):25-33.
    [20]Hammond SM,Bernstein E,Beach D,et al.An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells.Nature,2000,404(6775):293-296.
    [21]Reich SJ,Fosnot J,Kuroki A,et al.Small interfering RNA(siRNA)targeting VEGF effectively inhibits ocular neovascularization in a mouse model.Mol Vis,2003,9:210-216.
    [22]宋伟涛,夏晓波,许惠卓,等.血管内皮生长因子干扰性RNA对鼠视网膜新生血管的抑制作用.中华眼底病杂志,2006,22(4):265-266.
    [23]Shen J,Samul R,Silva RL,et al.Suppression of ocular neovascularization with siRNA targeting VEGF receptor 1.Gene Ther,2006,13(3):225-234.
    [24]Kim B,Tang Q,Biswas PS,et al.Inhibition of ocular angiogenesis by siRNA targeting vascular endothelial growth factor pathway genes:therapeutic strategy for herpetic stromal keratitis.Am J Pathol,2004,165(6):2177-2185.
    [25]Murata M,Takanami T,Shimizu S,et al.Inhibition of ocular angiogenesis by diced small interfering RNAs(siRNAs)specific to vascular endothelial growth factor (VEGF).Curr Eye Res,2006,31(2):171-180.
    [26]Smith LE,Wesolowski E,Mclellan A,et al.Oxygen-induced retinopathy in the mouse.Invest Ophthalmol Vis Sci,1994,35(1):101-111.
    [27] Takahashi R, Kobayashi C, Kondo Y, et al. Subcellular localization and regulation of hypoxia-inducible factor-2a in vascular endothelial cells.Biochem Biophys Res Commun, 2004, 317(1): 84-91.
    
    [28] Saint-Geniez M, D'Amore PA. Development and pathology of the hyaloid, choroidal and retinal vasculature. Int J Dev Biol, 2004,48(8-9): 1045-1058.
    [29] Klagsburn M, D'Amore PA. Vascular endothelial growth factor and its receptors. Cytokine Growth factor Rev, 1996, 7(3): 259-270.
    
    [30] Liu J, Razani B, Tang S, et al. Angiogenesis activators and inhibitors differentially regulate caveolin-1 expression and cavellae formation in vascular endothelial cells. Angiogenesis inhibitors block vascular endothelial growth factor- induced down-regulation of caveolin-1. J Biol Chem, 1999,274(22): 15781-15785.
    [31] Suzuma K, Takagi H, Otani A, et al. Expression of thrombospondin-1 in ischemia-induced retinal neovascularization. Am J Pathol, 1999, 154(2): 343-354.
    [32] Piotrowicz RS, Maher PA, Levin EG.. Dual activities of 22-24 kDA basic fibroblast growth factor: inhibition of migration and stimulation of proliferation. J Cell Physiol, 1999, 178(2): 144-153.
    
    [33] Derynck R, Zhang Y, Feng XH. Smads: transcriptional activators of TGF-beta responses. Cell, 1998, 95(6): 737-740.
    
    [34] Ogata N, Wada M, Otsuji T, et al. Expression of pigment epithelium-derived factor in normal adult rat eye and experimental choroidal neovascularization.Invest Ophthalmol Vis Sci, 2002,43(4): 1168-1175.
    
    [35] Morbidelli L, Donnini S, Ziche M. Role of nitric oxide in the modulation of angiogenesis.Curr Pharm Des, 2003, 9(7): 521-530.
    
    [36] Kuiper RA, Schellens JH, Blijham GH, et al. Clinical research on antiangiogenic therapy. Pharmacol Res, 1998, 37(1): 1-16.
    
    [37] Johnson MD, Kim HR, Chesler L, et al. Inhibition of angiogenesis by tissue inhibitor of metalloproteinase. J Cell Physiol, 1994, 160(1): 194-202.
    [38] Connolly DT, Heuvelman DM, Nelson R, et al. Tumor vascular permeability factor stimulates endouthelial cell growth and angiogenesis. J Clin Invest, 1989, 84 (5):1470-1478.
    
    [39] Aiello LP, Northrup JM, Keyt BA, et al. Hypoxia regulation of vascular endothelial growth factor in retinal cells.Arch Ophthalmol, 1995, 113(12): 1538-1544.
    [40] Thieme H, Aiello LP, Takagi H, et al. Comparative analysis of vascular endlthelial growth factor receptors on vetinal and aortic vascular endlthelial cells. Diabetes, 1995,44(1): 98-103.
    
    [41] Forsythe JA, Jiang BH, Iyer NV, et al.Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol, 1996, 16(9): 4604-4613.
    
    [42] Maxwell PH, Dachs GU, Gleadle JM, et al. Hypoxia-inducible factor 1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proc Natl Acad Sci USA, 1997, 94(15): 8104-8109.
    
    [43] Huang LE, Bunn HF. Hypoxia-inducible factor and its biomedical relevance. J Biol Chem, 2003, 278(22): 19575-19578.
    
    [44] Murata M, Takanmi T, Shimizu S, et al. Inhibition of ocular angiogenesis by diced small interfering RNAs(siRNAs) specific to vascular endothelial growth factor (VEGF). Curr Eye Res, 2006, 31(2): 171-180.
    
    [45] Park JE, Keller GA, Ferrara N. The vascular endothelial growth factor (VEGF) isoforms: differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. Mol Biol Cell, 1993, 4(12): 1317- 1321.
    
    [46] Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Res, 1997,18(1): 4-25.
    
    [47] Soker S, Takashima S, Miao HQ, et al. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell, 1998, 92(6): 734-745.
    
    [48] Guan H, Zhou Z, Wang H, et al. A small interfering RNA targeting vascular endothelial growth factor inhibits Ewing's sarcoma growth in a xenograft mouse model. Clin Cancer Res, 2005,11(7): 2662-2669.
    
    [49] Jones A, Fujiyama C, Blanche C, et al. Relation of vascular endothelial growth factor production to expression and regulation of hypoxia - inducible factor 1 alpha and hypoxia-inducible factor-2 alpha in human bladder tumors and cell lines. Clin Cancer Res, 2001, 7 (5): 1263-1272.
    
    [50] Liu LX, Lu H, Luo Y, et al. Stabilization of vascular endothelial growth factor mRNA by hypoxia-inducible factor 1. Biochem Biophys Res Commun, 2002, 291(4): 908-914.
    
    [51] Stein I, Itin A, Einat P, et al. Translation of vascular endothelial growth factor mRNA by internal ribosome entry: implications for translation under hypoxia. Mol Cell Biol, 1998, 18(6): 3112-3119.
    [52] Gerber HP, Condorelli F, Park J, et al.Differential transcriptional regulation of the two vascular endothelial growth factor receptor genes. Fit-1, but not Flk-1/ KDR, is up-regula:ed by hypoxia. J Biol Chem, 1997, 272(38): 23659-23667.
    [53] Trojan L, Thomas D, Friedrich D, et al. Expression of different vascular endothelial markers in prostate cancer and BPH tissue: an immunohistochemical and clinical evaluation. Anticancer Res, 2004,24(3a): 1651-1656.
    [54] Pusztaszeri MP, Seelentag W, Bosman FT. Immunohistochemical expression of endothelial markers CD31, CD34, von Willebrand factor, and Fli-1 in normal human tissues. J Histochem Cytochem, 2006, 54(4): 385-395.
    
    [55] Zhang Z, Ma JX, Gao G, et al. Plasminogen kringle 5 inhibits alkali-burn- induced corneal neovascularization. Invest Ophthalmol Vis Sci, 2005, 46(11): 4062- 4071.
    
    [56] Le Gat L, Gogat K, Bouquet C, et al. In vivo adenovirus-mediated delivery of a uPA/uPAR antagonist reduces retinal neovascularization in a mouse model of retinopathy. Gene Ther, 2003, 10(25): 2098- 2103.
    
    [57] Shaw LC, Pan H, Afzal A, et al. Proliferating endothelial cell-specific expression of IGF-I receptor ribozyme inhibits retinal neovascularization. Gene Ther, 2006, 13(9): 752-760.
    
    [58] Shen J. Yang X, Xiao WH, et al. Vasohibin is up-regulated by VEGF in the retina and suppresses VEGF receptor 2 and retinal neovascularization. FASEB J, 2006, 20 (6): 723-725.
    
    [59] Masucla I, Matsuo T, Yasuda T, et al. Gene transfer with liposomes to the intraocular tissues by different routes of administration.Invest Ophthalmol Vis Sci, 1996, 37(9): 1914-1920.
    
    [60] Pugh CW, Ratclife PJ. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med, 2003, 9(6): 677-684.
    
    [61] Mazure NM, Brahimi-Horn MC, Pouyssegur J. Protein kinase and the hypoxia- inducible factor-1, two switches in angiogenesis. Curr Pharm Des, 2003, 9 (7): 531- 541.
    [1]Folkman J,Ingber D.Inhibition of angiogenesis.Semin Cancer Biol,1992,3:89-96.
    [2]Cao Y.Endogenous angiogenesis inhibitors and their therapeutic implications.Int J Biochem Cell Biol,2001,33:357-369.
    [3]Gao G.,Ma J.Tipping the balance for angiogenic disorders.Drug Discov Today,2002,7:171-172.
    [4]Ma JX,Zhang SX,Wang JJ.Down-regulation of angiogenic inhibitors:a potential pathogenic mechanism for diabetic complications.Curr Diab Rev,2005,1:183-196.
    [5]Battegay EJ.Angiogenesis:mechanistic insights,neovascular diseases,and therapeutic prospects.J Mol Med,1995,73:333-346.
    [6]Liu Y,Cox SR,Morita T,et al.Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells.Identification of a 5' enhancer.Circ Res,1995,77: 638-643.
    
    [7]Pe'er J, Shweiki D, Itin A, et al. Hypoxia-induced expression of vascular endothelial growth factor by retinal cells is a common factor in neovascularizing ocular diseases. Lab Invest, 1995, 72: 638-645.
    
    [8]Benelli R, Morini M, Carrozzino F, et al. Neutrophils as a key cellular target for angiostatin: implications for regulation of angiogenesis and inflammation. FASEB J, 2002, 16: 267-269.
    
    [9]Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science, 1997, 275: 964-967.
    [10]Djonov V, Schmid M, Tschanz SA, et al. Intussusceptive angiogenesis: its role in embryonic vascular network formation. Circ Res, 2000, 86: 286-292.
    [11]Peichev M, Naiyer AJ, Pereira D, et al. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood, 2000, 95: 952-958.
    
    [12]Djonov V, Baum O, Burri PH. Vascular remodeling by intussusceptive angiogenesis. Cell Tissue Res, 2003, 314:107-117.
    
    [13]Patan S. Vasculogenesis and angiogenesis. Cancer Treat Res, 2004,117: 3-32.
    [14]Hughes S, Yang H, Chan-Ling T. Vascularization of the human fetal retina: roles of vasculogenesis and angiogenesis. Invest Ophthalmol Vis Sci, 2000,41: 1217-1228.
    [15]Chan-Ling T, McLeod DS, Hughes S, et al. Astrocyte-endothelial cell relationships during human retinal vascular development. Invest Ophthalmol Vis Sci, 2004,45:2020-2032.
    
    [16]Flower RW, McLeod DS, Lutty GA, et al. Postnatal retinal vascular development of the puppy. Invest Ophthalmol Vis Sci, 1985, 26: 957-968.
    
    [17]Ash JD, Overbeek PA. Lens-specific VEGF-A expression induces angioblast migration and proliferation and stimulates angiogenic remodeling. Dev Biol, 2000, 223: 383-398.
    
    [18]Grant MB, May WS, Caballero S, et al. Adult hematopoietic stem cells provide functional hemangioblast activity during retinal neovascularization. Nat Med, 2002, 8: 607-612.
    
    [19]Sengupta N, Caballero S, Mames RN, et al. The role of adult bone marrow- derived stem cells in choroidal neovascularization. Invest Ophthalmol Vis Sci, 2003, 44: 4908-4913.
    [20]Sengupta N, Caballero S, Mames RN, et al. Preventing stem cell incorporation into choroiclal neovascularization by targeting homing and attachment factors. Invest Ophthalmol Vis Sci, 2005,46: 343-348.
    
    [21]Conway EM, Collen D, Carmeliet P. Molecular mechanisms of blood vessel growth. Cardiovas Res, 2001,49: 507-521.
    
    [22]Mousa SA, Lorelli W, Campochiaro PA. Role of hypoxia and extracellular matrix-integrin binding in the modulation of angiogenic growth factors secretion by retinal pigmented epithelial cells. J Cell Biochem, 1999, 74:135-143.
    
    [23]McLeod DS, Lutty GA, Wajer SD, et al. Visualization of a developing vasculature. Microvasc Res, 1987, 33: 257-269.
    
    [24]Lutty GA, McLeod DS. Retinal vascular development and oxygen-induced retinopathy: a role for adenosine. Prog Retin Eye Res, 2003, 22: 95-111.
    
    [25]Wangsa-Wirawan ND, Linsenmeier R.A. Retinal oxygen: fundamental and clinical aspects. Arch Ophthalmol, 2003, 121: 547-557.
    
    [26]Zhang HR. Scanning electron-microscopic study of corrosion casts on retinal and choroidal angioarchitecture in man and animals. Prog Retin Eye Res, 1994, 13: 243- 270.
    
    [27]Campochiaro PA. Retinal and choroidal neovascularization. J Cell Physiol, 2000, 184:301-310.
    
    [28]Shimizu K, Kobayashi Y, Muraoka K. Midperipheral fundus involvement in diabetic retinopathy. Ophthalmology, 1981, 88: 601-612.
    
    [29]Ozaki H, Yu A, Delia N, et al. Hypoxia inducible factor-1a is increased in ischemic retina: temporal and spatial correlation with VEGF expression. Invest Ophthalmol Vis Sci, 1999, 40: 182-189.
    
    [30]Kelly BD, Hackett SF, Hirota K, et al. Cell type-specific regulation of angiogenic growth factor gene expression and induction of angiogenesis in nonischemic tissue by a constitutively active form of hypoxia-inducible factor 1. Circ Res, 2003, 93: 1074- 1081.
    
    [31]Oshima Y, Deering T, Oshima S, et al. Angiopoietin-2 enhances retinal vessel sensitivity to vascular endothelial growth factor. J Cell Physiol, 2004, 199: 412-417.
    
    [32]Oshima Y, Oshima S, Nambu H, et al. Different effects of angiopoietin 2 in different vascular beds in the eye; new vessels are most sensitive. FASEB J, 2005, 19: 963-965.
    
    [33]Aiello LP, Pierce EA, Foley ED, et al. Suppression of retinal neovascularization in vivo by inhibition of vascular endothelial growth factor (VEGF) using soluble VEGF-receptor chimeric proteins. Proc Natl Acad Sci USA, 1995, 92: 10457-10461.
    [34]Ozaki H, Seo M-S, Ozaki K, et al. Blockade of vascular endothelial cell growth factor receptor signaling is sufficient to completely prevent retinal neovascularization. Am J Pathol, 2000, 156: 679-707.
    
    [35]Seo M-S, Kwak N, Ozaki H, et al. Dramatic inhibition of retinal and choroidal neovascularization by oral administration of a kinase inhibitor. Am J Pathol, 1999, 154: 1743-1753.
    
    [36]Nguyen QD, Tatlipinar S, Shah SM, et al. Vascular endothelial growth factor is a critical stimulus for diabetic macular edema. Am J Ophthalmol, 2006, 142: 961-969.
    [37]Rosenfeld PJ, Brown DM, Heier JS, et al. Ranibizumab for neovascular age- related macular degeneration. N Eng J Med, 2006, 355: 1419-1431.
    [38]Nguyen QD, Shah SM, Hafiz G, et al. A phase 1 trial of intravenously administered VEGF trap for treatment in patients with choroidal neovascularization due to age-related macular degeneration. Ophthalmology, 2006, 113: 1522el-1522e14.
    
    [39]Brown DM, Kaiser PK, Michels M, et al. Ranibizumab versus verteporfin for neovascular age-related macular degeneration. N Eng J Med, 2006, 355: 1432-1444.
    [40]McLeod DS, Taomoto M, Cao J, et al. Localization of VEGF receptor-2 (KDR/Flk-1) and effects of blocking it in oxygen-induced retinopathy. Invest Ophthalmol Vis Sci, 2002, 43: 474-482.
    
    [41]Oh H, Takagi H, Otani A, et al. Selective induction of neuropilin-1 by vascular endothelial growth factor (VEGF): a mechanism contributing to VEGF-induced angiogenesis. Piroc Natil Acad Sci USA, 2002, 99: 383-388.
    
    [42]Shen J, Samul R, Zimmer J, et al. Deficiency of neuropilin 2 suppresses VEGF- induced retinal neovascularization. Mol Med, 2004, 10: 12-18.
    [43]Shen J, Samul R, Lima e Silva R, et al. Suppression of ocular neovascularization with siRNA targeting VEGF receptor 1. Gene Ther, 2005,13: 225-234.
    [44]Watanabe K, Hasegawa Y, Yamashita H, et al. Vasohibin as an endothelium- derived negative feedback regulator of angiogenesis. J Clin Invest, 2004, 114: 898-907.
    
    [45]Shen J, Yang XR, Xiao WH, et al. Vasohibin is up-regulated by VEGF in the retina and suppresses VEGF receptor 2 and retinal neovascularization. FASEB J, 2006, 20: 723-725.
    [46]Fukai N, Eklund L, Marneros AG, et al. Lack of collagen XVIII/endostatin results in eye abnormalities. EMBO J, 2002, 21:1535-1544.
    
    [47]Alm A. Ocular circulation. In: WM, H. (Ed.), In Adler's Physiology of the Eye. Mosby-Year Book, St Louis, USA, 1992. pp. 198-227.
    
    [48]Braun RD, Dewhirst MW, Hatchell DL. Quantification of erythrocyte flow in the choroid of the albino rat. Am J Physiol, 1997,272: H1444-H1453.
    [49]Wajer SD, Taomoto M, McLeod DS, et al. Velocity measurements of normal and sickle red blood cells in the rat retinal and choroidal vasculatures. Microvasc Res, 2000,60:281-293.
    
    [50]Bressler SB, Maguire MG, Bressler NM, et al. Relationship of drusen and abnormalities of the retinal pigment epithelium to the prognosis of neovascular macular degeneration. The Macular Photocoagulation Study Group. Arch Ophthalmol, 1990,108: 1442-1447.
    
    [51]Green RW, Enger C. Age-related macular degeneration histolpathologic studies. Ophthalmology, 1993, 100: 1519-1535.
    
    [52]Bressler NM, Silva JC, Bressler SB, et al. Clinicopathologic correlation of drusen and retinal pigment epithelial abnormalities in age-related macular degeneration. Retina, 1994, 14:130-142.
    
    [53]Fine SL, Berger JW, Maguire MG, et al. Age-related macular degeneration. N Engl J Med, 2000, 342: 483-492.
    
    [54]Penfold PL, Madigan MC, Gillies MC, et al. Immunological and aetiological aspects of macular degeneration. Prog Retin Eye Res, 2001, 20: 385-414.
    [55]Age-Related Eye Disease Study Research Group. A randomized, placebo- controlled, clinical trial of high-dose supplementation with vitamins C and E and beta carotene for age-related cataract and vision loss: AREDS report no. 9. Arch Ophthalmol, 2001,119: 1439-1452.
    
    [56]Seddon JM, Ajani UA, Sperduto RD, et al. Dietary carotenoids, vitamins A, C, and E, and advanced agerelated macular degeneration. Eye Disease Case-Control Study Group. J Am Med Assoc, 1994, 272: 1413-1420.
    
    [57]Richer S, Stiles W, Statkute L, et al. Double-masked, placebocontrolled, randomized trial of lutein and antioxidant supplementation in the intervention of atrophic age-related macular degeneration: the Veterans LAST study (Lutein Antioxidant Supplementation Trial). Optometry, 2004, 75: 216-230.
    [58]Penfold PL, Provis JM, Billson FA. Agerelated macular degeneration: ultrastructural studies of the relationship of leucocytes to angiogenesis Graefe's. Arch. Clin Exp Ophthalmol, 1987,225: 70-76.
    
    [59]Kim KS, Oh JS, Kwak JS. Ultrastructure of surgically excised subfoveal neovascular membranes. Korean J Ophthalmol, 1996, 10: 76-81.
    [60]Grossniklaus HE, Ling JX, Wallace TM, et al.. Macrophage and retinal pigment epithelium expression of angiogenic cytokines in choroidal neovascularization. Mol Vis, 2002, 8: 119-126.
    
    [61]Ambati J, Anand A, Fernandez S, et al. An animal model of agerelated macular degeneration in senescent Ccl-2- or Ccr-2-deficient mice. Nat Med, 2003, 9: 1390- 1397.
    
    [62]Bora PS, Sohn JH, Cruz JM, et al. Role of complement and complement membrane attack complex in laser-induced choroidal neovascularization. J Immunol, 2005, 174:491-497.
    
    [63]Sunderkotter C, Steinbrink K, Goebeler M, et al. Macrophages and angiogenesis. J Leukoc Biol, 1994, 55: 410-422.
    
    [64]Markomichelakis NN, Theodossiadis PG, Sfikakis PP. Regression of neovascular age-related macular degeneration following infliximab therapy. Am J Ophthalmol, 2005,139:537-540.
    
    [65]Yannuzzi LA, Negrao S, Iida T, et al. Retinal angiomatous proliferation in age- related macular degeneration. Retina, 2001, 21: 416-434.
    
    [66]Kwak N, Okamoto N, Wood JM, et al. VEGF is an important stimulator in a model of choroidal neovascularization. Invest Ophthalmol Vis Sci, 2000, 41: 3158- 3164.
    
    [67]Ohno-Matsui K, Hirose A, Yamamoto S, et al. Inducible expression of vascular endothelial growth factor in photoreceptors of adult mice causes severe proliferative retinopathy and retinal detachment. Am J Pathol, 2002, 160: 711-719.
    [68]Okamoto N, Tobe T, Hackett SF, et al. Transgenic mice with increased expression of vascular endothelial growth factor in the retina: a new model of intraretinal and subretinal neovascularization. Am J Pathol, 1997, 151: 281-291.
    [69]Saishin Y, Saishin Y, Takahashi K, et al. VEGF-TRAPR1R2 suppresses choroidal neovascularization and VEGF-induced breakdown of the blood-retinal barrier. J Cell Physiol, 2003, 195:241-248.
    
    [70]Oshima Y, Oshima S, Nambu H, et al. Increased expression of VEGF in retinal pigmented epithelial cells is not sufficient to cause choroidal neovascularization. J Cell Physiol, 2004, 201: 393-400.
    [71]Yamada H, Yamada E, Kwak N, et al. Cell injury unmasks a latent proangiogenic phenotype in mice with increased expression of FGF2 in the retina. J Cell Physiol, 2000, 185: 135-142.
    
    [72]Tobe T, Ortega S, Luna JD, et al. Targeted disruption of the FGF2 gene does not prevent choroidal neovascularization in a murine model. Am J Pathol, 1998, 153: 1641-1646.
    
    [73]Mulligan RC. The basic science of gene therapy. Science, 1993, 260: 926-932.
    
    [74]Wilson JM. Adenoviruses as gene-delivery vehicles. N Engl J Med, 1996, 334: 1185-1187.
    
    [75]Anglade E, Csaky KG. Recombinant adenovirus-mediated gene transfer into the adult rat retina. Curr Eye Res, 1998,17: 316-321.
    
    [76]Engelhardt JF, Ye X, Doranz B, et al. Ablation of E2A in recombinant adenoviruses improves transgene persistence and decreases inflammatory response in mouse liver. Proc Natl Acad Sci USA, 1994, 91: 6196-6200.
    
    [77]Bundenz DL, Bennett J, Alonso L, et al. In vivo gene transfer into murine corneal ednothelial and trabecular meshwork cells. Invest Ophthalmol Vis Sci, 1995, 36: 2211-2215.
    
    [78]Mori K, Gehlbach P, Ando A, et al. Intraocular adenoviral vector-mediated gene transfer is increased in proliferative retinopathies. Invest Ophthalmol Vis Sci, 2002, 43: 1610-1615.
    
    [79]Campochiaro PA, Nguyen QD, Shah SM, et al. Adenoviral vector-delivered pigment epithelium-derived factor for neovascular age-related macular degeneration: results of a phase I clinical trial. Hum Gene Ther, 2006,17: 167-176.
    
    [80]Chevez-Barrios P, Chintagumpala M, Mieler W, et al. Response of retinoblastoma with vitreous tumor seeding to adenovirus-mediated delivery of thymidine kinase followed by ganciclovir. J Clin Oncol, 2005, 23: 7927-7935.
    
    [81]Kumar-Singh R, Chamberlain JS. Encapsidated adenovirus minichromosomes allow delivery and expression of a 14 kb dystrophin cDNA to muscle cells. Hum Mol Genet, 1996, 5:913-921.
    
    [82]Flannery JG, Zolotukhin S, Vaquero MI, et al. Efficient photoreceptor-targeted gene expression in vivo by recombinant adeno-associated virus. Proc Natl Acad Sci USA, 1997,94:6916-6921.
    
    [83]Ali RR, Reichel MB, De Alwis M, et al. Adeno-associated viurs gene transfer to mouse retina. Hum Gene Ther, 1998, 9: 81-86.
    [84]Bennett J, Duan D, Engelhardt JF, et al. Real-time, noninvasive in vivo assessment of adeno-associated virus-mediated retinal transduction. Invest Ophthalmol Vis Sci, 1997, 38: 2857-2863.
    
    [85]Yang GS, Schmidt M, Yan Z, et al. Virus-mediated transduction of murine retina with adeno-associated virus: effects of viral capsid and genome size. J Virol, 2002, 76: 7651-7660.
    
    [86]Rolling F. Recombinant AAV-mediated gene transfer to the retina: gene therapy perspectives. Gene Ther, 2004, 11: S26-S32.
    
    [87]Bainbridge JW, Mistry A, Schlichtenbrede FC, et al. Stable rAAV-mediated transduction of rod and cone photoreceptors in the canine retina. Gene Ther, 2003, 10: 1336-1344.
    
    [88]Lotery AJ, Yang GS, Mullins RF, et al. Adeno-associated virus type 5: transduction efficiency and cell-type specificity in the primate retina. Hum Gene Ther, 2003,14: 1663-1671.
    
    [89]Weber M, Rabinowitz J, Provost N, et al. Recombinant adeno-associated virus serotype 4 mediates unique and exclusive long-term transduction of retinal pigmented epithelium in rat, dog, and nonhuman primate after subretinal delivery. Mol Ther, 2003,7:774-781.
    
    [90]Acland GM, Aguirre GD, Bennett J, et al. Long-term restoration of rod and cone vision by single dose rAAV-mediated gene transfer to the retina in a canine model of childhood blindness. Mol Ther, 2005, 12: 1072-1082.
    
    [91]Min SH, Molday LL, Seeliger MW, et al. Prolonged recovery of retinal structure/function after gene therapy in an Rslh-deficient mouse model of x-linked juvenile retinoschisis. Mol Ther, 2005, 12: 644- 651.
    
    [92]Miyoshi H, Takahashi M, Gage FH, et al. Stable and efficient gene transfer into the retina using an HIV-based lentiviral vector. Proc Natl Acad Sci USA, 1997, 94: 10319-10323.
    
    [93]Challa P, Luna C, Liton PB, et al. Lentiviral mediated gene delivery to the anterior chamber of rodent eyes. Mol Vis, 2005, 11: 425-430.
    
    [94]Loewen N, Leske DA, Cameron JD, et al. Long-term retinal transgene expression with FIV versus adenoviral vectors. Mol Vis, 2004, 10: 272-280.
    
    [95]Cheng L, Toyoguchi M, Looney DJ, et al. Efficient gene transfer to retinal pigment epithelium cells with long-term expression. Retina, 2005, 25:193-201.
    
    [96]Tschernutter M, Schlichtenbrede FC, Howe S, et al. Long-term preservation of retinal function in the RCS rat model of retinitis pigmentosa following lentivirus- mediated gene therapy. Gene Ther, 2005,12: 694-701.
    
    [97]Miyazaki M, Ikeda Y, Yonemitsu Y, et al. Simian lentiviral vector-mediated retinal gene transfer of pigment epithelium-derived factor protects retinal degeneration and electrical defect in Royal College of Surgeons rats. Gene Ther, 2003,10: 1503-1511.
    [98] Kostic C, Chiodini F, Salmon P, et al. Activity analysis of housekeeping promoters using self-inactivating lentiviral vector delivery into the mouse retina. Gene Ther, 2003, 10:818-821.
    
    [99] Bainbridge JW, Stephens C, Parsley K, et al. In vivo gene transfer to the mouse eye using an HIV-based lentiviral vector; efficient long-term transduction of corneal endothelium and retinal pigment epithelium. Gene Ther,2001, 8: 1665-1668.
    [100]Gruter O, Kostic C, Crippa SV, et al. Lentiviral vector-mediated gene transfer in adult mouse photoreceptors is impaired by the presence of a physical barrier.Gene Ther, 2005, 12: 942-947.
    
    [101] Molina RP, Ye HQ, Brady J, et al. A synthetic Rev-independent bovine immunodeficiency virusbased packaging construct. Hum Gene Ther, 2004, 15: 865- 877.
    
    [102]Takahashi K, Luo T, Saishin Y, et al. Sustained transduction of ocular cells with a bovine immunodeficiency viral vector. Hum Gene Ther, 2002, 13:1305-1316.
    [103] Saenz DT, Loewen N, Peretz M, et al. Unintegrated lentivirus DNA persistence and accessibility to expression in nondividing cells: analysis with class I integrase mutants. J Virol, 2004, 78: 2906-2920.
    
    [104]Hangai M, Kaneda Y, Tanihara H, et al. In vivo gene transfer into the retina mediated by a novel liposome system. Invest Ophthalmol Vis Sci, 1996, 37: 2678- 2685.
    
    [105]Ishikawa H, Takano M, Matsumoto N, et al. Effect of GDNF gene transfer into axotomized retinal ganglion cells using in vivo electroporation with a contact lenstype electrode. Gene Ther, 2005, 12: 289-298.
    
    [106]Matsuda T, Cepko CL. Electroporation and RNA interference in the rodent retina in vivo and in vitro. Proc Natl Acad Sci U S A, 2004,101: 16-22.
    [107]Chalberg TW, Genise HL, Vollrath D, et al. phiC31 integrase confers genomic integration and long-term transgene expression in rat retina. Invest Ophthalmol Vis Sci, 2005,46: 2140-2146.
    [108] He Y, Smith SK, Day KA, et al. Alternative splicing of vascular endothelial growth factor (VEGF)-R1 (FLT-1) pre-mRNA is important for the regulation of VEGF activity. Mol Endocrinol, 1999, 13: 537-545.
    
    [109] Kendall RL, Wang GL, Thomas KA. Identification of a natural soluble form of the vascular endothelial growth factor receptor, FLT-1, and its heterodimerization with KDR. Biochem Biophys Res Comm, 1996, 226: 324-328.
    
    [110]Gehlbach P, Demetriades AM, Yamamoto S, et al. Periocular gene transfer of sFlt-1 suppresses ocular neovascularization and VEGF-induced breakdown of the blood-retinal barrier. Hum Gene Ther, 2003, 14: 129-141.
    
    [111]Honda M, Sakamoto T, Ishibashi T, et al. Experimental subretinal neovascularization is inhibited by adenovirus-mediated soluble VEGF.flt-1 receptor gene transfection: a role of VEGF and possible treatment for SRN in age-related macular degeneration. Gene Ther, 2000, 7: 978-985.
    
    [112] Lai CM, Brankov M, Zaknich T, et al. Inhibition of angiogenesis by adenovirus- mediated sFlt-1 expression in a rat model of corneal neovascularization. Human Gene Ther, 2001, 12: 1299-1310.
    
    [113]Rota R, Riccioni T, Zaccarini M, et al. Marked inhibition of retinal neovascularization in rats following soluble-fit-1 gene transfer. J Gene Med, 2004, 6: 992-1002.
    
    [114] Lai YK, Shen WY, Brankov M, et al. Potential long-term inhibition of ocular neovascularization by recombinant adeno-associated virus-mediated secretion gene therapy. Gene Ther, 2002, 9: 804-813.
    
    [115]Lai CM, Shen WY, Brankov M, et al. Long-term evaluation of AAV-mediated sFlt-1 gene therapy for ocular neovascularization in mice and monkeys. Mol Ther, 2005,12:659-668.
    
    [116]Alon T, Hemo I, Itin A, et al. Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nature Med, 1995, 1: 1024-1028.
    
    [117]Baffert F, Thurston G, Rochon-Duck M, et al. Age-related changes in vascular endothelial growth factor dependency and angiopoietin-1-induced plasticity of adult blood vessels. Circ Res, 2004, 94: 984-992.
    
    [118]Baffert F, Le T, Sennino B, et al. Cellular changes in normal blood capillaries undergoing regression after inhibition of VEGF signaling. Am J Physiol Heart Circ Physiol, 2006, 290: H547-559.
    [119]Kamba T, Tam BY, Hashizume H, et al. VEGF-dependent plasticity of fenestrated capillaries in the normal adult microvasculature. Am J Physiol Heart Circ Physiol, 2006, 290: H560-576.
    
    [120]Oosthuyse B, Moons L, Storkebaum E, et al. Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nat Genet, 2001,28: 131-138.
    
    [121]Reich SJ, Fosnot J, Kuroki A, et al. Small interfering RNA (siRNA) targeting VEGF effectively inhibits ocular neovascularization in a mouse model. Mol Vis, 2003, 9: 210-216
    
    [122]Cashman SM, Bowman L, Christofferson J, et al. Inhibition of choroidal neovascularization by adenovirus-mediated delivery of short hairpin RNAs targeting VEGF as a potential therapy for AMD. Invest Ophthalmol Vis Sci, 2006, 47: 3496- 3504.
    
    [123]Tombran-Tink J, Chader GG, Johnson SV PEDF: a pigment epithelium derived factor with potent neuronal differentiating activity. Exp Eye Res, 1991, 53: 411-414.
    
    [124] Araki T, Taniwaki T, Becerra SP, et al. Pigment epithelium-derived factor (PEDF) differentially protects immature but not mature cerebellar granule cells against apoptotic cell death. J Neurosci Res, 1998, 53: 7-15.
    
    [125]Bilak MM, Corse AM, Bilak SR, et al. Pigment epithelium-derived factor (PEDF) protects motor neurons from chronic glutamate-mediated neurodegeneration. J Neuropathol Exp Neurol, 1999, 58: 719-728.
    
    [126]Cao W, Tombran-Tink J, Elias R, et al. In vivo protection of photoreceptors from light damage by pigment epithelium-derived factor. Invest Opthalmol Vis Sci, 2001, 42: 1642-1652.
    
    [127]Steele FR, Chader GJ, Johnson LV, et al. Pigment epithelium-derived factor: neurotrophic activity and identification as a member or the serine protease inhibitor gene family. Proc Natl Acad Sci USA, 1993, 90: 1526-1530.
    
    [128]Dawson DW, Volpert OV, Gillis P, et al. Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science, 1999, 285: 245-248.
    
    [129] Mori K, Duh E, Gehlbach P, et al. Pigment epithelium-derived factor inhibits retinal and choroidal neovascularization. J Cell Physiol, 2001, 188: 253-263.
    
    [130] Mori K, Gehlbach P, Ando A, et al. Regression of ocular neovascularization by increased expression of pigment epithelium-derived factor. Invest Ophthalmol Vis Sci, 2001c, 43: 2428-2434.
    [131]Auricchio A, Behling KC, Maguire AM, et al. Inhibition of retinal neovascularization by intraocular viral-mediated delivery of anti-angiogenic agents. Mol Ther, 2002, 6: 490-494.
    
    [132] Mori K, Gehlbach P, Yamamoto S, et al. AAV-mediated gene transfer of pigment epithelium-derived factor inhibits choroidal neovascularization. Invest Ophthalmol Vis Sci, 2002,43: 1994-2000.
    
    [133]Raisler BJ, Berns KI, Grant MB, et al. Adeno-associated virus type 2 expression of pigmented epithelium-derived factor or Kringles 1 -3 of angiostatin reduce retinal neovascularization. Proc Natil Acad Sci USA, 2002, 99: 8909-8914.
    
    [134] Gehlbach P, Demetriades AM, Yamamoto S, et al. Periocular injection of an adenoviral vector encoding pigment epithelium-derived factor inhibits choroidal neovascularization. Gene Ther, 2003, 10: 637-646.
    
    [135]Saishin Y, Lima Silva R, Saishin Y, et al. Periocular injection of microspheres containing PKC412 inhibits choroidal neovascularization in a porcine model. Invest Ophthalmol Vis Sci, 2003, 44: 4989- 4993.
    
    [136]Kachi S, Esumi N, Zack DJ, et al. Sustained expression after nonviral ocular gene transfer using mammalian promoters. Gene Ther, 2006, 13: 798- 804.
    
    [137]Tan S, Guschin D, Davalos A, et al. Zinc-finger protein-targeted gene regulation: genomewide single-gene specificity. Proc Natl Acad Sci USA, 2003, 100: 11997- 12002.
    
    [138]O'Reilly MS, Boehm T, Shing Y, et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell, 1997, 88: 277-285.
    
    [139] Mori K, Ando A, Gehlbach P, et al. Inhibition of choroidal neovascularization by intravenous injection of adenoviral vectors expressing secretable endostatin. Am J Pathol, 2001,159:313-320.
    
    [140]Takahashi K, Saishin Y, Saishin Y, et al. Intraocular expression of endostatin reduces VEGF-induced retinal vascular permeability, neovascularization, and retinal detachment. FASEB J, 2003, 17: 896- 898.
    
    [141] O'Reilly MS, Holmgren S, Shing Y, et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell, 1994,79:315-328.
    
    [142]Igarashi T, Miyake K, Kato K, et al. Lentivirus-mediated expression of angiostatin efficiently inhibits neovascularization in amurine proliferative retinopathy model. Gene Ther, 2003, 10: 219-226.
    [143]Lai CC, Wu WC, Chen SL, et al. Suppression of choroidal neovascularization by adeno-associated virus vector expressing angiostatin. Invest Ophthalmol Vis Sci, 2001,42:2401-2407.
    
    [144] Baker AH, Zaltsman AB, Geoge SJ, et al. Divergent effects of tissue inhibitors of metalloproteinase-1, -2 or -3 overexpression on rat vascular smooth muscle cell invasion proliferation and death in vitro.J Clin Invest, 1998, 101: 1478- 1487.
    
    [145]Zucker S, Hymowitz M, Conner C, et al. Measurement of matrix metalloproteinase and tissue inhibitors of metalloproteinases in blood and tissues.Clinical and experimental applications.Ann NV Acad Sci, 1999, 878: 212-217.
    
    [146]Kabari VM, Saarialbo-kere U. Matrix metalloproteinases and their inhibitors in tumour growth and invasion.Ann Med, 1999, 31: 34-45.
    
    [147] Hidalgo M, Eckhardt SG. Development of matrix metalloproteinase inhibitors in cancer therapy. J Natl Cancer Inst, 2001, 93: 178-193.
    
    [148] Delia NG, Campochiaro PA, Zack DJ. Localization of TIMP-3 mRNA expression to the retinal pigment epithelium. Invest Ophthalmol Vis Sci, 1996, 37: 1921-1924
    
    [149]Kamei M, Hollyfield JG TIMP-3 in Bruch's membrane: changes during aging and in age-related macular degeneration. Invest Ophthalmol Vis Sci, 1999, 40: 2367- 2375.
    
    [150] Weber BHF, Vogt G, Pruett RC, et al. Mutations in the tissue inhibitor of metalloproteinases-3 (TIMP3) in patients with Sorsby's fundus dystrophy. Nat Genet, 1994, 8: 352-356.
    
    [151]Langton KP, Barker MD, McKie N. Localization of the functional domains of human tissue inhibitor of metalloptoteinases-3 and the effects of a Sorsby's Fundus Dystrophy mutation. J Biol Chem, 1998, 273: 16778-16781.
    
    [152]Fariss RN, Apte SS, Suthert PJ, et al. Accumulation of tissue inhibitor of metalloproteinases-3 in human eyes with Sorsby's fundus dystrophy or retinitis pigmentosa. Br J Ophthalmol, 1998, 82: 1329-1334.
    
    [153]Soboleva G, Geis B, Schrewe H, et al. Sorsby fundus dystrophy mutation Timp3s156C affects the morphological and biochemical phenotype but not metalloproteinase homeostasis. J Cell Physiol, 2003, 197: 149-156.
    
    [154] Apte SS, Olsen BR, Murphy G. The gene structure of tissue inhibitor of metalloproteinases (TIMP)-3 and its inhibitory activities define the distinct TIMP gene family. J Biol Chem, 1995, 270: 14313-14318.
    [155]Takahashi T, Nakamura T, Hayashi A, et al. Inhibition of experimental choroidal neovascularization by overexpression of tissue inhibitor of metalloproteinases-3 in retinal pigment epithelium. Am J Ophthalmol, 2000, 130: 774-781.
    
    [156] Davis S, Aldrich TH, Jones P, et al. Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell, 1996, 87: 1161-1169.
    
    [157]Maisonpierre PC, Suri C, Jones PF, et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science, 1997, 277:55-60.
    
    [158]Nambu H, Nambu R, Oshima Y, et al. Angiopoietin 1 inhibits ocular neovascularization and breakdown of the blood-retinal barrier. Gene Ther, 2004, 11: 865-873.
    
    [159] Nambu H. Umeda N, Kachi S, et al. Angiopoietin 1 prevents retinal detachment in an aggressive model of proliferative retinopathy, but has no effect on established neovascularization. J Cell Physiol, 2005, 204: 227-235. Hangai M, Moon YS, Kitaya N, et al. Systemically expressed soluble Tie2 inhibits intraocular neovascularization. Human Gene Ther, 2001, 12: 1311-1321.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.