人Hepcidin融合表达载体的构建、在大肠杆菌中的表达及制备研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Hepcidin是一个主要在肝脏表达的含8个半胱氨酸残基的小分子多肽,是机体铁稳态调控途径中关键性的效应分子,其主要生物学功能在于调节小肠上皮细胞对于铁的吸收。另外,hepcidin和许多富含半胱氨酸的抗菌肽类似具有显著的抗菌作用。本文采用大肠杆菌表达体系进行了人hepcidin的融合表达,并对重组hepcidin的生产工艺进行了研究。
     根据hepcidin氨基酸序列和大肠杆菌密码子偏好性,化学合成了人hepcidin的基因序列,并在hepcidin编码序列的5′端引入了肠激酶特异性识别位点序列。我们首先构建了hepcidin的GST融合表达载体pGEX-hpc。尽管pGEX-hpc在25℃表达的GST-hepcidin 50%为可溶蛋白,但可溶蛋白不能采用谷胱甘肽Sepharose 4B亲和层析进行纯化。在载体pGEX-hpc的基础上构建了表达载体pET-hpc,pET-hpc表达的融合蛋白His-hepcidin大小为10.6kDa,N端带有6×His标签,并且其N端的担体序列中不含有半胱氨酸,hepcidin在His-hepcidin中所占比例为26.6%。采用His-hepcidin进行hepcidin的制备。
     载体pET-hpc在E.coli BL(DE3)中表达的His-hepcidin融合蛋白以包涵体的形式存在。His-hepcidin诱导表达时,温度是影响蛋白表达水平和菌体生长的最主要因素。确定的His-hepcidin诱导表达条件为:含pET-hpc的E.coli BL(DE3)在37℃生长至OD600为0.6~0.8后加入0.2mmol/L IPTG于30℃诱导表达6h。表达后菌体收率为6.1g/L(湿重),His-hepcidin约占菌体总蛋白的25%。收获的菌体经超声破碎后离心分离His-hepcidin包涵体,采用1%浓度的Triton X-100洗涤2次,洗涤后包涵体收率为0.99g/L(湿重),其中包涵体中重组蛋白占总蛋白的76%,His-hepcidin产率为199mg/L。包涵体中半胱氨酸残基主要以还原形式存在,采用含100mmol/L β-ME的8mol/L尿素溶解包涵体。
Hepcidin is a low-molecular-weight, highly disulfide bonded peptide relevant to small intestine iron absorption and body iron homeostasis. Like other cysteine-rich antimicrobial peptides, hepcidin also exhibits obvious antibacterial and antifungal activity. In this paper we express 25 aa human hepcidin as fusion proteins in E. coli and develop a preparation route of recombinant hepcidin.According to codon preference in E. coli and amino acid sequence of hepcidin, the gene coding for hepcidin was synthesized which was combined a encoding sequence of enterokinase cleavage site at its 5' end. Firstly we constructed pGEX-hpc. Although about 50% of GST-hepcidin fusion protein expressed from pGEX-hpc was soluble after induction with 0.1 mM IPTG at 25 ℃, it could not be absorbed by Glutathione -Sepharose. On the basis of pGEX-hpc the plasmid pET-hpc was constructed. The proportion of hepcidin in His-hepcidin was about 26.6%, and the fusion protein contained an N-terminal 6>    cells were lysed by sonication, the crude inclusion bodies were washed twice with 1% Triton X-100. The yield of washed inclusion body was 0.99g/L (wet weight), and the fusion protein in the inclusion body was 76%. Then the inclusion bodies was solubilized in 8mol/L urea containing lOOmmol/L 2-ME and 50mmol/L Tris-HCl(pH 8.0).Immobilized metal ion affinity chromatography (IMAC) was used to purify His-hepcidin in the condition of denaturation with two step elution. Firstly, 60mmol/L imidazole(pH 8.0) was used to elute the contaminants from the column. Then the elution of His-hepcidin was performed at pH 4.0. The binding capacity of Ni2+-IDA Sepharose Fast Flow for His-hepcidin was 30.4mg/ml resin.The disulfide bonds of hepcidin were formed before the fusion protein was cleaved by enterokinase. The oxidation of His-hepcidin was carried out in the cysteine-cystine system. The obtained His-hepcidin was diluted to a final protein concentration of 50(ig/mL with the buffer containing 3mol/L urea, 3mmol/L cysteine, 0.3mmol/L cystine and 20mmol/L Tris-HCl(pH8.0). Then the solution was kept at room temperature for 40h under moderate magnetic stirring. The monomer was up to 63% of total oxidized protein. The oxidized proteins were easily concentrated through IMAC and eluted with 300mmol/L imidazole containing 8mol/L urea. Then the dimeric and higher forms of the proteins were removed through Sephacryl S-100 HR gel filtration under denaturation condition at a flow rate of 0.46mL/min.We adopted continuous dilution to refold the monomer protein. Firstly the pooled monomer solution was adjusted to 100fi.g/mL His-hepcidin, 4mol/L urea, lOOmmol/L NaCl, 25mmol/L Tris-HCl, pH8.3. Then the solution was continuously diluted to 2mol/L urea and 50^xg/mL protein concentration within 8-1 Oh with refolding buffer(100mmol/L NaCl, 25mmol/L Tris-HCl, pH8.3). By this method, no protein precipitation was observed. The refolded protein was also concentrated with Ni-IDA-sepharose column and eluted with 300mmol/L imidazole
引文
[1] 邱耀良.必需微量元素铁与疾病的关系.广东微量元素科学,1997,4(10):19-22
    [2] 李增禧,梁业成,盛少禹,李小梁.铁是生命悠关的微量元素.广东微量元素科学,1994,1(3):54-62
    [3] 吴训贤.铁摄入过量对健康影响.国外医学医学地理分册.1992,13:100-103
    [4] Qian ZM, Wang Q, Pu YM. Brain iron and neurological diseases. Chin Med J, 1997, 110(6): 455-458
    [5] Qian ZM, Wang Q. Expression of iron transport proteins and excessive iron accumulation in the brain in neurodegenerative disorders. Brain Res Rev, 1998, 27: 257-267
    [6] Qian ZM, Shen X. Brain iron transport and neurodegeneration. Trend Mol Med, 2001, 7: 103-108
    [7] 蒋达和,钱忠明.小肠铁吸收机制及相关疾病研究进展。中华医学杂志,2001,81:1353-1355
    [8] Fleming RE, Sly WS. Hepcidin: A putative iron-regulatory hormone relevant to hereditary hemochromatosis and the anemia of chronic disease. Proc Nutl Acad Sci USA, 2001, 98(15): 8160-8162
    [9] Fleming RE, Sly WS. Mechanisms of iron accumulation in hereditary hemochromatosis. Annu Rev Physiol, 2002, 64: 663-680
    [10] Krause A, Neitz S, Magert HJ, Schulz, Forssmann WG, Schulz-Knappe P, Adermann. K. LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity. FEBS Lett, 2000, 480: 147-150
    [11] Park CH, Valore EV, Waring AJ, Ganz T. Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem, 2001, 276: 7806-7810
    [12] Tailor RH, Acland DP, Attenborough S. A novel family of small cysteine-rich antimicrobial peptides from seed of Impatiens balsmina is derived from a single precursor protein. J Biol Chem, 1997, 272: 24480-24487
    [13] Lamberty M, Ades S, Uttenweiler-Joseph S. Insect immunity. Isolation from the lepidoteran Heliothis virescens of a novel insect defensin with potent antifungal activity. J Biol Chem, 1999, 274: 9320-9326
    [14] Mitta G, Vandenbulcke F, Roch P. Original involvement of antimicrobial peptides in mussel innate immunity. FEBS Lett, 2000, 486: 185-190
    [15] Hunter HN, Fulton DB, Ganz T, Vogel HJ. The solution structure of human hepcidin, a peptide hormone with antimicrobial activity that is involved in iron uptake and hereditary hemochromatosis. J Biol Chem. 2002, 277(40): 37597-37603
    [16] Pigeon C, Ilyin G, Courselaud B, Leroyer P, Turlin B, Brissot P, Loreal O. A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J Biol Chem, 2001, 276: 7811-7819
    [17] Ilyin G, Courselaud B, Troadec MB, Pigeon C, Alizadeh M, Leroyer P, Brissot P, Loreal O. Comparative analysis of mouse hepcidin 1 and 2 genes: evidence for different patterns of expression and co-inducibility during iron overload. FEBS Lett. 2003, 542(1-3): 22-26
    [18] Nicolas G, Bennoun M, Devaux I, Beaumont C, Grandchamp B, Kahn A, Vaulont S. Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice. Proc Natl Acad Sci USA, 2001, 98: 8780-8785
    [19] Gunshin H, Mckenzie B, Berger UV. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature, 1997, 388: 482-488
    [20] Donovan ABA, Zhou Y, Shepard J. Positional cloning of zebrefish ferroportinl identifies a conserved vertebrate iron exporter. Nature, 2000, 403: 776-781
    [21] Vulpe CD, Kuo YM, Murphy TL. Hephaestin, a ceruloplasmin homologue implicated in intestinal iron transport, is defective in the sla mouse. Nat Genet, 1999, 21: 195-199
    [22] McKie AT, Marcian P, Rolfs A. A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol Cell, 2000, 5: 299-309
    [23] 柯亚,钱忠明.二价金属离子转运蛋白1-一个新发现的重要铁转运蛋白.生物化学与生物物理进展,2002,29(2):184-188
    [24] 钱忠明,蒲咏梅,邓柏礼.网织红细胞铁摄取机制研究进展.生物化学与生物 物理进展,1997,24(1):8-13
    [25] Bacon B. Hemochromatosis: diagnosis and management. Gastroenterology, 2001, 120:718-725
    [26] Feder JN, Gnirke A, Thomas W. A novel MHC class Ⅰ-like gene is mutated in patients with hereditary haemochromatosis. Nat Genet, 1996, 13: 399-408
    [27] Feder JN, Tsuchihashi Z, Irrinki A. The hemochromatosis founder mutation in HLA-H disrupts beta2-microglobulin interaction and cell surface expression. J Biol Chem, 1997, 272:14025-14028
    [28] Waheed A, Parkkila S, Saarnio J. Association of HFE protein with transferring receptor in crypt entercytes of human duodenum. Proc Natl Acad Sci USA, 1999, 96:1579-1584
    [29] Nicolas G, Bennoun M, Porteu A, Mativet S, Beaumont C, Grandchamp B, Sirito M, Sawadogo M, Kahn A, Vaulont S. Severe iron deficiency anemia in transgenic mice expressing liver hepcidin. Proc Natl Acad Sci USA, 2002, 99:4596-4601
    [30] Majore S, Binni F, Ricerca BM, Brioli G, Grammatico P. Absence of hepcidin gene mutations in 10 Italian patients with primary iron overload. Haematologica. 2002, 87(2):221-222
    [31] Merryweather-Clarke AT, Cadet E, Bomford A, Capron D, Viprakasit V, Miller A, McHugh PJ, Chapman RW, Pointon JJ, Wimhurst VL, Livesey KJ, Tanphaichitr V, Rochette J, Robson KJ. Digenic inheritance of mutations in HAMP and HFE results in different types of haemochromatosis. Hum Mol Genet. 2003, 12(17): 2241-2247
    [32] Biasiotto G, Belloli S, Ruggeri G, Zanella I, Gerardi G, Corrado M, Gobbi E, Albertini A, Arosio P. Identification of new mutations of the HFE, hepcidin, and transferrin receptor 2 genes by denaturing HPLC analysis of individuals with biochemical indications of iron overload. Clin Chem. 2003, 49(12): 1981-1988
    [33] Roetto A, Daraio F, Porporato P, Caruso R, Cox TM, Cazzola M, Gasparini P, Piperno A, Camaschella C. Screening hepcidin for mutations in juvenile hemochromatosis: identification of a new mutation (C70R). Blood. 2004, 103(6): 2407-2409
    [34] Biasiotto G, Roetto A, Daraio F, Polotti A, Gerardi GM, Girelli D, Cremonesi L, Arosio P, Camaschella C. Identification of new mutations of hepcidin and hemojuvelin in patients with HFE C282Y allele. Blood Cells Mol Dis. 2004, 33(3): 338-343
    [35]Delatycki MB, Allen KJ, Gow P, MacFarlane J, Radomski C, Thompson J, Hayden MR, Goldberg YP, Samuels ME. A homozygous HAMP mutation in a multiply consanguineous family with pseudo-dominant juvenile hemochromatosis. Clin Genet. 2004, 65(5): 378-383
    [36]Majore S, Binni F, Pennese A, De Santis A, Crisi A, Grammatico P. HAMP gene mutation c.208T>C (p.C70R) identified in an Italian patient with severe hereditary hemochromatosis. Hum Mutat. 2004,23(4): 400
    [37]Jacolot S, Le Gac G, Scotet V, Quere I, Mura C, Ferec C. HAMP as a modifier gene that increases the phenotypic expression of the HFE pC282Y homozygous genotype. Blood. 2004, 103(7): 2835-2840
    [38] Severe hemochromatosis in a Portuguese family associated with a new mutation in the 5'-UTR of the HAMP gene. Blood. 2004, 104(7): 2181-2183.
    [39]Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, Ganz T, Kaplan J. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science. 2004, 306(5704): 2090-2093
    [40]Knutson MD, Oukka M, Koss LM, Aydemir F, Wessling-Resnick M. Iron release from macrophages after erythrophagocytosis is up-regulated by ferroportin 1 overexpression and down-regulated by hepcidin Proc Natl Acad Sci U S A. 2005, 102(5):1324-1328
    [41] Ganz T. Hepcidin-a regulator of intestinal iron absorption and iron recycling by macrophages. Best Pract Res Clin Haematol. 2005, 18(2): 171-182
    [42]Means RT. Hepcidin and cytokines in anaemia. Hematology. 2004, 9(5-6): 357-362
    [43]Means RT. Hepcidin and anaemia. Blood Rev. 2004,18(4): 219-225
    [44]Weinstein DA, Roy CN, Fleming MD, Loda MF, Wolfsdorf JI, Andrews NC. Inappropriate expression of hepcidin is associated with iron refractory anemia: implications for the anemia of chronic disease. Blood. 2002, 100(10):3776-3781
    [45]Nicolas G, Chauvet C, Viatte L, Danan JL, Bigard X, Devaux I, Beaumont C, KahnA, Vaulont S. The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. J Clin Invest. 2002, 110(7): 1037-1044
    [46] Nicolas G, Viatte L, Bennoun M, Beaumont C, Kahn A, Vaulont S. Hepcidin, a new iron regulatory peptide. Blood Cells Mol Dis. 2002, 29(3): 327-335
    [47] Shike H, Lauth X, Westerman ME, Ostland VE, Carlberg JM, Van Olst JC, Shimizu C, Bulet P, Burns JC. Bass hepcidin is a novel antimicrobial peptide induced by bacterial challenge. Eur J Biochem, 2002, 269:2232-2237
    [48] Anderson GJ, Frazer DM, Wilkins SJ, Becker EM, Millard KN, Murphy TL, McKie AT, Vulpe CD. Relationship between intestinal iron-transporter expression, hepatic hepcidin levels and the control of iron absorption. Biochem Soc Trans. 2002, 30(4): 724-726
    [49] Nemeth E, Valore EV, Territo M, Schiller G, Lichtenstein A, Ganz T. Hepcidin, a putative mediator of anemia of inflammation, is a type Ⅱ acute-phase protein. Blood. 2003, 101(7): 2461-2463
    [50] Courselaud B, Pigeon C, Inoue Y, Inoue J, Gonzalez FJ, Leroyer P, Gilot D, Boudjema K, Guguen-Guillouzo C, Brissot P, Loreal O, Ilyin G. C/EBPa regulates hepatic transcription of hepcidin, an antimicrobial peptide and regulator of iron metabolism. J Biol Chem. 2002, 277(43): 41163-41170
    [51] Ganz T. Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammation. Blood. 2003, 102(3):783-788
    [52] Kluver E, Schulz A, Forssmarm WG, Adermann K. Chemical synthesis of β-defensins and LEAP-1/hepcidin. J Pept Res. 2002, 59(6):241-248
    [53] 吴乃虎.基因工程原理,第二版(上、下册)第二版.北京:科学出版社,2001
    [54] F.奥斯伯,R.E.金斯顿,J.G.塞得曼,K.斯特拉尔,R.布伦特,D.D.穆尔,J.A.史密斯.精编分子生物学实验指南.北京:科学出版社,2001
    [55] 李元,陈松森,王渭池.基因工程药物.北京:化学工业出版社,2002
    [56] J.萨姆布鲁克,D.W.拉塞尔.分子克隆实验指南(上、下册)第三版.北京:科学出版社,2002
    [57] Hanning G, Makrides SC. Strategies for optimizing heterologous protein expression in Escherichia coli. TIBTECH, 1998, 16:54-60
    [58] Figge J, Wright C, Collins CJ. Roberts TM, Livingston DM. Stringent regulation of stably integrated chloramphenicol acetyl transferase genes by E. coli lac repressor in monkey cells. Cell. 1988, 52(5):713-722
    [59] Brown WC, Campbell JL. A new cloning vector and expression strategy for genes encoding proteins toxic to Escherichia coli. Gene. 1993, 127(1): 99-103
    [60]Doherty AJ, Connolly BA, Worral AF. Overproduction of the toxic protein, bovine pancreatic DNaseI, in Escherichia coli using a tightly controlled T7-promoter-based vector. Gene. 1993 , 136(l-2):337-340
    [61]Adhya S, Gottesman M. Promoter occlusion: transcription through a promoter may inhibit its activity. Cell. 1982, 29(3): 939-944
    [62]Nishihara T, Nohno T. A T7 promoter vector with a transcriptional terminator for stringent expression of foreign genes. Gene. 1994 ,145(1): 145-146
    [63]Newbury SF, Smith NH, Robinson EC, Hiles ID, Higgins CF. Stabilization of translationally active mRNA by prokaryotic REP sequences. Cell. 1987, 48(2): 297-310
    [64]Gren EJ. Recognition of messenger RNA during translational initiation in Escherichia coli. Biochimie. 1984, 66(l):l-29
    [65]Gualerzi CO, Pon CL. Initiation of mRNA translation in prokaryotes. Biochemistry. 1990, 29(25):5881-5889
    [66] Gold L. Posttranscriptional regulatory mechanisms in Escherichia coli. Annu Rev Biochem. 1988, 57:199-233
    [67]Barrick D, Villanueba K, Childs J, Kalil R, Schneider TD, Lawrence CE, Gold L, Stormo GD. Quantitative analysis of ribosome binding sites in E.coli. Nucleic Acids Res. 1994,22(7): 1287-1295
    [68] de Smit M H, van Duin J. Secondary structure of the ribosome binding site determines translational efficiency: a quantitative analysis. Proc Natl Acad Sci USA. 1990, 87(19):87:7668-7672
    [69]Ringquist S, Shinedling S, Barrick D, Green L, Binkley J, Stormo GD, Gold L. Translation initiation in Escherichia coli: sequences within the ribosome-binding site. Mol Microbiol. 1992, 6(9): 1219-1229
    [70]Hartz D, McPheeters DS, Gold L. Influence of mRNA determinants on translation initiation in Escherichia coli. J Mol Biol. 1991, 218(1):83-97
    [71] Chen H, Pomeroy-Cloney L, Bjerknes M, Tarn J, Jay E. The influence of adenine-rich motifs in the 3' portion of the ribosome binding site on human IFN-gamma gene expression in Escherichia coli. J Mol Biol. 1994, 240(1):20-27
    [72]Coleman J, Inouye M, Nakamura K. Mutations upstream of the ribosome-binding site affect translational efficiency. J Mol Biol. 1985, 181(1): 139-413
    [73] Sharp P M, Bulmer M. Selective differences among translation termination codons. Gene. 1988;63(1):141-145
    [74]Gutman GA, Hatfield GW. Nonrandom utilization of codon pairs in Escherichia coli. Proc Natl Acad Sci U S A. 1989 May;86(10):3699-3703
    [75]Schein C H. Optimizing protein folding to the native state in bacteria. Curr Opin Biotechnol. 1991, 2(5): 746-750
    [76]Cabilly S. Gene. Growth at sub-optimal temperatures allows the production of functional, antigen-binding Fab fragments in Escherichia coli. 1989, 85 (2): 553-557
    [77]Dale GE, Broger C, Langen H, D'Arcy A, Stuber D. Improving protein solubility through rationally designed amino acid replacements: solubilization of the trimethoprim-resistant type Sl dihydrofolate reductase. Protein Eng. 1994, 7(7): 933-939
    [78]Amrein KE, Takacs B, Stieger M, Molnos J, Flint NA, Burn P. Purification and characterization of recombinant human p50csk protein-tyrosine kinase from an Escherichia coli expression system overproducing the bacterial chaperones GroES and GroEL. Proc Natl Acad Sci U S A. 1995, 92(4): 1048-1052
    [79]Battistoni A, Carri MT, Steinkuhler C, Rotilio G. Chaperonins dependent increase of Cu,Zn superoxide dismutase production in Escherichia coli. FEBS Lett. 1993, 322(1): 6-9
    [80] Blum P, Ory J, Bauernfeind J, Krska J. Physiological consequences of DnaK and DnaJ overproduction in Escherichia coli. J Bacteriol. 1992, 174(22): 7436-7444
    [81]BIackwell J R, Horgan R. A novel strategy for production of a highly expressed recombinant protein in an active form. FEBS Lett. 1991, 295(l-3):10-12
    [82] Talmadge K, Gilbert W. Cellular location affects protein stability in Escherichia coli. Proc Natl Acad Sci U S A. 1982, 79(6): 1830-1833
    [83] Michaelis S, Beckwith J. Mechanism of incorporation of cell envelope proteins in Escherichia coli. Annu Rev Microbiol. 1982, 36:435-65
    [84]Schatz G, Dobberstein B. Common principles of protein translocation across membranes. Science. 1996, 271(5255):1519-1526
    [85]Schatz P J, Beckwith J. Genetic analysis of protein export in Escherichia coli. Annu Rev Genet. 1990, 24:215-248
    [86]Denefle P, Kovarik S, Ciora T, Gosselet N, Benichou JC, Latta M, Guinet F, Ryter A, Mayaux JF. Heterologous protein export in Escherichia coli: influence of bacterial signal peptides on the export of human interleukin 1 beta. Gene. 1989, 85(2):499-510
    [87]Ghrayeb J, Kimura H, Takahara M, Hsiung H, Masui Y, Inouye M. Secretion cloning vectors in Escherichia coli. EMBO J. 1984, 3(10): 2437-2442
    [88] Johnson DL, Middleton SA, McMahon F, Barbone FP, Kroon D, Tsao E, Lee WH, Mulcahy LS, Jolliffe LK. Refolding, purification, and characterization of human erythropoietin binding protein produced in Escherichia coli. Protein Expr Purif. 1996, 7(l):104-113
    [89] Hoffman C S, Wright A. Fusions of secreted proteins to alkaline phosphatase: an approach for studying protein secretion. Proc Natl Acad Sci U S A. 1985, 82(15): 5107-5111
    [90]Hogset A, Blingsmo OR, Saether O, Gautvik VT, Holmgren E, Hartmanis M, Josephson S, Gabrielsen OS, Gordeladze JO, Alestrom P. Expression and characterization of a recombinant human parathyroid hormone secreted by Escherichia coli employing the staphylococcal protein A promoter and signal sequence. J Biol Chem. 1990, 265(13): 7338-7344
    [91]Pluckthun A. Mono- and bivalent antibody fragments produced in Escherichia coli: engineering, folding and antigen binding. Immunol Rev. 1992, 130: 151-188
    [92]Makrides SC. Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol Rev. 1996 S, 60(3): 512-538
    [93]Lavallie ER, McCoy JM. Gene fusion expression systems in Escherichia coli. Curr Opin Biotechnol. 1995, 6(5): 501-506
    [94]Enfors SO. Control of in vivo proteolysis in the production of recombinant proteins. Trends Biotechnol. 1992, 10(9):310-315
    [95] Lee S Y, High cell-density culture of Escherichia coli. Trends Biotechnol. 1996, 14(3): 98-105
    [96] Bauer KA, Ben-Bassat A, Dawson M, de la Puente VT, Neway JO. Improved expression of human interleukin-2 in high-cell-density fermentor cultures of Escherichia coli K-12 by a phosphotransacetylase mutant. Appl Environ Microbiol. 1990, 56(5): 1296-1302
    [97] Inoue H, Nojima H, Okayama H. High efficiency transformation of Escherichia coli with plasmids. Gene. 1990, 96(1):23-28
    [98] 周宇荀,魏东芝,王二力.融合蛋白表达载体pGEX及其应用.生命科学,1998,10(3):122-125
    [99] Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacterophage T4. Nature, 1970, 227:680-685
    [100] 汪家政,范明.蛋白质技术手册.北京:科学出版社,2000
    [101] Bradford M. M. A rapid and sensitive method for the quantitation of protein utilizing the principles of protein-dye binding. Anal. Biochem. 1976, 72:248-254
    [102] Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem. 1974, 249(22): 7130-7139
    [103] Mannervik B, Danielson UH. Glutathione transferases—structure and catalytic activity. CRC Crit Rev Biochem. 1988, 23(3):283-337
    [104] Swank RT, Munkres KD. Molecular weight analysis of oligopeptides by electrophoresis in polyacrylamide gel with sodium dodecyl sulfate. Anal Biochem. 1971, 39(2): 462-77
    [105] Schaggar H, Von Jagow G. Tricine-Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis for the Separation of Proteins in the Range from 1 to 100 kDa. Anal. Biochem. 1987, 166:368-379
    [106] C.W.迪芬巴赫,G.S.得维克斯勒.PCR技术实验指南.北京:科学出版社,1998
    [107] 宁云山,李妍,王小宁.包含体蛋白质的复性研究进展.生物技术通讯,2001,12(3):237-240
    [108] 方敏,黄华樑.包涵体蛋白体外复性的研究进展.生物工程学报,2001,17(6):608-612
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.