水稻白叶枯病菌c-di-GMP信号蛋白分子鉴定及功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环鸟苷二磷酸(e-di-GMP)是一种新发现的细菌的新第二信使,并发现了鸟苷酸环化酶(DGC)和磷酸二脂酶(PDE)分别控制其合成和水解,而GGDEF结构域和EAL或HD-GYP结构域分别是DGC和PDE的活性中心。在细菌的基因组中存在着大量的GGDEF、EAL和HD-GYP结构域,如38个结构域存在于铜绿假单胞杆菌中、98个结构域存在于沙雷杆菌中、53结构域个存在于霍乱弧菌中和29结构域个存在于大肠杆菌中。另外发现,细菌的多种生物学功能受c-di-GMP调控,如:毒性、运动性和运动性等。
     水稻白叶枯病菌(Xanthomonas oryzae pv.oryzae,简称Xoo)是重要的水稻致病菌。然而在其侵染水稻的过程中可能某些信号调控起着至关重要的作用,进而对其致病性具有决定性作用。但是,现在信号究竟是通过何种手段对Xoo的致病性及相关基因的表达进行调控的仍没有明确报道。多年研究发现,环鸟苷二磷酸(c-di-GMP)是一种新发现的、广泛存在于细菌中调控着细菌多种生物学功能的第二信使。水稻白叶枯病菌有25-31个GGDEF、EAL和HD-GYP结构域。然而,至今仍不清楚部分信号蛋白基因的生物学功能。本研究着重对c-di-GMP系统中重要的3个基因(PXO-02944、PXO-04753和PXO-03877)进行了分子鉴定和功能分析。
     通过对PXO-02944、PXO-04753和PXO-03877进行分子克隆、序列分析、缺失突变和互补及其表型特征的鉴定;利用RT-Q-PCR方法,定量测定了A02944xoo、△04753xoo和Δ03877xoo毒性相关基因的表达。研究目的在于从Xoo中鉴别出相应的结构域蛋白基因、揭示其生物学功能,为全面阐明c-di-GMP代谢调控机理提供科学依据。
     采用基因标记置换方法,分别构建推测了具有c-di-GMP合成活性的鸟苷酸环化酶活性基因(PXO-02944)和降解活性的磷酸二酯酶基因(PXO-04753和PXO-03877)缺失突变体。与PXO99A相比,△02944xoo胞外多糖和生物膜合成能力以及对水稻的毒性显著增强;△03877xoo的生物膜、胞外多糖形成能力和对水稻的致病性明显减弱;△04753对烟草的致敏性和生物膜形成显著降低。总之,本研究阐述了PXO-02944、PXO-04753和PXO-03877作为c-di-GMP信号途径应答调控因子,分别调控了Xoo的多种生物学功能及其相关基因的表达。
Cyclic diguanylate (c-di-GMP) is found newly as a bacterial second messenger, and the same time, which is formed by diguanylate cyclases with GGDEF motifs that synthesize this second messenger; phosphodiesterases with EAL or HD-GYP motifs catabolize c-di-GMP. Many proteins with GGDEF, EAL or HD-GYP domains are existed in bacterial genomes,such as, there are 38 in Pseudomonas aeruginosa,98 in Serratia spp,53 in Vibrio cholerae, and 29 in E. coli. c-di-GMP has many key roles in regulation of a range of biochemical functions in virulence, biofilm formation, motility and environmental adaptation.
     Xanthomoans oryzae pv. oryzae (Xoo) is one of the most serious bacterial disease for rice. It mought contain that there was a signaling regulation network in Xoo which strictly control virulence gene expression through signal sensing, perception and transduction. However, at present, there was little new to be known about the virulence regulation network in Xoo. As reported,c-di-GMP regulated many kinds of complex physiological processes. There were 25-31 proteins with GGDEF, EAL or HD-GYP domains in Xoo, However,we still do not understood the functions of some proteins like as above. There are too many year research on c-di-GMP signaling.pathway and its functions in our laboratory. My research was focused on the identification and functional analysis of the new protein gene(PXO-02944、PXO-04753 and PXO-03877) that c-di-GMP signaling system in Xoo.
     PXO-02944、PXO-04753 and PXO-03877 were studied by gene cloning, sequence, deletion, complement and phenotype analysis; at the same time analyzing the expressions of the genes of EPS and T3SS inΔ02944xoo、Δ04753xoo andΔ03877xoo.My study aimed to identify the corresponding domain protein gene to revEAL its biological function from Xoo, so that providing the scientific basis for metabolic regulation mechanism of c-di-GMP.
     PXO-02944、PXO-04753 and PXO-03877 were investigated by gene deletion mutation using the marker exchange. Comparing to PXO99A, exopolysaccharide (EPS), biofilm production and virulence had a great ascent forΔ02944xoo; induction of hypersensitive responses (HR) in tobacco and biofilm formation reduced significantly forΔ04753xoo; theΔ03877xoo mutant demonstrated great deficiency in EPS, biofilm production and virulence. In general, That confirmed PXO-02944、PXO-04753 and PXO-03877 might act as important response regulators in c-di-GMP signaling system to be involved in regulation of many kinds of biological functions of Xoo.
引文
[1]David O, Ronald PC, Bogdanove AJ, et al. Xanthomonas oryzae pathovars:model pathogens of a model crop. Molecular Plant Pathology,2006,7(5):303-324.
    [2]Whitfield C. Biosynthesis of lipopolysaccharide O-antigens. Trends Microbiol,1995, 3:178-185.
    [3]Mew T.W., Vera Cruz C.M., Medalla E.S. Changes in race frequency of Xanthomonas oryzae pv. oryzae in response to rice cultivars planted in the Philippines. Plant Dis 1992, 76:1029-1032.
    [4]方中达.中国水稻白叶枯病菌致病类型的研究.植物病理学报,1990,20:81-87.
    [5]Curtis L C. Deleterious effects of guttated fluid on foliage. American journal of bioethis, 1943,30:778-781
    [6]Ezuka A, Kaku H. A historical review of bacterial blight of rice. Plant Molecular Biology, 2000,15:53-54.
    [7]Wood DW, Setubal J, Kaul R, et al. The genome of the natural genetic engineer Agrobacterium tumefaciens C58[J]. Science,2001,294(5550):2317-2323.
    [8]Buell CR., Joardar V., Lindeberg M., et al. The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000[J]. Pro Natl Acad Sci,2003,100:10181-10186.
    [9]Salanoubat M, Genin S, Artiguenave F, et al. Genome sequence of the plant pathogen Ralstonia solanacearum[J]. Nature,2002,415(6871):497-502.
    [10]Simpson AJ, Reinach FC, Arruda F, et al. The xylella fastidiosa consortium of the organization for nucleotide sequencing and analysis[J]. Nature,2000,406 (6792):151-157.
    [11]da Silva AC, Ferro JA, Reinach FC, et al. Comparison of the genomes of two Xanthomonas pathogens with differing host specificities [J]. Nature,2002,417 (6887): 459-463.
    [12]Qian W., Han Z.J., He C.Z. et al. Two-component signal transduction systems of Xanthomonas spp.:A lesson from genomics. Mol. Plant Microbe Interact 2008,21(2):151-161.
    [13]Thieme F, Koebnik R, Bekel T, et al. Insights into genome plasticity and pathogenicity of the plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria revEALed by the complete genome sequence[J]. Journal of Bacteriology,2005,187(21):7254-7266.
    [14]Lee BM, Park YJ, Park DS, et al. The genome sequence of Xanthomonas oryzae pathovar oryzae KACC10331, the bacterial blight pathogen of rice[J]. Nucleic Acids Research,2005, 33(2):577-586.
    [15]Hirokazu O, Yasuhiro I, Masaru T. Genome sequence of Xanthomonas oryzae pv. oryzae suggests contribution of large numbers of effector genes and insertion sequences to its race diversity[J].JARQ,2005,39(4):275-287.
    [16]Salzberg S L, Sommer D D, Schatz MC, et al. Genome sequence and rapid evolution of the rice pathogen Xanthomonas oryzae pv. oryzae PXO99A. BMC Genomics,2008,9(204): 1471-2164.
    [17]Steven LS, Daniel DS, Michael CS, et al. Genome sequence and rapid evolution of rice pathogen Xanthomonas oryzae pv. oryzae PXO99A[J]. BioMed Central Genomics, 2008,9:204
    [18]朱友林.水稻白叶枯病菌诱导水稻悬浮细胞防卫基因表达的初步研究.植物病理学报.1997,27:250.
    [19]章琦.我国水稻白叶枯病抗性基因的利用及策略.植物保护学报,1995,22(3):241-246
    [20]Noel L, Thieme F, Nennstiel D, et al. Two novel type III secreted proteins of Xanthomonas campestris pv. vesicatoria are encoded within the hrp pathogenicity island. Journal of Bacteriology,2002,184:1340-1348.
    [21]Rossier O, Wengelnik K, Hahn K, et al. The Xanthomonas Hrp type III system secretes proteins from plant and mammalian bacterial pathogens. Proceedings of the National Academy of Sciences of the United States of Amercia,1999,96(16):9368-9373.
    [22]Sasaki T, Burr B. Interional Rice Genome Sequencing Project the effort to completely sequence the rice genome. Current Opinion in Plant Biology,2000,3:138-141.
    [23]Hopkins CM, White FF, Choi SH, et al. Identification of a family of avirulence genes from Xanthomonas oryzae pv. oryzae. Molecular Plant-Microbe Interaction,1992,5(6):451-459.
    [24]Shen Y, Chern M, Silva F, et al. Isolation of a Xanthamonas oryzae pv. oryzae flagellar operon region and molecular characterization of flhF[J]. Molecular Plant-Microbe Interaction,2001,14:204-213.
    [25]Tang JL, Feng JX, Li QQ, et al. Cloning and characterization of the rplC gene of Xanthomonas oryzae pv. oryzae:involvement in exopolysaccharide production and virulence to rice[J]. Molecular Plant-Microbe Interaction,1996a,9(7):664-666.
    [26]Lindgren PB, Peet RC, Panopoulos NJ. Gene cluster of Pseudomonas syringae pv. phaseolicola. controls pathogenicity of bean plants and hypersensitivity on nonhost plants[J]. Journal of Bacteriology,1986,168:512-522.
    [27]Iyer AS, McCouch SR. The rice bacterial blight resistance gene xa5 encodes a novel form of disease resistance[J]. Molecular Plant-Microbe Interaction,2004,17:1348-1354.
    [28]Gu KY, Yang B, Tian D, et al. R gene expression induced by a type-Ⅲ effector triggers disease resistance in rice[J]. Nature,2005,435:1122-1125.
    [29]Yang B, Zhu WG, White F, et al. The virulence factor AvrXa7 of Xanthomonas oryzae pv. oryzae is a type III secretion pathway-dependent nuclear-localized double-stranded DNA-binding protein[J]. Proc Natl Acad Sci,2000,97:9807-9812.
    [30]Arlat M., Van Gijsegem F., Huet J.C., et al. PopAl, a protein which induces hypersensitivity like response on specific Petunia genotypes, is secreted via the Hrp pathway of Pseudomonas solanacearum. EMBO J,1994,13(3):543-553
    [31]He S.Y. Type III protein secretion systems in plant and animal pathogenic bacteria. Annu Rev Phytopathol,1998,36:363-392.
    [32]Fenselau S. and Bonas U. Sequence and expression analysis of the hrpB pathogenicity operon of Xanthomonas campestris pv. vesicatoria which encodes eight proteins with similarity to components of the Hrp, Ysc, Spa, and Fli secretion systems. Mol Plant-Microbe Interact,1995,8:845-854.
    [33]Rajeshwari R. and Sonti R.V. Stationary-phase variation due to transposition of novel insertion elements in Xanthomonas oryzae pv. oryzae. J Bacteriol,2000,182:4797-4802.
    [34]Kuo T.T., Lin B.C., Li C.C. Bacterial leaf blight of rice plant Ⅲ. Phytotoxic polysaccharides produced by Xanthomonas oryzae. Bot Bull Acad Sinica,1970,11:46-54.
    [35]Vidhyasekaran P., Alvenda M.E., Mew TW. Physiological changes in rice seedlings induced by extracellular polysaccharide produced by Xanthomonas campestris pv. oryzae. Physiol Mol Plant Pathol,1989,35:391-402.
    [36]Vorholter F.J., Niehaus K., Puhler A. Lipopolysaccharide biosynthesis in Xanthomonas campestris pv. campestris:a cluster of 15 genes is involved in the biosynthesis of the LPS O-antigen and the LPS core. Mol Genet Genomics,2001,266:79-95.
    [37]Koplin R., Wang G., Hotte B., et al. A 3.9-kb DNA region of Xanthomonas campestris pv. campestris that is necessary for lipopolysaccharide production encodes a set of enzymes involved in the synthesis of dTDP-rhamnose. J Bacteriol,1993,175:7786-7792.
    [38]Dow J.M., Osbourn A.E., Wilson T.J., et al. A locus determining pathogenicity of Xanthomonas campestris is involved in lipopolysaccharide biosynthesis. Mol Plant-Microbe Interact,1995,8:768-777
    [39]Ross, P., Aloni, Y., et al. Control of cellulose biosynthesis in Acetobacter xylinum. A unique guanyl oligonucleotide is the immediate activator of the cellulose synthase. Carbohydrate Res.1986,149:101-117.
    [40]Urs J., Jacob M. Mechanisms of Cyclic-di-GMP signaling in bacteria. Annu Rev of Genet, 2006,40:385-407.
    [41]Tal R., Wong H.C., Calhoon R., et al. Three cdg operons control cellular turnover of cyclic di-GMP in Acetobacter xylinum: genetic organization and occurrence of conserved domains in isoenzymes. J. Bacteriol 1998,180:4416-4425.
    [42]Galperin M.Y. Structural classification of bacterial response regulators:Diversity of output domains and domain combinations. J. Bacteriol 2006,188:4169-4182.
    [43]Chan, J., Goodwin, P. H. The molecular genetics of virulence of Xanthomonas campestris.
    [44]Biotechnol. Adv.1999,17:489-508.
    [45]Christen M., Christen B., Folcher M., et al. Identification and characterization of a cyclic di-GMP-specific phosphodiesterase and its allosteric control by GTP. J. Biol. Chem.2005, 280:30829-30837.
    [46]Ferreira R.B., Antunes L.C., Greenberg E.P., et al. Vibrio parahaemolyticus ScrC modulates cyclic dimeric GMP regulation of gene expression relevant to growth on surfaces. J. Bacteriol 2008,190:851-860.
    [47]Kazmierczak, B. I., Lebron, M. B., et al. Analysis of FimX, a phosphodiesterase that governs
    [48]twitching motility in Pseudomonas aeruginosa. Mol. Microbiol.2006,60:1026-1043.
    [49]Tamayo R., Pratt J.T., Camilli A. Role of cyclic diguanylate in the regulation of bacterial pathogenesis. Annu Rev Microbiol 2007,61:131-148.
    [50]Gilles-Gonzalez, M. A., Ditta, G. S., et al. A haemoprotein with kinase activity encoded by the oxygen sensor of Rhizobium meliloti. Nature.1991,350:170-172.
    [51]Ho, Y. S., Burden, L. M., et al. Structure of the GAF domain, a ubiquitous signaling motif and a new class of cyclic GMP receptor. EMBO J.2000,19:5288-5299.
    [52]Ryjenkov, D. A., Tarutina, M., et al. Cyclic diguanylate is a ubiquitous signaling molecule in bacteria:insights into biochemistry of the GGDEF protein domain. J. Bacteriol.2005, 187:1792-1798.
    [53]Perry, R. D., Pendrak, M. L., et al. Identification and cloning of a hemin storage locus involved in the pigmentation phenotype of Yersinia pestis. J. Bacteriol.1990,172:5929-5937.
    [54]Burrows, T. W., Jackson, S. The virulence-enhancing effect of iron on nonpigmented mutants of virulent strains of Pasteurella pestis. Br. J. Exp. Pathol.1956,37:577-583.
    [55]Ross, P., Weinhouse, H., et al. Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature.1987,325:279-281.
    [56]Aldridge, P., Paul, R., et al. Role of the GGDEF regulator PleD in polar development of
    [57]Caulobacter crescentus. Mol. Microbiol.2003,47:1695-708.
    [58]Yildiz FH. Cyclic dimeric GMP signaling and regulation of surface-associated developmental programs. J Bacteriol,2008,2:781-783
    [59]Tischler AD, Camilli A. Cyclic diguanylate regulates Vibrio cholerae virulence gene expression. Infect Immun,2005,73:5873-5882.
    [60]Kulasakara H, Lee V, Brencic A, et al. Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases revEALs a role for bis-(3'-5')-cyclic-GMP in virulence. Proc.Natl.Acad.Sci.USA,2006,103:2839-2844.
    [61]Beyhan,S, Tischler AD, Camilli A, et al. Transcrptome and phenotypic responses of Vibrio cholerae to increased cyclic di-GMP level. J.Bacteriol.2006,188:3600-3631.
    [62]Morgan R, Kohn S, Hwang SH, et al. BdlA, a chemotacis regulator essential for biofilm dispersion in Pseudomonas aeruginosa. J. Bacteriol,2006,188:7335-7343.
    [63]Wolfe AJ, Visick KL. Get the message out:cyclic-di-GMP regulates multiple levels of flagellum-based motility. J Bacteriol,2008,1:463-475.
    [64]Huitema, Pritchard ES, Matteson D, et al. Bacterial birth scar proteins mark future flagellum assembly site. Cell,2006,124:1025-1037.
    [65]Ryan RP, Fouhy Y, Lucey J F. Cyclic Di-GMP signaling in bacteria:Recent advances and new puzzles. J Bacterial,2006,11:8327-8334.
    [66]Li XZ, Hauer B, Rosche B. Single-species microbial biofilm screening for industrial applications[J]. Appl Microbiol Biotechnol,2007,76(6):1255-1262.
    [67]Shen Y W, Chern M S, Silva F G, et al. Isolation of a Xanthomonas oryzae pv. oryzae flagellar operon region and molecular characterization of flhF [J]. Molecular Plant-Microbe Interactions,2001,14(2):204-213.
    [68]Andro T, Chambost J P, Kotoujansky A, et al. Mutants of Erwinia chrysanthemi defective in secretion of pectinase and cellulase [J]. Journal of Bacteriology,1984,160(3):1199-1203.
    [69]Keen N T, Boyd C, Henrissat B. Cloning and characterization of a xylanase gene from corn strains of Erwinia chrysanthemi [J]. Molecular Plant-Microbe Interactions,1996, 9(7):651-657.
    [70]Tang X.Y., Frederick R.D., Zhou J., et al. Initiation of plant disease resistance by physical interaction of AvrPto and Pto kinase. Science,1996b,274(5295):2060-2063.
    [71]梁士敏,杨凤环,管文静等.水稻白叶枯病菌EAL结构域蛋白VieAxoo基因缺失突变和功能分析.微生物学报,2011,51(1):29-34.
    [72]Romling U, Amikam D, et al. Cyclic di-GMP as a second messenger. Current Opinion in Microbiology,2006,9:218-228.
    [73]Ueda A, Wood TK (2009) Connecting Quorum Sensing, c-di-GMP, Pel Polysaccharide, and Biofilm Formation in Pseudomonas aeruginosa throughTyrosine Phosphatase TpbA (PA3885). PLoS Pathog 5(6):e1000483. doi:10.1371/journal.ppat.1000483.
    [74]Daniels, L. Genetics of Xanthomonas. London:Chapman and Hall,1993.
    [75]Lelpi L., Couso R.O., Dankert M.A. Sequential assembly arid polymerization of the polyprenol-1 inked pentasaccharide repeatingunit of the xanthan polysaccharide in Xanthomonas campestris. J Bacteriol,1993,175(9):2490-2500.
    [76]Kumar A., Sunish Kuniar R., Sakthivel N. Compositional difference of the exopolysaccharides produced by the virulent and virulence-deficient strains of Xanthonionas oryzae pv. oryzae. Curr Microbiol,2003,46(4):251-255.
    [77]Katzen F., Becker A., Ielmini M.V., et al. New mobilizable vectors suitable for gene replacement in Gram-negative bacteria and their use in mapping of the 3'end of the Xanthomonas campestris pv. campestris gum operon. Appl Environ Microbiol,1999, 65(1):278-282.
    [78]Pollock T.J., Thorne L., Yamazaki M., et al. Mechanism of hacitracin resistance in Gram-negative bacteria that synthesize exopolysaccharides. J Bacteriol,1994,176:6229-6237.
    [79]Paulsen I.T., Beness A.M., Saier M.H. Computer-based analyses of the protein constituents of transport systems catalysing export of complex carbohydrates in bacteria. Microbiology, 1997,143(8):2685-2699.
    [80]Alfano J.R., Charkowski A.O., Deng W.L., et al. The Pseudomonas syringae Hrp pathogenicity island has a tripartite mosaic structure composed of a cluster of type Ⅲ secretion genes bounded by exchangeable effector and conserved effector loci that contribute to parasitic fitness and pathogenicity in plants. Proc Natl Acad Sci,2000,97(9): 4856-4861.
    [81]Colla Z.O. and Galan I.E. The Invasion-associated type Ⅲ protein secretion system in salmonella-a review. Gene,1997,192:51-59.
    [82]Oku T, Tanaka K, Iwamoto M. Structural conservation of the hrp gene cluster in Xanthomons oryzae pv. oryzae. Journal of General Plant Pathology,2004,70:159-167.
    [83]Harding N.E., Rao S., Rainiond A., et al. Identification, genetic and biochemical analysis of genes involved in synthesis of sugar nucleotide precursors of xanthan gum. J Gen Microbiol,1993,139:447-457.
    [84]Herrera C M, Koutsoudis M D, Wang X, et al. Pantoea stewartii subsp. stewart's wilt disease development on maize. Molecular Plant-Microbe Interactions,2008,21:1359-1370.
    [85]张静,许景升,吴茂森等.水稻白叶枯病菌转录调控因子基因fleQxoo和654因子基因rpoNxoo的分子鉴定.植物病理学报,2008,38(5):449-455.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.