生物信息学在大熊猫和血吸虫基因组分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着大规模测序技术的不断发展,基因组测序工作在速度变得越来越快的同时,其价格也越来越廉价,已经引领生命科学进入以基因组学为代表的“组学”时代。然而,以基因组为代表的“组学”数据具有数据量大和数据关系复杂等特点,尤其是基因组分析的研究对象从之前对几个基因的普通生物学研究已经转变为对基因组中成千上万个基因的分析工作。为了更快、更全面地分析和研究以基因组为代表的“组学”数据,生物信息学作为一门新的交叉学科领域已应运而生,它主要是综合使用计算机科学与技术以及统计科学和其它相关学科来解决大规模生物学数据处理的一门学科。
     本文主要目的是在大熊猫基因组和日本血吸虫基因组数据的分析工作中应用生物信息学方法,研究大熊猫独特饮食习性和日本血吸虫在动物界中的系统发育关系以及特殊生物学性状等复杂生物学问题。首先,在大熊猫基因组分析中,我们针对大熊猫吃竹子不吃肉的问题在进行了较为深入的研究。我们发现大熊猫多巴胺(dopamine)、降肾上腺素(norepinephrine)和肾上腺素(epinephrine)等通路上的关键酶COMT在蛋白三维结构上和小RNA调控上与人类相比已发生了显著的变化,这极可能引起大熊猫饮食习性的改变。研究结果表明,大熊猫饮食习性的改变是一个极为复杂的问题,绝不仅仅是由于其某个味觉基因变成假基因或其肠道微生物的作用所引起的,而可能还与其大脑中关键基因(如COMT)或通路发生功能改变有关。即使我们考虑多巴胺和降肾上腺素等通路的变异,也不一定能完全解释大熊猫吃竹子不吃肉这个及其复杂的问题,但本研究中生物信息学分析角度提供一条崭新的思路。
     在日本血吸虫基因组的分析中,我们采用分子进化模型和最大似然方法构建了一个包含动物界中17个物种和103,009个氨基酸的基因组系统发育树和一个包含54个物种和6,412个核酸的基因系统发育树。我们的研究结果表明,日本血吸虫位于冠轮动物(Lophotrochozoa)中的扁形动物(Platyhelminthes)。我们还研究了日本血吸虫与其宿主人的基因水平转移(HGT)等复杂生物学问题。通过进化基因组和比较基因组的方法,我们尚未发现比较强的证据可以显示出人和日本血吸虫之间存在基因水平转移的现象。当然,这极有可能是由于我们迄今只分析了日本血吸虫中的6,000多个基因,还有将近8,000个基因没有分析的缘故。
     此外,本研究还建立了相关生物信息系统(PBmice和Apanda等),这些系统的建立一方面为我们的实际研究提供了数据基础,另一方面促进了生物信息学自身的发展。总之,我们认为,大熊猫基因组和日本血吸虫基因组以至于有关其它生物基因组的更多的生物问题,可以通过生物信息学方法来加以深入研究,并最终给予合理的解释。
引文
[1]胡锦矗,Schaller GB,潘文石,等.卧龙的大熊猫[M].成都:四川科技出版社,(1985).
    [2]胡锦矗.大熊猫研究[M].上海:上海科技教育出版社,(2001).
    [3]魏辅文,周才权,胡锦矗,等.马边大风顶自然保护区大熊猫对竹类资源的选择利用.兽类学报,17(3):171-175,(1997).
    [4]黄小富,张泽钧.大熊猫与小熊猫生态习性的比较:食物、体型大小及系统发育的影响.四川动物,27(4):687-692,(2008).
    [5]胡锦矗.大熊猫的繁殖效率.野生动物,5:32,(1988).
    [6]王雄清.大熊猫繁殖研究进展.四川师范学院学报,11(2):118-123,(1990).
    [7]王雄清,刘安全.圈养大熊猫对竹子取食的研究.野生动物,2:18-19,(1997).
    [8]刘维新.关于大熊猫每胎的产仔数.野生动物.(4):37-38,(1987).
    [9]周霞.日本血吸虫病核酸疫苗研究进展.中国血吸虫病防治杂志.19(4):317-320,(2007).
    [10]姚利晓, 林矫矫.日本血吸虫病核酸疫苗的研究.中国兽医寄生虫病.12(4):33-37,(2004).
    [11]Damak S et al. Detection of sweet and umami taste in the absence of taste receptor T1R3. Science 301:850, (2003).
    [12]Yoshida R et al. Multiple receptor systems for umami taste in mice. Ann. N. Y. Acad. Sci.1170:51-54(2009).
    [13]Yasumatsu K et al. Multiple receptors underlie glutamate taste response in mice. Am J Clin Nutr 90(suppl):747S-52S (2009).
    [14]Chaudhari N et al. Taste receptors for umami:the case for multiple receptors. Am J Clin Nutr 90(suppl):738S-42S (2009).
    [15]Roper SD. Signal transduction and information processing in mammalian taste buds. Eur J Physiol 454:759-776, (2007).
    [16]Fulton S. Appetite and reward. Front Neuroendocrinol.31(1):85-103 (2010).
    [17]Palmiter R.D. Is dopamine a physiologically relevant mediator of feeding behavior? Trends Neurosci.30(8):375-81 (2007).
    [18]Wise R.A. Dopamine, learning and motivation. Nat Rev Neurosci.5(6):483-94 (2004).
    [19]Haavik J et al. Mutations in human monoamine-related neurotransmitter pathway genes. Hum Mutat.29(7):891-902 (2008).
    [20]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol.215:403-410 (1990).
    [21]Tabaska JE et al. Detection of polyadenylation signals in human DNA sequences. Gene 231,77-86 (1999).
    [22]Lewis BP et al. Prediction of mammalian microRNA targets. Cell 115,787-798 (2003).
    [23]Lewis BP et al. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120,15-20 (2005).
    [24]Friedman RC et al. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19,92-105 (2009).
    [25]Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31(13),3406-15 (2003).
    [26]Griffiths JS et al. miRBase:tools for microRNA genomics. Nucleic Acids Res 36, D154-D158 (2008).
    [27]Miranda KC et al. "A Pattern-Based Method for the Identification of MicroRNA Binding Sites and Their Corresponding Heteroduplexes" Cell 126,1203-1217 (2006).
    [28]Kaye, W., Neurobiology of anorexia and bulimia nervosa.Physiol. Behav 94,121-135 (2008)
    [29]Palmiter RD. Is dopamine a physiologically relevant mediator of feeding behavior? Trends Neurosci.30(8):375-81 (2007).
    [30]Zhou Y et al. The Schistosoma japonicum genome reveals features of host-parasite interplay. Nature 460 (7253),345-351 (2009).
    [31]Jimenez-Guri E et al. Buddenbrockia Is a Cnidarian Worm. Science 317(5834), 116-118(2007)
    [32]Dunn CW et al. Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452(7188),745-749 (2008)
    [33]Passamaneck Y et al. Lophotrochozoan phylogeny assessed with LSU and SSU data: Evidence of lophophorate polyphyly. Molecular Phylogenetics and Evolution 40,20-28 (2006).
    [34]Austin,C.P., Battey,J.F., Bradley,A., Bucan,M., Capecchi,M., Collins,F.S., Dove,W.F., Duyk,G., Dymecki,S. et al. The knockout mouse project. Nat. Genet.36,921-924 (2004).
    [35]Auwerx,J., Avner,P., Baldock,R., Ballabio,A., Balling,R., Barbacid,M., Berns,A., Bradley,A., Brown,S. et al. The European dimension for the mouse genome mutagenesis program. Nat. Genet.36,925-927 (2004).
    [36]Collins,F.S., Rossant,J. and Wurst,W. A mouse for all reasons. Cell 128,9-13 (2007).
    [37]Clark,A.T., Goldowitz,D., Takahashi,J.S., Vitaterna,M.H., Siepka,S.M., Peters,L.L. Frankel,W.N., Carlson,G.A., Rossant,J. et al. Implementing large-scale ENU mutagenesis screens in North America. Genetica 122,51-64 (2004).
    [38]Fahrer,A.M., Bazan,J.F., Papathanasiou,P., Nelms,K.A. and Goodnow,C.C. A genomic view of immunology. Nature 409,836-838 (2001).
    [39]Hrabe de Angelis,M.H., Flaswinkel,H., Fuchs,H., Rathkolb,B., Soewarto,D., Marschall,S., Heffner,S., Pargent,W., Wuensch,K. et al. Genome-wide, large-scale production of mutant mice by ENU mutagenesis. Nat. Genet.25,444-447 (2000).
    [40]Nolan,P.M., Peters,J., Strivens,M., Rogers,D., Hagan,J., Spurr,N., Gray,I.C., Vizor,L. Brooker,D. et al. A systematic, genomewide, phenotype-driven mutagenesis programme for gene function studies in the mouse. Nat. Genet.25,440-443 (2000)[1].
    [41]Nolan,P.M., Peters,J., Vizor,L., Strivens,M., Washbourne,R., Hough,T., Wells,C. Glenister,P., Thornton,C. et al. Implementation of a large-scale ENU mutagenesis program:towards increasing the mouse mutant resource. Mamm. Genome 11, 500-506 (2000)[2].
    [42]Pargent,W., Heffner,S., Schable,K.F., Soewarto,D., Fuchs,H. and Hrabe de Angelis,M. MouseNet database:digital management of a large-scale mutagenesis project. Mamm. Genome 11,590-593 (2000).
    [43]Rathkolb,B., Decker,T., Fuchs,E., Soewarto,D., Fella,C., Heffner,S., Pargent,W., Wanke,R., Balling,R. et al. The clinical-chemical screen in the Munich ENU Mouse Mutagenesis Project:screening for clinically relevant phenotypes. Mamm. Genome 11, 543-546 (2000).
    [44]Soewarto,D., Fella,C., Teubner,A., Rathkolb,B., Pargent,W., Heffner,S., Marschall,S., Wolf,E., Balling,R. et al. The largescale Munich ENU-mouse-mutagenesis screen. Mamm. Genome,11,507-510 (2000).
    [45]Cooley,L., Kelley,R. and Spradling,A. Insertional mutagenesis of the Drosophila genome with single P elements. Science 239,1121-1128 (1988).
    [46]Zhang,P. and Spradling,A.C. Insertional mutagenesis of Drosophila heterochromatin with single P elements. Proc. Natl Acad. Sci. USA,91,3539-3543 (1994).
    [47]Amsterdam,A., Burgess,S., Golling,G., Chen,W., Sun,Z., Townsend,K., Farrington.S., Haldi,M. and Hopkins,N. A large-scale insertional mutagenesis screen in zebrafish. Genes Dev.,13,2713-2724 (1999).
    [48]Amsterdam,A., Yoon,C., Allende,M., Becker,T., Kawakami,K., Burgess,S., Gaiano,N. and Hopkins,N. Retrovirus-mediated insertional mutagenesis in zebrafish and identification of a molecular marker for embryonic germ cells. Cold Spring Harb. Symp. Quant. Biol.,62,437-450 (1997).
    [49]Koiwa,H., Bressan,R.A. and Hasegawa,P.M. Identification of plant stress-responsive determinants in Arabidopsis by large-scale forward genetic screens. J. Exp. Bot.57, 1119-1128(2006).
    [50]Kuromori,T., Wada,T., Kamiya,A., Yuguchi,M., Yokouchi,T., Imura,Y., Takabe,H., Sakurai,T., Akiyama,K. et al. A trial of phenome analysis using 4000 Ds-insertional mutants in genecoding regions of Arabidopsis. Plant J.,47,640-651 (2006).
    [51]Ivics,Z., Kaufman,C.D., Zayed,H., Miskey,C., Walisko,O. and Izsvak,Z. The sleeping beauty transposable element:evolution, regulation and genetic applications. Curr. Issues Mol. Biol.6,43-55 (2004).
    [52]Luo,G., Ivics,Z., Izsvak,Z. and Bradley,A. Chromosomal transposition of a Tcl/mariner-like element in mouse embryonic stem cells. Proc. Natl Acad. Sci. USA 95,10769-10773(1998).
    [53]Dupuy,A.J., Fritz,S. and Largaespada,D.A. Transposition and gene disruption in the male germline of the mouse. Genesis 30,82-88 (2001).
    [54]Fischer,S.E., Wienholds,E. and Plasterk,R.H. Regulated transposition of a fish transposon in the mouse germ line. Proc. Natl Acad. Sci. USA 98,6759-6764 (2001).
    [55]Horie,K., Yusa,K., Yae,K., Odajima,J., Fischer,S.E., Keng,V.W., Hayakawa,T., Mizuno,S., Kondoh,G. et al. Characterization of sleeping beauty transposition and its application to genetic screening in mice. Mol. Cell. Biol.23,9189-9207 (2003).
    [56]Zagoraiou,L., Drabek,D., Alexaki,S., Guy,J.A., Klinakis,A.G., Langeveld,A., Skavdis.G., Mamalaki.C., Grosveld,F. et al. In vivo transposition of Minos, a Drosophila mobile element, in mammalian tissues. Proc. Natl Acad Sci. USA 98, 11474-11478(2001).
    [57]Wu,S., Ying,G., Wu,Q. and Capecchi,M.R. Toward simpler and faster genome-wide mutagenesis in mice. Nat. Genet.39,922-930 (2007).
    [58]Ding,S., Wu,X., Li,G., Han,M., Zhuang,Y. and Xu,T. Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell 122,473-483 (2005).
    [59]Wu,S.C., Meir,YJ., Coates,C.J., Handler,A.M., Pelczar,P., Moisyadi,S. and Kaminski,J.M. piggyBac is a flexible and highly active transposon as compared to sleeping beauty, Tol2, and Mos1 in mammalian cells. Proc. Natl Acad. Sci. USA 103, 15008-15013 (2006).
    [60]Stein LD et al. The generic genome browser:a building block for a model organism system database. Genome Res 12:1599-610 (2002).
    [61]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol,215:403-410 (1990).
    [62]Li RQ et al. The sequence and de novo assembly of the giant panda genome. Nature 21; 463(7279):311-7 (2010).
    [63]Yang ZH. PAML 4:Phylogenetic Analysis by Maximum Likelihood. Mol. Biol. Evol., 24(8):1586-1591(2007).
    [64]Stamatakis A. RAxML-VI-HPC:maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics,22(21):2688-2690 (2006).
    [65]Thompson JD, Higgins DQ Gibson TJ. CLUSTAL W:improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl. Acids Res.,22(22): 4673-4680 (1994).
    [66]Larkin MA, et al. Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947-2948(2007).
    [67]Tamura K et al. MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Mol. Biol. Evol.,24(8):1596-1599 (2007).
    [68]Felsenstein, J. PHYLIP (Phylogeny Inference Package) version 3.690. Distributed by the author. Department of Genetics, University of Washington, Seattle. (2009)
    [69]Rice P et al. EMBOSS:The European Molecular Biology Open Software Suite. Trends in Genetics,16(6):276-277 (2000).
    [70]Chandrashekar J et al. The receptors and cells for mammalian taste. Nature 444(7117):288-294(2006).
    [71]Hartl FU, Hartl MH. Molecular Chaperones in the Cytosol:from Nascent Chain to Folded Protein. Science,295(5561):1852-1858, (2002).
    [72]Schratt G. microRNAs at the synapse. Nature Reviews Neuroscience,10:842-849 (2009).
    [73]Nestler EJ, Carlezon Jr WA. The Mesolimbic Dopamine Reward Circuit in Depression. Biological Psychiatry,59(12)1151-1159, (2006).
    [74]Nakatani J et al. Abnormal Behavior in a Chromosome-Engineered Mouse Model for Human 15q11-13 Duplication Seen in Autism. Cell,137(7):1235-1246, (2009).
    [75]Park SK et al. Par-4 Links Dopamine Signaling and Depression. Cell 122(2):275-287, (2005).
    [76]Stone JL et al. Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 455(7210):237-241, (2008).
    [77]Heath TP et al. Human Taste Thresholds Are Modulated by Serotonin and Noradrenaline. The Journal of Neuroscience,26(49):12664-12671, (2006).
    [78]Carlezon Jr WA et al. The many faces of CREB. TRENDS in Neurosciences,28(8): 436-445, (2005).
    [79]D'Souza UM et al. Functional polymorphisms in dopamine and serotonin pathway genes. Human Mutation,27(1):1-13, (2006).
    [80]Krishnan V et al. The molecular neurobiology of depression. Nature 455(7215), 894-902, (2008).
    [81]Morales,M.E. et al. piggyBac transposon mediated transgenesis of the human blood fluke, schistosoma mansoni. FASEB J. doi:10.1096/fj.07-8726com [Epub ahead of print], (2007).
    [82]Sarkar A. et al. Molecular evolutionary analysis of the widespread piggyBac transposon family and related "domesticated" sequences. Mol. Genet. Genomics,270: 173-180, (2003).
    [83]Gonzalez-Estevez,C. et al. Transgenic planarian lines obtained by electroporation using transposon-derived vectors and an eye-specific GFP marker. Proc. Natl Acad. Sci. USA,100:14046-14051 (2003).
    [84]Lorenzen,M.D. et al. piggyBac-mediated germline transformation in the beetle Tribolium castaneum. Insect Mol. Biol.,12:433-440 (2003).
    [85]Thibault, S.T. et al. A complementary transposon tool kit for Drosophila melanogaster using P and piggyBac. Nat. Genet.,36:283-287 (2004).
    [86]Sumitani, M. et al. Germline transformation of the sawfly, Athalia rosae (Hymenoptera:Symphyta), mediated by a piggyBacderived vector. Insect Biochem. Mol. Biol.,33:449-458 (2003).
    [87]Handler, A.M. Use of the piggyBac transposon for germ-line transformation of insects. Insect Biochem. Mol. Biol.,32:1211-1220 (2002).
    [88]Balu, B. et al. Highefficiency transformation of Plasmodium falciparum by the lepidopteran transposable element piggyBac. Proc. Natl Acad. Sci. USA,102: 16391-16396(2005).
    [89]Cary, L.C. et al. Transposon mutagenesis of baculoviruses:analysis of Trichoplusia ni transposon IFP2 insertions within the FP-locus of nuclear polyhedrosis viruses. Virology,172:156-169 (1989).
    [90]Fraser, M.J et al. Assay for movement of Lepidopteran transposon IFP2 in insect cells using a baculovirus genome as a target DNA. Virology,211:397-407 (1995).
    [91]Fraser, M.J. et al. Precise excision of TTAA-specific lepidopteran transposons piggyback (IFP2) and tagalong (TFP3) from the baculovirus genome in cell lines from two species of Lepidoptera. Insect Mol. Biol.,5,141-151 (1996).
    [92]Tabare's-Seisdedos1 R et al. Chromosome 8p as a potential hub for developmental neuropsychiatric disorders:implications for schizophrenia, autism and cancer. Molecular Psychiatry,14:563-589 (2009).
    [93]Rolls ET et al. Computational models of schizophrenia and dopamine modulation in the prefrontal cortex. Nature Reviews Neuroscience 9,696-709 (2008).
    [94]Murphy DL et al. Targeting the murine serotonin transporter:insights into human neurobiology. Nature Reviews Neuroscience 9:85-96 (2008).
    [95]Philibert RA, et al. The Relationship of 5HTT (SLC6A4) Methylation and Genotype on mRNA Expression and Liability to Major Depression and Alcohol Dependence in Subjects From the Iowa Adoption Studies. American Journal of Medical Genetics Part B (Neuropsychiatric Genetics),147B:543-549 (2008).
    [96]Landgraf P et al. A Mammalian microRNA Expression Atlas Based on Small RNA Library Sequencing. Cell,129:1401-1414, (2007).
    [97]Zhu YL et al. A MicroRNA gene is hosted in an intron of a schizophrenia-susceptibility gene. Schizophrenia Research 109:86-89 (2009).
    [98]Hansen T, Olsen L, Lindow M, Jakobsen KD, Ullum H, et al. Brain Expressed microRNAs Implicated in Schizophrenia Etiology. PLoS ONE 2(9):e873 (2007). doi:10.1371/journal.pone.0000873
    [99]Tchivileva IE et al. Characterization of NF-kB-mediated inhibition of catechol-O-methyltransferase.Molecular Pain,5:13, (2009), doi:10.1186/1744-8069-5-13.
    [100]Filipowicz Witold et al. Mechanisms of post-transcriptional regulation by microRNAs:are the answers in sight? Nature Reviews Genetics 9:102-114, (2008).
    [101]Kocerha Jannet et al. MicroRNA-219 modulates NMDA receptor-mediated neurobehavioral dysfunction. Proc. NatlAcad. Sci. USA,106(9):3507-3512, (2009).
    [102]Burmistrova O. A. et al. MicroRNA in Schizophrenia:Genetic and Expression Analysis of miR-130b (22q11). Biochemistry (Moscow),72(5):578-582, (2007).
    [103]Cheng Hai-Ying M. et al. microRNA Modulation of Circadian-Clock Period and Entrainment. Neuron 54:813-829, (2007).
    [104]Nelson PT. et al. MicroRNAs (miRNAs) in Neurodegenerative Diseases. Brain Pathology 18 130-138, (2008).
    [105]Hunsberger JG et al. MicroRNAs in mental health:from biological underpinnings topotential therapies. Neuromolecular Med.11(3):173-182 (2009). doi:10.1007/s12017-009-8070-5.
    [106]Garbett KA et al. Novel animal models for studying complex brain disorders: BAC-driven miRNA-mediated in vivo silencing of gene expression. Molecular Psychiatry,1-9, (2010).
    [107]Chang Shuang et al. Small regulatory RNAs in neurodevelopmental disorders. Human Molecular Genetics,18 (Reveiw Issue 1):R18-R26,2009.
    [108]Fiore Roberto et al. MicroRNA function in neuronal development, plasticity and disease. Biochimica et Biophysica Acta 1779:471-478 (2008).
    [109]Xie T et al. Characterization and Implications of Estrogenic Down-Regulation of Human Catechol-O-Methyltransferase Gene Transcription. MOLECULAR PHARMACOLOGY,56:31-38 (1999).
    [110]Pan Chih-Chuan et al. Association analysis of the COMT/MTHFR genes and geriatric depression:An MRI study of the putamen. Int J Geriatr Psychiatry; 24: 847-855 (2009).
    [111]Thapar Anita et al. Catechol O-Methyltransferase Gene Variant and Birth Weight Predict Early-Onset Antisocial Behavior in Children With Attention-Deficit/Hyperactivity Disorder. Arch Gen Psychiatry.,62:1275-1278 (2005)
    [112]Krach, S., et al. COMT genotype and its role on hippocampal-prefrontal regions in declarative memory, Neurolmage (2010).
    [113]Wasserman D et al. The 2009 Nobel conference on the role of genetics in promoting suicide prevention and the mental health of the population. Molecular Psychiatry 15: 12-17, (2010)
    [114]Zalsman Gil et al. Relationship of MAO-A Promoter (u-VNTR) and COMT (V158M) Gene Polymorphisms to CSF Monoamine Metabolites Levels in a Psychiatric Sample of Caucasians:A Preliminary Report. American Journal of Medical Genetics Part B (Neuropsychiatric Genetics) 132B:100-103, (2005).
    [115]Mikolajczyk Elzbieta et al. The association of catechol-O-methyltransferase genotype with the phenotype of women with eating disorders. BRAIN RESEARCH, 1307:142-148,(2010).
    [116]Doornbos Bennard et al. The development of peripartum depressive symptoms is associated with gene polymorphisms of MAOA,5-HTT and COMT. Progress in Neuro-Psychopharmacology& Biological Psychiatry,33:1250-1254 (2009).
    [117]Zhang Zhao et al. The Val/Met functional polymorphism in COMT confers susceptibility to bipolar disorder:evidence from an association study and a meta-analysis. J Neural Transm,116:1193-1200 (2009).
    [118]Wang Gaofeng et al. Variation in the miRNA-433 Binding Site of FGF20 Confers Risk for Parkinson Disease by Overexpression of a-Synuclein. The American Journal of Human Genetics,82:283-289, (2008).
    [119]Ross CA et al. Neurobiology of Schizophrenia. Neuron,52:139-153, (2006).
    [120]Durand Daniela et al. Role of metabotropic glutamate receptors in the control of neuroendocrine function. Neuropharmacology,55577-583, (2008).
    [121]Krishnan Vaishnav et al. Molecular Adaptations Underlying Susceptibility and Resistance to Social Defeat in Brain Reward Regions. Cell,131:391-404,2007.
    [122]Stanley William C et al. Catecholamine modulatory e ects of nepicastat (RS-25560-197), a novel, potent and selective inhibitor of dopamine-b-hydroxylase. British Journal of Pharmacology,121:1803-1809, (1997).
    [123]Ming GL et al. DISCI Partners with GSK3β in Neurogenesis. Cell,136:990-992, (2009).
    [124]Zhang Yifeng et al. Coding of Sweet, Bitter, and Umami Tastes:Different Receptor Cells Sharing Similar Signaling Pathways. Cell,112:293-301, (2003).
    [125]Riccio Antonio et al. Essential Role for TRPC5 in Amygdala Function and Fear-Related Behavior. Cell,137:761-772, (2009).
    [126]Avshalom Caspi et al. Influence of Life Stress on Depression:Moderation by a Polymorphism in the 5-HTT Gene. Science 301:386-389 (2003).
    [127]Mill Jonathan et al. Evidence for Monozygotic Twin (MZ) Discordance in Methylation Level at Two CpG Sites in the Promoter Region of the Catechol-O-Methyltransferase (COMT) Gene. American Journal of Medical Genetics Part B (Neuropsychiatric Genetics),141B:421-425, (2006).
    [128]Zhou Rulun et al. Evidence for Selective microRNAs and Their Effectors as Common Long-Term Targets for the Actions of Mood Stabilizers. Neuropsychopharmacology,34:1395-1405, (2009).
    [129]Chen Jingshan et al. Functional Analysis of Genetic Variation in Catechol-O-Methyltransferase (COMT):Effects on mRNA, Protein, and Enzyme Activity in Postmortem Human Brain. Am. J. Hum. Genet.75:807-821, (2004).
    [130]Sabine M Klauck et al. Genetics of autism spectrum disorder. European Journal of Human Genetics,14:714-720 (2006)
    [131]Ramoz Nicolas et al. Eating disorders:an overview of treatment responses and the potential impact of vulnerability genes and endophenotypes. Expert Opin. Pharmacother.8(13):2029-2044 (2007).
    [132]Scherag Susann et al. Eating disorders:the current status of molecular genetic research.19(3):211-226 (2010)
    [133]Ramocki MB et al. Failure of neuronal homeostasis results in common neuropsychiatric phenotypes. Nature 455 (7215):912-918 (2008)
    [134]Flavell SW et al. Signaling Mechanisms Linking Neuronal Activity to Gene Expression and Plasticity of the Nervous System. Annu. Rev. Neurosci.,31:563-90, (2008).
    [135]Tenhunen Jukka et al. Genomic organization of the human catechol-0-methyltransferase gene and its expression from two distinct promoters. Eur. J. Biochem.223:1049-1059, (1994).
    [136]Abdolmaleky HM et al. Hypomethylation of MB-COMT promoter is a major risk factor for schizophrenia and bipolar disorder. Human Molecular Genetics,15(21): 3132-3145,(2006).
    [137]Meyer-Lindenberg A et al. Impact of complex genetic variation in COMT on human brain function. Molecular Psychiatry,11:867-877, (2006).
    [138]Honea Robyn et al. Impact of interacting functional variants in COMT on regional gray matter volume in human brain. Neurolmage 45:44-51, (2009).
    [139]Williams Hywel J et al. Is COMT a Susceptibility Gene for Schizophrenia? Schizophrenia Bulletin, doi:10.1093/schbul/sbm019
    [140]Mao Yingwei et al. Disrupted in Schizophrenia 1 Regulates Neuronal Progenitor Proliferation via Modulation of GSK3b/b-Catenin Signaling. Cell,136:1017-1031, (2009).
    [141]Akula Nirmala et al. Meta-analysis of genome-wide association data detects a risk locus for major mood disorders on chromosome 3p21.1. Nature Genetics, 42:128-131,(2010).
    [142]Rutherford K et al. Crystal structures of human 108V and 108M catechol O-methyltransferase. J Mol Biol.,380(1):120-30, (2008).
    [142]De Colibus L et al. Three-dimensional structure of human monoamine oxidase A (MAO A):relation to the structures of rat MAO A and human MAO B. Proc Natl AcadSci USA.,102(36):12684-9 (2005).
    [144]Binda C et al. Structure of human monoamine oxidase B, a drug target for the treatment of neurological disorders. Nat Struct Biol.,9(1):22-6, (2002).
    [145]Zhang F et al. Crystal structure of the obese protein leptin-E100. Nature, 387(6629):206-9, (1997).
    [146]Hurley TD et al. Order and disorder in mitochondrial aldehyde dehydrogenase. Chem Biol Interact.130-132(1-3):3-14,2001.
    [147]Wu Q et al. Structural, mutagenic, and kinetic analysis of the binding of substrates and inhibitors of human phenylethanolamine N-methyltransferase. J Med Chem. 48(23):7243-52, (2005).
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.