小麦组蛋白修饰酶基因及DNA甲基转移酶基因的分离及鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表观遗传学是指在不改变DNA序列的情况下,在碱基序列外的各种修饰和与之相关的各种蛋白质或RNA的协同作用下,调控基因的表达,以完成生命周期或适应环境变化,而且这套系统还能在世代之间传递。就目前的研究来看,表观遗传学主要包括组蛋白密码、DNA甲基化、RNA干涉、基因组印记等多个方面。小麦是世界第二大粮食作物,关于小麦表观遗传学的研究鲜有报道。本文采用简并性引物同源扩增及电子克隆的方法,分析了小麦组蛋白修饰酶基因及DNA甲基转移酶基因的结构及其表达,以期从转录水平增加对小麦生长发育调控的认识。此外,采用转基因的方法在拟南芥中超表达了一个组蛋白乙酰转移酶基因和一个组蛋白脱乙酰化酶基因,以期探索它们的生物学功能,主要结果如下:
     1) 利用电子克隆方法,结合RT-PCR分析,从小麦中克隆了包含完整ORF的2个不同类型的组蛋白乙酰转移酶基因(MYST类型,GNAT类型)和4个代表不同类型的(SIR-2类型,HD2类型,RPD3类型,HDA1类型)组蛋白脱乙酰化酶基因,分别命名为TaHAT1-2,TaHD1-4。结构分析表明它们具有组蛋白乙酰转移酶及脱乙酰化酶的典型的结构特征。亚细胞定位结果表明TaHAT1定位在细胞核中,TaHD3属于核质穿梭型的组蛋白脱乙酰化酶。本研究是有关小麦组蛋白乙酰转移酶及脱乙酰化酶基因的首次报道。
     2) 采用同源序列扩增法,分离克隆了9个小麦的SET蛋白基因片段,同源进化分析表明它们均属于SU(VAR)3-9类型的SET蛋白基因。同时利用电子克隆结合RT-PCR方法分离了两个具有完整ORF的SET蛋白基因,分别命名为TaSET1和TaSET2。同源进化分析表明它们分别属于ASH和SU(VAR)3-9类型的SET蛋白基因。
     3) 采用生物信息学手段及结合RT-PCR方法获得了4条代表不同类型(Dnmt1,Dnmt2,CMT,Dnmt3)的小麦DNA甲基转移酶基因的片段,分别命名为TaMET1,TaMET2b,TaCMT和TaMET3;同时采用电子克隆结合RT-PCR方法获得一个具有完整ORF的Dnmt2类型基因,命名为TaMET2a。此外,也获得了该序列相应于ORF区的基因组序列,序列分析表明在该基因ORF区域含有10个内含子。
     4) 以小麦3338水浸泡4-28小时(每隔4小时取一次样)的种子的种胚,水浸泡48小时的胚根、胚芽,不同发育时期的叶片、根系及干种子、授粉6天、12天的种子为材料检测了所获得基因的表达情况。结果表明所检测的基因在大部分材料中均表达。有趣的是只有TaMET1和TaMET3在干种子中表达,其它所检测的基因均不表达。此外,以拔节期的小麦3338,2463及其组配的强优势杂交种的叶片、茎、根系为材料,采用半定量RT-PCR方法检测了所获得基因的表达情况,结果表明它们在小麦杂交种与亲本之间存在明显的表达差异,并且差异表达模式因基因类型和所检测的组织器官不同而变化。
     5) 在拟南芥中分别超表达MYST类型的小麦组蛋白乙酰转移酶基因TaHAT1及RPD3类型的脱乙酰化酶基因TaHD3,结果发现它们均出现了叶片、花的畸形发育,我们推测这两个基因与小麦生长发育的调控有关。本研究是对推测的小麦组蛋白乙酰转移酶及脱乙酰化酶基因功能研究的首次报道。
Epigenetic regulation is a major aspect of gene control by which heritable changes in gene expression occur without an alteration in DNA sequence, which mainly includes histone code, DNA methylation, RNA interference and genomic imprinting.The study of epigentics in wheat lagged behind. In this article, genes encoding histone modification enzyme and DNA methltransferase were isolated using degenerate primer PCR and in silico cloning.The main results are as follows:1) Two histone acetyltransferase genes and four histone deacetylase genes which belonged to different types were isolated using in silico cloning and RT-PCR method, designated TaHAT1-2, TaHD1-4 respectively. Amino acid sequence analysis suggested that they all contained typical structrue characteristics of histone acetyltransferase and deacetylase. Subcellular localization indicated that TaHATl protein became concentrated in the nucleus and TaHD3 displayed nuclear-cytoplasmic distribution.To our knowledge, no genes encoding histone acetyltransferase and deacylase has been reported in wheat2) Nine SET domain protein gene fragments were obtained by degenerate-primer PCR. Phylogenetic analysis suggested that they belonged to SU (VAR) 3-9 class SET domain protein.ln addition, two SET domain protein genes were obtained using in silico cloning and RT-PCR method, named TaSET1-2 respectively. Phylogenetic analysis indicated that they belonged to ASH and SU (VAR) 3-9 class SET domain protein respectively.3) We isolated four wheat cDNA fragments and one cDNA with open reading frame encoding DNA methyltransferase and designated TaMETl, TaMET2a, TaMET2b, TaCMT and TaMET3, respectively. BLAST searches and phylogenetic analysis suggested that 5 cDNAs belonged to four classes (Dnmt1, Dnmt2, CMT and DnmG) of DNA methyltransferase genes. TaMET2a encoded a protein of 376 aa and contained eight of ten conserved motifs characteristic of DNA methyltransferase. Genomic sequence of TaMET2a was obtained and found to contain ten introns and eleven exons.4) Expression analysis of these genes obtained in this article revealed that they were expressed in developing seed, during germination and various vegetative tissues, but in quite different abundance. It was interesting to note that TaMETl and TaMET3 involved in maintenance methylation and de novo methylation were clearly detected in dry seeds and other genes had not been detected. Moreover, differential expression patterns of these genes were observed between wheat hybrid and its parents in leaf, stem and root of jointing stage, some were up-regulated while some others were down-regulated in hybrid.5) Overexpression of TaHATl and TaHD3 genes in Arabidopsis suggested that they were both associated with various developmental abnormalities, mainly including leaf and flower defect which suggested that TaHATl and TaHD3 may be involved in a general regulatory mechanism responsible for plant plasticity and variation in nature.This is a first report about function study of histone acetyltransferase and deacetylase in wheat.
引文
1.陈坚,张晓琴,傅继梁.组蛋白脱乙酰化酶及其与基因转录的关系.生物化学与生物物理进展,2000,27(26):609-612.
    2.陈飞.DNA甲基化与基因活化.生命的化学,1993,13(6):16-18.
    3.陈荣敏.普通小麦Myb和Dof转录因子家族基因的克隆和表达研究.博士学位论文,2004.
    4.程宁辉,高艳萍,杨金水,钱昊,葛扣麟.水稻杂种一代与亲本幼苗基因表达差异的分析.植物学报,1997,39:379-382.
    5.程宁辉,杨金水,高艳萍,徐明良,钱昊,葛扣麟.玉米杂种一代与亲本基因差异的初步研究.科学通报,1996,41:451-454.
    6.胡建广.玉米亲本基因在F1中的差异表达及其克隆与鉴定.博士学位论文,1997.
    7.李建许,刘红林.DNA甲基化与组蛋白甲基化的关系.遗传,2004,2:267-270.
    8.卢震,王永潮.组蛋白的乙酰化/脱乙酰化与基因转录的关系.科学通报,1998,43:792-795.
    9.孟凡荣.小麦、玉米自交和杂交种子发育前期基因表达差异与杂种优势机理.博士学位论文,2002.
    10.倪中福,孙其信,吴利民 普通小麦不同优势杂交种及其亲本之间基因表达差异比较研究.中国农业大学学报,2000,5(1):1-8.
    11.倪中福.小麦RAPD分子标记遗传差异及杂交种与亲本间基因表达的研究.中国农业大学博士研究生论文,1999.
    12.孙乃恩,孙东旭,朱德煦.分子遗传学.南京:南京大学出版社,1999,152.
    13.孙其信,倪中福等,作物杂种优势遗传机理研究进展,全国作物育种学术讨论会论文集,北京:中国农业科技出版社,1998,106-114.
    14.唐尚格.T性杂种小麦优势的生理生化基础研究,杂种小麦与高产栽培新途径试析.杂种小麦研究进展(黄铁城等主编),农业出版社,1993.
    15.童坦君,张宗玉.医学老年学:衰老与长寿.北京:人民卫生出版社,1995.90-91.
    16.汪仁,薛绍白,柳惠图.细胞生物学.北京:北京师范大学出版社,1998:308-309.
    17.王凤.GFP:Actin结合蛋白融合基因的构建及其在拟南芥中的表达.硕士学位论文,2002.
    18.王身立,邓国础,禹宽平.关于长寿命mRNA的研究。河南师范大学自然科学学报,1994,17(3):60-64.
    19.王章奎.小麦杂交种与亲本间根系基因表达差异与杂种优势分子机理.博士学位论文,2004.
    20.吴刚.crylAb基因在转基因水稻中的遗传、表达与沉默(博士学位论文).杭州:浙江大学,2000:63-66.
    21.吴利民,倪中福,王章奎,林展,孙其信.小麦杂种及其亲本苗期叶片家族基因差异表达及其与杂种优势关系的初步研究.遗传学报,2001,28(3):256-266.
    22.谢晓东.小麦杂交当代和亲本自交种子发育早期的基因表达差异与杂种优势.博士学位论文,2003.
    23.熊立仲.基因表达水平上水稻杂种优势的分子生物学基础研究.华中农业大学博士研究生论 文,1999.
    24.杨岐生.分子生物学基础.杭州:浙江大学出版社,1994,322.
    25.赵相山.玉米、水稻杂交组合中基因差异表达研究。复旦大学博士研究生论文,1997.
    26. Aagaard L, Laible G, Selenko P, Schmid M, Dora R, Schotta G, Kuhfittig S, Wolf A, Lebersorger A, Singh P B, Reuter G and Jenuwein T. Functional mammalian homologs of the Drosophila PEV-modifier Su(var)3-9 encode centromere-associated proteins which complex with the heterochromatin component M31. EMBO J, 1999, 18: 1923-1938.
    27. Aasland R, Gibson T B and Stewart A F. The PHD finger: implications for chromatin-mediated transcriptional regulation. Trends Biochem. Sci., 1995, 20: 56-59.
    28. Akhtar A, Zink D, Becket PB. Chromodomains are protein-RNA interaction modules. Nature, 2000, 407: 405-409.
    29. Alexandra Pipal, Maria Goralik-Schramel, Alexandra Lusser, Chiara Lanzanova, Bettina Sarg, Adele Loidl, Herbert Lindner, Vincenzo Rossi and Peter Loidl. Regulation and Processing of Maize Histone Deacetylase Hdal by Limited Proteolysis. The Plant Cell, 2003, 15: 1904-1917.
    30. Allfrey V G, Faulkner R and Mirsky A E. Acetylation and methylation ofhistones and their possible role in the regulation of RNA synthesis. Proc NatlAcad Sci U S A, 1964, 51: 786-794.
    31. Alvarez-Venegas R and Avramova, Z. Two Arabidopsis homologs of the animal rithorax genes: a new structural domain is a signature feature of the trithorax gene family. Gene, 2001, 271: 215-221.
    32. Aravind L, Koonin E V.Second family of histone deacetylases.Science, 1998, 280: 1167.
    33. Arts J, Lansink M, Grimbergen J, Toet KH, Kooistra T. Stimulation of tissue-type plasminogen activator gene expression by sodium butyrate and trichostatin A in human endothelial cells involves histone acetylation. Biochem J, 1995, 310(1): 171-176.
    34. Audrey H. Wang and Xiang-Jiao Yang. Historic Deacetylase 4 Possesses Intrinsic Nuclear Import and Export Signals. Molecular and Cellular Biology, 2001, 21: 5992-6005.
    35. Avner P, Heard E. X-chromosome inactivation: counting, choice and initiation. Nat Rev Genet, 2001, 2: 59-67.
    36. Balganesh T S, Reiners L, Lauster R, Noyer-Weidner M, Wilke K and Trautner T A. Construction and use of chimeric SPR/phi 3T DNA methyltransferases in the definition of sequence recognizing enzyme regions. EMBO J, 1987, 6: 3543-3549.
    37. Bannister A J, Schneider R, Kouzarides T. Historic methylation: Dynamic or Static? Cell, 2002, 109: 801-806.
    38. Bannister A J and Kouzarides T. The CBP co-activator is a histone acetyltransferase. Nature, 1996, 384: 641-643.
    39. Bannister A J, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC, Kouzarides T. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature, 2001, 410(6824): 120-4.
    40. Bartee L, Malagnac F, Bender J. Arabidopsis cmt3 chro2 momethylase mutations block non-CG methylation and silencing of an endogenous gene. Genes Dev, 2001, 15: 1753-1758.
    41. Bartl S, Taplick J, Lagger G, Khier H, Kuchler K and Seiser C. Identification of mouse histone deacetylase 1 as a growth factor-inducible gene.Mol Cell Biol,1997,17: 5033-5043.
    42. Bernacchia G, Primo A, Giorgetti L, Pitto L and Cella R. Carrot DNA-methyltransferase is encoded by two classes of genes with differing patterns of expression. Plant J. 1998, 13(3): 317-29.
    43. Bestor T, Laudano A, Mattaliano R, Ingram V. Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases. J Mol Biol. 1988, 203(4): 971-83.
    44. Bestor, T.H and Verdine G L. DNA methyltransferases. Curt. Opin. Cell Biol. 1994, 6: 380-389.
    45. Bird A. DNA methylation de Novo. Science, 1999, 286: 2287-2288.
    46. Bird A. Methylation talk between histone and DNA. Science,2001,294:2113-2115.
    47. Bochardt A, Hodal L, Palmgren G, Mattson O, Okkels FT. DNA methylation is involved in maintenance of an unusual expression pattern of an introduced gene. Plant Physiol,1992, 99:409-414.
    48. Boggs BA, Cheung P, Heard E, Spector DL, Chinault AC, Allis CD. Differentially methylated forms of histone H3 show unique association patterns with inactive human X chromosomes. Nat Genet, 2001, 30:73-76.
    49. Bone JR, Lavender J, Richman R, Palmer MJ, Turner BM and Kuroda MI. Acetylated histone H4 on the male X chromosome is associated with dosage compensation in Drosophila.Genes & Development, 1994, 8:96-104.
    50. Braunstein M, Sobel R E, Allis C D, Turner B M and Broach J R. Efficient transcriptional silencing in Saccharomyces cerevisiae requires a heterochromatin histone acetylation pattern. Mol Cell Biol, 1996,16:4349-4356.
    51. Brownell JE, Zhou J, Ranalli T, Kobayashi R, Edmondson DG, Roth SY, Allis CD. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation.Cell, 1996, 84(6): 843-851.
    52. Burke TW, Cook JG, Asano M, Nevins JR. Replication factors MCM2 and ORC1 interact with the histone acetyltransferase HBO1.J Biol Chem, 2001,276(18): 15397-408.
    53. Burn J E, Bagnall D J, Metzger J D, Dennis E S and Peacock W J. DNA methylation,vernalization, and the initiation of flowering. Proc Natl Acad Sci USA,1993,90:287-291.
    54. Burn J E, Smyth D R, Peacock W J and Dennis E S. Gene conferring late flowering in Arabidopsis thaliana. Genetica,1993,90(2-3): 147-155.
    55. Candau R, Moore P A, Wang L, Barley N, Ying C Y, Rosen C A and Berger S L. Identification of human proteins functionally conserved with the yeast putative adaptors ADA2 and GCN5. Mol. Cell. Biol., 1996, 16: 593-602.
    56. Cao X, Springer NM, Muszynski MG, Phillips RL, Kaeppler S, Jacobsen SE.Conserved plant genes with similarity to mammalian de novo DNA methyltransferases.PNAS, 2000, 97(9):4979-4984.
    57. Carmen AA, Milne L and Grunstein M. Acetylation of the yeast histone H4 N terminus regulates its binding to heterochromatin protein SIR3.J Biol Chem, 2002, 277: 4778-4781.
    58. Chen D, Ma H, Hong H, Koh SS, Huang S M, Schurter B T, Aswad DW, and Stallcup M R. Regulation of transcription by a protein methyltransferase. Science, 1999a, 284: 2174-2177.
    59. Chen L, MacMillan AM, Chang W, Ezaz-Nikpay K, Lane WS, Verdine GL. Direct identification of the active-site nucleophile in a DNA (cytosine-5)-methyltransferase. Biochemistry, 1991, 30: 11018-11025.
    60. Cherry J H, Hageman R H, Rutger J N, and Jones I B. Acid soluble nucleotides and ribonucleic acid of different corn inbreds and single-cross hybrids. Crop Sci, 1961, 1: 133-137.
    61. Cheung P, Tanner K G, Cheung W L, Sassone-Corsi P, Denu J M, Allis C D. Synergistic coupling of histone H3 phosphorylation and acetylation in response ti epidemal growth factor stimulation. Mol Cell, 2000, 5: 905-915.
    62. Chua Y L, Brown A P, and Gray J C. Targeted histone acetylation and altered nuclease accessibility over short regions of the pea plastocyanin gene. Plant Cell, 2001, 13: 599-612.
    63. Clarke A S, Lowell J E, Jacobson S J, and Pillus L. Esalp is an essential histone acetyltransferase required for cell cycle progression. Mol.Cell.Biol,1999, 19:2515-2526.
    64. Crane-Robinson C, Myers F A, Hebbes T R, Clayton A L and Thorne A W. Chromatin immunoprecipitation assays in acetylation mapping of higher eukaryotes. Methods Enzymol,1999,304:533-547.
    65. Csankovszki G, Nagy A, Jaenisch R. Synergism of XistRNA,DNA methylation, and histone hypoacetylation in maintaining X chromosome inactivation. J Cell Biol,2001,153:773-783.
    66. Dangl M, Brosch G, Haas H, Loidl P, Lusser A. Comparative analysis of HD2 type histone deacetylases in higher plants.Planta,2001, 213(2):280-5.
    67. De Rubertis F, Kadosh D, Henchoz S, Pauli D, Reuter G, Struhl K and Spierer P. The histone deacetylase RPD3 counteracts genomic silencing in Drosophila and yeast. Nature, 1996, 384: 589-591.
    68. De Rubertis F, Kadosh, D, Henchoz, S, Pauli D, Reuter G, Struhl K and Spierer P. The histone deacetylase RPD3 counteracts genomic silencing in Drosophila and yeast. Nature,1996, 384:589-591.
    69. Dhalluin C, Carlson J E, Zeng L, He C, Aggarwal A K, Zhou M M. Structure and ligand of a histone acetyltransferase bromodomain. Nature, 1999,399:491-496.
    70. Dong A, Jeffrey A. Yoder, Xing Zhang, Lan Zhou, Timothy H. Bestor and Xiaodong Cheng. Structure of human DNMT2, an enigmatic DNA methyltransferase homolog that displays denaturant-resistant binding to DNA.Nucleic Acids Research, 2001, 29:439-448.
    71. Durra A, Bell SP. Initiation of DNA replication in eukaryotic cells. Annu Rev Cell Dev Biol, 1997, 13: 293-332.
    72. Eden S and Cedar H. Role of DNA methylation in the regulation of transcription. Curr. Opin. Genet. Dev. 1994, 4: 255-259.
    73. Efstratiadis A. Parental imprinting of autosomal mammalian genes. Curr Opin. Genet, 1994, 4: 265-280.
    74. Fahrner J A, Eguchi S, Herman J G. Dependence of histone modifications and gene expression on DNA hypermethylation in cancer. Cancer Res, 2002, 62(24): 7213-7218.
    75. Finnegan E J, Genger R K, Kovac K., Peacock W J and Dennis, E S. DNA methylation and the promotion by vernalization. Proc Natl Acad Sci USA,1998,95:5824-5829.
    76. Finnegan E J, Dennis E S. Isolation and identification by sequence homology of a putative cytosine methyltransferase from Arabidopsis thaliana. Nucleic Acids Research, 1993, 21(10):2383-8.
    77. Finnegan E J, Peacock W J, Dennis E S. Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development. Proc Natl Acad Sci USA,1996,93:8449-8454.
    78. Finnegan E J, Peacok W J, Dennis E.DNA methylation, a key regulation of plant development and other processes. Curt Opion Genet Develop, 2000,10:217-223.
    79. Finnegan EJ, Genger RK, Peacock WJ, Dennis ES. DNA methylation in plants. Annu Rev Plant Physiol Plant Mol Biol, 1998, 49: 223-247.
    80. Frankel A and Clarke S. PRMT3 is a distinct member of the protein arginine N-methyltransferase family. Conferral of substrate specificity by a zinc-finger domain. J. Biol.Chem,2000, 275: 32974-32982.
    81. Fremont M, Siegmann M, Gaulis S, Matthies R, Hess D and Jost JP. Demethylation of DNA by purified chick embryo 5-methylcytosine-DNA glycosylase requires both protein and RNA. Nucleic Acids Res, 1997, 25(12): 2375-80.
    82. Fu X, Kohli A, Twyman RM, Christou P. Alternative silencing effect involve distinct types of non spreading cytosine methylation at a three gene, single copy transgenic locus in rice. Mol Gen Genet, 2000, 263(1):106-18.
    83. Fuks F, Hurd P J, Wolf D, Nan X S, Bird A D. The methyl-CpG2binding protein MeCP-links DNA methylation to histone methylation. J Biol Chem,2003,278(6):4035-4040.
    84. Garcia-Ramirez M, Corinne Rocchini, Juan Ausio. Modulation of chromatin folding by histone acetylation. J Biol Chem, 1995, 270(30): 17923-17928.
    85. Gendrel A V, Lippman Z, Yordan C, Colot V, Martienssen R A. Dependence of heterochromatic histone H3 methylation pattterns on the Arabidopisis gene DDM1.Science,2002,297:1871-1873.
    86. Genger R K, Kovac KA, Dennis E S, Peacock W J, Finnegan E J. Multiple DNA methyltransferase genes in Arabidopsis thaliana. Plant Mol Bio1,1999,41:269-278.
    87. Gilbreth M, Yang P, Bartholomeusz G, Pimental R A, Kansra S, Gadiraju R and Marcus S. Negative regulation of mitosis in fission yeast by the shk1 interacting protein skb1 and its human homolog, Skb1Hs. Proc. Natl. Acad. Sci, 1998, 95: 14781-14786.
    88. Giles R H, Peters D J and Breuning M H. Conjunction dysfunction: CBP/p300 in human disease. Trends Genet., 1998, 14: 178-183.
    89. Girardot V, Rabilloud T, Yoshida M, Beppu T, Lawrence JJ, Khochbin S. Relationship between core histone acetylation and histone H1o gene activity. Eur J Biochem, 1994, 224:885-892.
    90. Goll M G, Bestor T H. Histone modification and replacement in chromatin activation. Genes Dev, 2002,16:1739-1742.
    91. Goodrich J, Puangsomlee P, Martin M, Long D, Meyerowitz E M and Coupland G. A polycomb-group gene regulates homeotic gene expression in Arabidopsis. Nature, 1997, 386: 44-51.
    92. Grunstein, M. Histone function in transcription. Annu Rev Cell Biol, 1990, 6: 643-678.
    93. Habu Y, Kakutani T and Paszkowski J. Epigenetic developmental mechanisms in plants: molecules and targets of plant epigenetic regulation. Curr. Opin. Genet. De., 2001, 11: 215-220.
    94. Hassig CA, Tong JK, Fleischer TC, Owa T, Grable PG, Ayer DE, Schreiber SL. A role for histone deacetylase activity in HDAC1-mediated transcriptional repression. Proc Natl Acad Sci U S A. 1998, 95(7): 3519-24.
    95. Heard E, Rougeulle C, Arnaud D, Avner P, Allis CD, Spector DL. Methylation of histone H3 at Lys-9 is an early mark on the X chromosome during X inactivation. Cell, 2001, 107: 727-738.
    96. Hernandez F, Puerta C, Lopez-Alarcon L and Palacian E. Transcriptional properties of oligonucleosomal templates containing acetylated (H3◊H4)2 tetramers. Biochem. Biophys. Res. Commun,1995, 213:232-238.
    97. Hirochika H, Okamoto H, Kakutani T. Silencing of retrosposons in A rabidopsis and reactivation by the ddml mutation. Plant cell,2000,12(3):357-368.
    98. Horn P J, and Peterson, C L. Chromatin higher order folding: wrapping up transcription. Science, 2002, 297: 1824-1827.
    99. Hoshikawa Y, Kwon HJ, Yoshida M, Horinouchi S, Beppu T. Trichostatin A induces morphological changes and gelsolin expression by inhibiting histone deacetylase in human carcinomacelllines. Exp Cell Res, 1994, 214(1):189-197.
    100. Imai S, Armstrong C M, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature, 2000, 403(6771): 795-800.
    101. Ingrosso D, Fowler A V, Bleibaum J and Clarke S. Sequence of the D-aspartyl/L-isoaspartyl protein methyltransferase from human erythrocytes. Common sequence motifs for protein, DNA, RNA, and small molecule S-adenosylmethionine-dependent methyltransferases. J. Biol. Chem., 1989, 264: 20131-20139.
    102. Ivanova A V, Bonaduce M J, lvanov S V and Klar A J S. The chromo and SET domains of the Clr4 protein are essential for silencing in fission yeast. Nature Genet, 1998,19:192-195.
    103. Jackson J P, Lindroth A M, Cao X F, Jacobsen S E. Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature,2002,416:556-560.
    104. Jang IC, Pahk YM, Song SI, Kwon HJ, Nahm BH, Kim JK. Structure and expression of the rice class-Ⅰ type histone deacetylase genes OsHDAC1-3:OsHDAC1 overexpression in transgenic plants leads to increased growth rate and altered architecture.Plant J, 2003, 33(3):531-41.
    105. Jeddeloh J A, Stokes T L, Richards E J. Maintenance of genomic methylation requires a SWI2/SNF22like protein. Nature Genetrequires,1999, 22(1):94-97.
    106. Jeffrey A. Yoder, Timothy H. Bestor. A candidate mammalian DNA methyltransferase related to pmtlp of fission yeast. Human Molecular Genetics, 1997, 7(2):279-284.
    107. Jenuwein T, Laible G, Dorn R and Reuter G. SET domain proteins modulate chromatin domains in eu-and heterochromatin. Cell. Mol. Life Sci., 1998, 54: 80-93.
    108. Jenuwein T, Allis C D. Translating the histone code. Science, 2001,293:1074-1080.
    109. Jeppesen P, Turner B M.The inactive X chromosome in female mammals is distinguished by a lack of histone H4 acetylation, a cytogenetic marker for gene expression. Cell, 1993, 74:281-289.
    110. Johnson L M, Cao X F, Jacobsen S E. DNA Methylation and Hi stone H3 Lysine 9 Methylation. Curt Biol,2002,12(16): 1360-1367.
    111. Kadosh D and Struhl K. Histone deacetylase activity of Rpd3 is important for transcriptional repression in vivo. Genes Dev, 1998,12: 797-805.
    112. Kafri T, Ariel M, Brandeis M, Shemer R, Urven L, McCarrey J, Cedar H, Razin A. Developmental pattern of gene-specific DNA methylation in the mouse embryo and germ line. Genes Dev, 1992, 6(5): 705-14.
    113. Kakutani T, Jeddeloh JA, Flowera SK, Munakata K and Richards E J. Developmental abnormalities and epimutations associated with DNA hypomethylation mutations. Proc Natl Acad Sci USA, 1996,93:12406-12411.
    114. Kass S U, Pruss D, Wolffe A P. How does DNA methylation repress transcription? Trends Genet,1997,13:444-449.
    115. Kato M, Miura A, Bender J, Kakutani T. Role of CG and non-CG methylation in immobilization of transposon in Arabidopsis. Curr Biol, 2003,13(5):421-426.
    116. Katsanis N, Yaspo M L and Fisher E M. Identification and mapping of a novel human gene, HRMT1L1, homologous to the rat protein arginine N-methyltransferase 1 (PRMT1) gene. Mamm. Genome,1997, 8: 526-529.
    117. King, G J. Morphological development in Brassica oleracea is modulated by in vivo treatment with 5-azacytidine. Journal of Horticultural. Science, 1995, 70, 333-342.
    118. Koh SS, Chen D, Lee YH, Stallcup MR. Synergistic enhancement of nuclear receptor function by p160 coactivators and two coactivators with protein methyltransferase activities. J Biol Chem, 2001, 276(2): 1089-98.
    119. Kondo Y, Shen L, Issa J P. Critical role of histone methylation in tumor suppressor gene silencing in colorectal cancer. Mol Cell Biol, 2003, 23(1): 206-215.
    120. Kozurkova M, Misurova E, Kropacova K. Effect of aging and gamma radiation on acetylation of rat liver histones. Mech Ageing Dev,1995,78(1):1-14.
    121. Krajewski WA. Effect of nonenzymatic histone acetylation chromatin high-order folding. Biochem Biophys Res Commun, 1996, 221(2): 295-299.
    122. Krebs J E, Kuo M H, Allis C D and Peterson C L. Cell cycle-regulated histone acetylation required for expression of the yeast HO gene. Genes Dev, 1999, 13: 1412-1421.
    123. Kristjuhan A, Wittschieben B O, Walker J, Roberts D, Cairns B R and Svejstrup J Q. Spreading of Sir3 protein in cells with severe histone H3 hypoacetylation. Proc Natl Acad Sci U S A, 2003, 100: 7551-7556.
    124. Kuo M H, Zhou J, Jambeck P, Churchill M E and Allis C D. Histone acetyltransferase activity of yeast Gcn5p is required for the activation of target genes in vivo. Genes Dev, 1998, 12: 627-639.
    125. Kuo M H and Allis C D. Roles of histone acetyltransferases and deacetylases in gene regulation. Bioessays. 1998, 20: 615-626.
    126. Landry J, Sutton A, Tafrov ST, Heller RC, Stebbins J, Pillus L, Sternglanz R, The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc. Natl. Acad. Sci. USA, 2000, 97: 5807-5811.
    127. Lars O. Banmbusch, Tage Thorstensen, Veiko Krauss, Andreas Fischer1, Kathrin Naumann, Reza Assalkhou, Ingo Schulz, Gunter Reuter and Reidunn B. Aalen. The Arabidopsis thaliana genome contains at least 29 active genes encoding SET domain proteins that can be assigned to four evolutionarily conserved classes. Nucleic Acids Research, 2001, 29(21): 4319-4333.
    128. Li E, Beard C, Jaenisch R. Role for DNA methylation in genomic imprinting. Nature, 1993, 366: 362-365.
    129. Li E.The mojo of methylation. Nature Genet,1999,23:5-6.
    130. Lin WJ, Gary JD, Yang MC, Clarke S, Herschman HR. The mammalian immediate-early TIS21 protein and the leukemia-associated BTG1 protein interact with a protein-arginine N-methyltransferase. J Biol Chem, 1996,271(25):15034-44.
    131. Linder B, Newman R, Jones L K, Debernardi S, Young B D, Freemont P, Verrijzer C P and Saha V. Biochemical analyses of the AF10 protein: the extended LAP/PHD-finger mediates oligomerisation. J. Mol. Biol., 2000, 299: 369-378.
    132. Lindroth A M, Cao X F, Jackson J P, Zilberman D, McCallum C M, Henikoff S, Jacobsen S E. Requirement of CHRO2 MOMETHYLASE3 for maintenace of CpXpG methylation. Science, 2001, 292: 2077-2080.
    133. Lo W S, Trievel R C, Rojas J R, Duggan L, Hsu J Y, Allis CD, Marmorstein R, Berger S L. Phosphoylation of serine 10 in histion H3 is functionally linked in vitro and in vivo to Gcn5-medidated acetylation at lysine 14. Mol cell, 2000, 5: 917-926.
    134. Louise J A, Thomas C L, Andrew M D. De novo methylation and cosuppression induced by a cytoplasmically replicating plant RNA virus. Euro Mol Bio Organi J,1998,17(21):6385-6393.
    135. Lu Tian, Jianlin Wang M. Paulus Fong, Meng Chen, Hongbin Cao, Stanton B, Gelvin and Z. Jeffrey Chen.Genetic Control of Developmental Changes Induced by Disruption of Arabidopsis Histone Deacetylase 1 (AtHD1) Expression. Genetics, 2003, 165, 399-409.
    136. Luo M, Bilodeau P, Dennis E S, Peacock W J and Chaudhury A. Expression and parent-of-origin effects for FIS2, MEA and FIE in the endosperm and embryo of developing Arabidopsis seeds. Proc. Natl Acad. Sci. USA, 2000, 97: 10637-10642.
    137. Lusser A, Brosch G, Loidl A, Haas H, Loidl P. Identification of maize histone deacetylase HD2 as an acidic nucleolar phosphoprotein. Science, 1997, 277: 88-91.
    138. Lusser A, Kolle D and Loidl P. Histone acetylation: lessons from the plant kingdom. Trends Plant Sci, 2001, 6:59-65.
    139. Madisen L, Krurara A, Hebbes T R and Groudine M. The immunoglobulin heavy chain locus control region increases histone acetylation along linked c-myc genes. Mol Cell Biol, 1998, 18: 6281-6292.
    140. Marcus GA, Silverman N, Berger SL, Horiuchi J, Guarente L. Functional similarity and physical association between GCN5 and ADA2 putative transcriptional adaptors. EMBO J, 1994, 13: 4807-4815.
    141. Masaki Okano, Shaoping Xie and En Li. Dnmt2 is not required for de novo and maintenance methylation of viral DNA in embryonic stem cells. Nucleic Acids Research, 1998, 26 (11): 2536-2540.
    142. Matzke M A, Metre M F, Mazke AJM. Transgene silencing by the host Genome defense:implification for the evolution of epigenetic control mechanisms in plants and vertebrates. Plant Mol Biol, 2000, 43: 401-415.
    143. McArthur, G.A, Laherty C, Queva C, Hurlin P J, Loo L, James L, Grandori, C, Gallant P, Shiio Y, Bush A, Cheng, P F, Lawrence Q, Pulverer B, Koskinen P J, Fole K P, Ayer D E & Eisenman RN. The Mad protein family links transcriptional repression to cell differentiation. Cold Spring Harbor Symp. Quant. Biol, 1998, 63: 423-433.
    144. Meegae PC, Morgan BA and Smith MM. Histone H4 and the maintenance of genome integrity. Genes & Development, 1995, 9: 1716-1727.
    145. Mermoud JE, Popova B, Peters AH, Jenuwein T, Brockdorff N. Histone H3 lysine methylation occurs rapidly at the onset of random X chromosome inactivation. Curr Biol, 2002, 12: 247-251.
    146. Meyer P. Transcriptional transgene silencing and chromatin compents. Plant Mol Biol, 2000, 43: 221~234.
    147. Mino M, Inoue M. DNA synthesis and nuclease activity during germination of a heterotic F1 hybrid of maize. Can-J-Bot-J-Can-Bot. Ottawa, Ont. National Research Council of Canada, 1980, 67(1): 73-75.
    148. Mizzen C A, Yang X J, Kokubo T, Brownell J E, Bannister A J, Owen-Hughes T, Workman J, Wang L, Berger S L, Kouzarides T, Nakatani Y, and Allis C D. The TAF(Ⅱ)250 subunit of TFIID has histone acetyltransferase activity. Cell, 1996, 87: 1261-1270.
    149. Monk M. Epigenetic programming of differential gene expression in development and evolution. Dev Genet, 1995, 17(3): 188-97.
    150. Nagy L, Kao HY, Chakravarti D, Lin RJ, Hassig CA, Ayer DE, Schreiber SL, Evans RM. Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell, 1997, 89(3): 373-380.
    151. Nakano Y, Steward N, Sekine M, KusanoT, Sano H. A tobacco Nt MET1 Cdna encoding a DNA methyltransferase: molecular characterization and abnormal phenotype of transgenic tobacco plant. Plant Cell Physiol, 2000, 41(4): 448~457.
    152. Nakayama J, Rice J C, Strahl B D, Allis C D and Grewal S I. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science, 2001, 292:110-113.
    153. Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, Bird A.Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature, 1998, 393 (6683):386-389.
    154. Nanney D L. Epigenetic control systems. Proc Nail Acad Sci, 1958,44(7):712-717.
    155. Nebiolo C M, Kaczmarczyk W J, Ulrich V. Manifestation of hybrid vigor in RNA synthesis parameters by corn seedling protoplasts in the presence and absence of gibberellic acid [Zea mays, maize]. Plant-Sci-Lett. Limerick: Elsevier, 1983, 28(2): 195-206.
    156. Neuwald A F and Landsman D. GCN5-related histone N-acetyltransferases belong to a diverse superfamily that includes the yeast SPT10 protein. Trends Biocbem. Sci., 1997, 22: 154-155.
    157. Noma K, Allis C D, Grewal S I. Transitions in distinct histone H3 methylation patterns at the heterochromatin domain bound-aries. Science, 2001, 293: 1150-1155.
    158. Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell, 1999, 99(3): 247-57.
    159. Okano M, Xie S, Li E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases.Nat Genet,1998,19(3):219-220.
    160. Okano M, Xie S, Li E.Dnmt2 is not required for de novo and maintenance methylation of viral DNA in embryonic stem cells. Nucleic Acids Res, 1998,26(11):2536-40.
    161. O'Neill LP and Turner B M. Histone H4 acetylation distinguishes coding regions of the human genome from heterochromatin in a differentiation-dependent but transcription-independent manner. EMBO J,1995,14: 3946-3957.
    162. Papa C M, Springer N M, Muszynski M G, Meeley R, Kaeppler SM. Maize chromomethylase Zea methyltransferase is required for CpNpG methylation. Plant Cell. 2001, 13(8): 1919-1928.
    163. Paszkowski J and Whitham S A. Gene silencing and DNA methylation processes. Curr. Opin. Plant Biol., 2001, 4: 123-129.
    164. Pazin MJ, Kadonaga JT. What's up and down with histone deacetylation and transcription? Cell, 1997, 89(3): 325-328.
    165. Peters AH, Mermoud JE, O'Carroll D, Pagani M, Schweizer D, Brockdorff N, Jenuwein T. Histone H3 lysine 9 methylation is an epigenetic imprint of facultative heterochromatin. Nat Genet, 2001, 30: 77-80.
    166. Posfai J, Bhagwat A S, Posfai G and Roberts R J. Predictive motifs derived from cytosine methyltransferases. Nucleic Acids Res, 1989, 17: 2451-2435.
    167. Puerta C, Hernandez F, Lopez-Alarcon, L and Palacian E. Acetylation of histone H2A◊ H2B dimers facilitates transcription. Biochem. Biophys. Res. Commun, 1995, 210: 409-416.
    168. Razin A and Shemer R. DNA methylation in early development. Hum. Mol. Genet, 1995, 4: 1751-1755.
    169. Rea S, Eisenhaber F, O'Carroll D, Strahl B D, Sun Z W, Schmid M, Opravil S, Mechtler K, Ponting C P, Allis C D Jenuwein T. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature, 2000, 406: 593-599.
    170. Reifsnyder C, Lowell J, Clarke A, Pillus L. Yeast SAS silencing genes and human genes associated with AML and HIV-1 Tat interactions are homologous with acetyltransferases. Nat Genet, 1996, 14(1): 42-9.
    171. Rho J, Seeyoung Choi, Young Rim Seong, Won-Kyung Cho, Soo Hyeun Kim, and Dong-Soo Im.PRMT5, Which Forms Distinct Homo-oligomers, Is a Member of the Protein-arginine Methyltransferase Family. Biol. Chem., 2001, 276(914): 11393-11401.
    172. Rice J C, Allis C D. Histone methylation versus histone acetylation: new insights into epigenetic regulation. Curr Opin Cell Biol, 2001, 13: 263-273.
    173. Richards E J. DNA methylation and plant development.Trends Genet, 1997,13(8):319-322.
    174. Riggs A D and Pfeifer G P. X chromosome inactivation and cell memory.Trends Genet, 1992, 8:169-174.
    175. Ritu Pandey, Andreas Muller, Carolyn A. Napoli, David A. Selinger, Craig S. Pikaard, Eric J. Richards, Judith Bender, David W. Mount and Richard A. Jorgensen. Analysis of histone acetyltransferase and historic deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes. Nucleic Acids Research, 2002, 30(23): 5036-5055.
    176. Romagnoli S, Maddaloni M, Livini C, Motto M. Relationship between gene expression and hybrid vigor in primary root tips of young maize (Zea mays L.) plantlets. Theor. Appl. Genet, 1990, 80: 767-775.
    177. Ronemus MJ, Galbiati M, Ticknor C, Chen J, Dellaporta SL. Demethylation-induced developmental pleiotropy in Arabidopsis.Science,1996,273(5275):654-657.
    178. Rose TM, Schultz ER, Henikoff JG, Pietrokovski S, McCallum CM, Henikoff S. Consensus-degenerate hybrid oligonucleotide primers for amplification of distantly related sequences. Nucleic Acids Res,1998,26:1628-1635.
    179. Rubertis De, Kadosh F D, Henchoz S, Panli D, Reuter G, Struhl K, and Spierer P. The histone deacetylase RPD3 counteracts genomic silencing in Drosophila and yeast. Nature, 1996, 384: 589-591.
    180. Rundlett S E, Carmen AA, Kobayashi R, Bavykin S, Turner B.M, and Grunstein M. HDA1 and RPD3 are members of distinct yeast histone deacetylase complexes that regulate silencing and transcription. Proc Natl Acad Sci U S A, 1996, 93: 14503-14508.
    181. Rundlett S E, Carmet AA, Suka N, Turner B M and. Grunstein M. Transcriptional repression by UME6 involves deacetylation of lysine 5 of histone H4 by RPD3. Nature, 1998, 392: 831-835.
    182. Saccani S, Natoli G. Dynamic changes in histone H3 lys 9 methy lation occurring at regulation inducible inflammatory genes. Genes Dev, 2002, 16: 2219-2224.
    183. Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW. Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci U S A, 1984, 81(24): 8014-8018.
    184. Sano H, Kamada I, Youssefian S, Katsumi M. & Wabiko H. A single treatment of rice seeding with 5 azacytidine induces heritable dwarfism and under methylation of genomic DNA. Mol. Gen. Genet, 1990, 220: 441-447.
    185. Schultz DC, Ayyanathan K, Negorev D, Maul GG, Rauscher FJ. SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins.Genes Dev, 2002,16:919-932.
    186. Schurter B T, Koh S S, Chen D, Bunick G J, Harp J.M,Hanson B L, Henschen-Edman A, Mackay D R, Stallcup M R and Aswad D W.. Methylation of histone h3 by coactivator-associated arginine methyltransferase 1. Biochemistry, 2001,40: 5747-5756.
    187. Sedkov Y, Tillib S, Mizrokhi L and Mazo A. The bithorax complex is regulated by trithorax earlier during Drosophila embryogenesis than is the Antennapedia complex, correlating with a bithorax-like expression pattern of distinct early trithorax transcripts. Development, 1994, 120: 1907-1917.
    188. Shaker S, Bernstein M, Momparler L F, Mmomparler R L. Pre-clinical evaluation of antineoplastic activity of inhibitors of DNA methylation (52aza22'2deoxycytidine) and histone deacetylation (trichostain A, depsipeptide) in combination against myeloid leukemic cells. Leuk Res,2003,27(5):437-444.
    189. Shan GH, Jose LMJ, Antonio GJ. Mitotic stability of infection-induced resistance to plum pox potyvirus with transgene silencing and DNA methylation. Mol Plant Microb Interactions, 1999, 12 (2): 103-111.
    190. Sheldon C C, Bum J E, Paswul P. The FLFMADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation. Plant Cell, 1999, 11: 445-458.
    191. Soderstrom, M, Vo A, Heinzel T, Lavinsky R M, Yang W M, Seto E, Peterson D A, Rosenfeld M G and Glass C K. Differential Effects of Nuclear Receptor Corepressor (N-CoR) Expression Levels on Retinoic Acid Receptor-Mediated Repression Support the Existence of Dynamically Regulated Corepressor Complexes.Mol. Endocrinol, 1997, 11: 682-692.
    192. Sona Pandey and Sarah M. Assmann.The Arabidopsis Putative G Protein-Coupled Receptor GCR1 Interacts with the G Protein Subunit GPA1 and Regulates Abscisic Acid Signaling. Plant cell, 2004, 16: 1616-1632.
    193. Stassen M J, Bailey D, Nelson S, Chinwalla V and Harte P J. The Drosophila trithorax proteins contain a novel variant of the nuclear receptor type DNA binding domain and an ancient conserved motif found in other chromosomal proteins. Mech. De., 1995, 52: 209-223.
    194. Sterner DE, Berger SL. Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev, 2000, 64(2): 435-59.
    195. Steward N, Kusano T, and. Sano H. Expression of ZmMET1, a gene encoding a DNA methyltransferase from maize, is associated not only with DNA replication in actively proliferating cells, but also with altered DNA methylation status in cold-stressed quiescent cells. Nucleic Acids Research, 2000, 28(17): 3250-3259.
    196. Strahl B D, Allis C D. The language of covalent histone modification. Nature,2000,403:41-45.
    197. Strahl B D, Briggs S D, Brame C J, Caldwell J A, Koh S S, Ma H, Cook R G, Shabanowitz J, Hunt D F, Stallcup M R, and Allis C D. Methylation of histone H4 atarginine 3 occurs in vivo and is mediated by the nuclearreceptor coactivator PRMT1, Curr Biol, 2001, 11: 1-5.
    198. Sun QX, Wu L M, Ni Z F, Meng F R, Wang Z K, Lin Z. Differential gene expression patterns in leaves between hybrids and their parental inbreds are correlated with heterosis in a wheat diallel cross. Plant Sci, 2004, 166: 651-657.
    199. Tachibana M, Sugimoto K, Fukushima T and Shinkai Y. SET-domain containing protein, G9a, is a novel lysine-preferring mammalian histone methylthansferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone H3. J. Biol. Chem., 2001, 276: 25309-25317.
    200. Takechi S, Nakayama T.Sas3 is a histone acetyltransferase and requires a zinc finger motif. Biochem Biophys Res Commun, 1999, 266(2): 405-10.
    201. Tamaru H, Selker E U. A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature, 2001, 414: 277-283.
    202. Tang J, Gary J D, Clarke S and Herschman H R. PRMT 3, a type Ⅰ protein arginine N-methyltransferase that differs from PRMT1 in its oligomerization, subcellular localization, substrate specificity, and regulation. J. Biol. Chem, 1998, 273: 16935-16945.
    203. Taunton J, Hassig C A, Schreiber S L. A Mammalian Histone Deacetylase Related to the Yeast Transcriptional Regulator Rpd3. Science, 1996, 272(5260): 408-411.
    204. Teerawanichpan P, ChandrasekharanMB, Jiang Y, NarangajavanaJ, Hall T C. Characterization of two rice DNA methyltransferase genes and RNAi-mediated reactivation of a silenced transgene in rice callus. Planta, 2004, 218(3): 337-49.
    205. Trautner T A, Balganesh T S and Pawlek B. Chimeric multispecific DNA methyltransferases with novel combinations of target recognition. Nucl. Acids Res, 1988, 16: 6649-6658.
    206. Trievel R C, Beach B M, Dirk L M, Houtz R L, Hurley J H. Structure and catalytic mechanism of a SET domain protein methyltransferse. Cell, 2002, 111(1): 91-103.
    207. Tsaftaris A S & Polidoros A N. Studying the expression of genes in maize parental inbreds and their heterotic and nonheterotic hybrids. In Proc Ⅻ Eucarpia Maize and Sorghum Conference. Bergamo, Italy, 1993, 283-292.
    208. Tsaftaris A S, Kafka M. Mechanisms of heterosis in crop plants. Journal of Crop Production, 1998, 1: 95-111.
    209. Tsaftaris A S. Molecular aspects of heterosis in plants. Physiologia Plantarum, 1995, 94: 362-370.
    210. Tschiersch B, Hofmann A, Krauss V, Dorn R, Korge G and Renter G. The protein encoded by the Drosophila position-effect variegation suppressor gene Su(var)3-9 combines domains of antagonistic regulators of homeotic gene complexes. EMBO J, 1994, 13: 3822-3831.
    211. Tse C, Sera T, Wolffe AP and Hansen J C. Disruption of higher-order folding by core histone acetylation dramatically enhances transcription of nucleosomal arrays by RNA polymerase Ⅲ. Mol Cell Biol, 1998, 18: 4629-4638.
    212. Turner B M. Histone acetylation and control of gene expression. J Cell Sci 1991, 99(Pt 1); 13-20.
    213. Van Houdt H, Ingelbrecht I, Van Montagu M, Depicker A. Post transcriptional of a neomycin phosphotransferase Ⅱ transgene correlate swith the accumulation of unproductive RNAs and with increased cytosine methylation of 3' Flanking regions. Plant J, 1997, 12: 379-392.
    214. Van Lohuizen M. Functional analysis of mouse polycomb group genes. Cel Mol Life Sci, 1998, 54: 71-79.
    215. Vanlint C, Emiliani S, Ott M and Verdin E.Transcriptional activation and chromatin remodeling of the HIV-1 promoter in response to histone acetylation. EMBO J, 1996, 15(5): 1112-1120.
    216. Vertino P M, Yen R W, Gao J, and Baylin S B. De novo methylation of CpG island sequences in human fibroblasts overexpressing DNA (cytosine-5-)-methyltransferase. Mol Cell Biol, 1996, 16 (8): 4555-65.
    217. Vidal M and Gaber R E RPD3 encodes a second factor required to achieve maximum positive and negative transcriptional states in Saccharomyces cerevisiae. Mol Cell Biol, 1991, 11(12): 6317-6327.
    218. Vielle Calzada J P, Thomas J, Spillane C, Coluccio A, Hoeppner M A and Grossniklaus U. Maintenance of genomic imprinting at the Arabidopsis MEDEA locus requires zygotic DDM1 activity. Genes Dev., 1999, 13: 2971-2982.
    219. Vongs A, Kakutani T, Martienssen R and Richards E J. Arabidopsis thaliana DNA methylation mutants. Science, 1993, 260: 1926-1928.
    220. Wang A, Kurdistani S K and Grunstein M. Requirement of Hos2 histone deacetylase for gene activity in yeast. Science, 2002, 298: 1412-1414.
    221. Wang H, Huang Z Q, Xia L, Feng Q, Erdjument-Bromage H, Strahi B D, Briggs S D, Allis C D, Wong J, Tempst P, Zhang Y. Methylation of histion H4 at arginine 3 facilitates transcriptional activation by nuclear hormone receptor. Science, 2001, 293: 853-857.
    222. Wang J, Mager J, Chen Y, Schneider E, Cross JC, Nagy A, Magnuson T. Imprinted X inactivation maintained by a mouse Polycomb group gene. Nat Genet, 2001, 28: 371-375.
    223. Wang Y, Wysocka J, Sayegh J, Lee Y H, Perlin J R, Leonelli L, Sonbuchner LS, McDonald CH, Cook RG, Dou Y, Roeder RG, Clarke S, Stallcup MR, Allis CD, Coonrod SA. Human PAD4 regulates histone arginine methylation levels via demethylimination. Science, 2004, 306 (5694): 279-83.
    224. Wassenegger M, Pelissier T. A model for RNA mediated gene silencing in higher plants. Plant Mol Biol, 1998, 37: 349-362.
    225. Wassenegger M. RNA directed DNA methylation. Plant Mol Biol, 2000, 43: 203-220.
    226. Weiss VH, McBride AE, Soriano MA, Filman DJ, Silver PA, Hogle JM. The structure and oligomerization of the yeast arginine methyltransferase, Hmtl. Nat Struct Biol, 2000,7(12):1165-1171.
    227. Wilke K, Rauhut E, Noyer-Weidner M, Lauster R, Pawlek B.Behrens B and Trautner T A. Sequential order of target-recognizing domains in multispecific DNA-methyltransferases. EMBO J, 1988, 7: 2601-2609.
    228. Wu J C and Santi D V. Kinetic and catalytic mechanism of Hhal methyltransferase. J. Biol. Chew., 1987, 262: 4778-4786.
    229. Wyszynski M W, Gabbara S and Bhagwat A S. Substitutions of a cysteine conserved among DNA cytosine methylases result in a variety of phenotypes. Nudl. Acids Res. 1992, 20: 319-326.
    230. Xiong L Z, Yang G P, Xu C G, et al. Relationships of differential gene expression in leaves with heterosis and heterozygosity in a rice diallel cross, Molecular Breeding, 1998, 4: 129-136.
    231. Xiong LZ, Xu CG, Saghai Maroof MA, Zhang Q. Patterns of cytosine methylation in an elite rice hybrid and its parental lines: detected by a methylation-sensitive amplification polymorphism technique. MGG, 1999, 261(3): 439-446.
    232. Yang W M, Inouye C, Zeng Y, Bearss D, Seto E. Transcriptional repression by YY1 is mediated by interaction with a mammalian homolog of the yeast global regulator. PNAS, 1996, 93: 12845-12850.
    233. Yisraeli J and Szyf M. in DNA Methylation and Its Biological Significance (Razin, A., Cedar, H., and Riggs, A. D., eds), 1984, pp. 353-378, Springer-Verlag New York Inc., New York.
    234. Yoder JA, Bestor TH. A candidate mammalian DNA methyltransferase related to pmt1p of fission yeast. Hum Mol Genet, 1998, 7(2): 279-84.
    235. Yoshida M, Sueharu Horinouchi, Teruhiko Beppu. Trichostatin A and trapoxin: novel chemical probesfortherole of histone acety lation chromatin structure and funtion. Bio Essays, 1995, 17(5): 423-430.
    236. Zhang Y, Reinberg D. Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev, 2001, 15: 2343-2360.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.