纳米SiO_2浆料中半导体硅片的化学机械抛光及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着集成电路(IC)的快速发展,对衬底材料硅单晶抛光片表面质量的要求越来越高,化学机械抛光(CMP)是目前能实现全局平面化的唯一方法。研究硅片CMP技术中浆料性质、浆料与硅片相互作用、抛光速率及硅片CMP过程机理具有重要理论指导意义和实际应用价值。本文运用胶体化学、电化学和量子化学的原理和方法,系统研究了半导体硅片CMP技术中若干重要问题。
     详细研究了水相体系纳米SiO_2浆料的分散稳定性能,考察了纳米SiO_2颗粒在不同pH值介质中的润湿性和稳定性,探讨了不同分散方法及加入不同种类表面活性剂对纳米SiO_2颗粒吸光度、表面Zeta电位和吸附量等的影响,并通过颗粒间相互作用能的计算,分析讨论了纳米SiO_2浆料在不同条件下的分散行为和作用机理。研究得出,纳米SiO_2颗粒的等电点(pH_(IEP))约为2,在酸性介质中有较好的润湿性,在碱性介质中有较好的稳定性,其分散行为与其表面Zeta电位有很好的一致关系,随pH升高,由于增加颗粒表面Zeta电位,产生静电排斥作用使稳定性提高;机械搅拌和超声波均可有效促进纳米SiO_2浆料的分散,但保持浆料持久稳定需加入表面活性剂作为分散剂;不同种类表面活性剂的分散机理不同,非离子型Triton X-100主要通过在颗粒表面形成吸附层,产生空间位阻效应,同时可在一定程度上改变颗粒表面电Zeta电位,产生静电排斥效应而阻止颗粒聚集;阳离子型CPB和阴离子型SDBS主要由于静电排斥效应起稳定作用;加入1:1 TritonX-100/SDBS复配物则可同时增强静电排斥和空间位阻作用,能显著改善纳米SiO_2颗粒的分散能力,获得达30 d以上稳定的浆料。
     运用电化学实验方法,采用旋转圆盘电极,系统研究了不同掺杂类型及不同晶面半导体硅片在纳米SiO_2浆料中的腐蚀成膜特性和成膜机理,分析了硅片成膜随浆料pH值、SiO_2固含量、成膜时间和H_2O_2浓度等条件的变化规律;通过自行组装的CMP装置,进一步探讨了硅片在动态CMP过程中的电化学行为,研究了抛光压力、抛光转速、SiO_2固含量、浆料pH值以及H_2O_2浓度等因素对硅片抛光时的腐蚀电位和电流密度的影响和作用机理。结果表明:Si(100)晶面成膜速度较Si(111)晶面快,硅片成膜符合Müller模型;浆料pH值对硅片成膜和CMP时的腐蚀电位及腐蚀电流密度影响很大,pH值约为10.5时硅片表面形成的钝化膜最厚(约5.989(?)),而CMP时其腐蚀电流密度最大,说明此时腐蚀成膜和抛光去膜速率最快;浆料中加入一定浓度H_2O_2作为氧化剂能加速硅片成膜,并使CMP时的腐蚀电位升高,腐蚀电流密度增大,从而促进抛光去膜;一定程度提高抛光压力、抛光转速以及SiO_2固含量有助于硅片表面钝化膜的去除;由此获得了本实验条件下的抛光优化工艺参数如下。n(100):40kPa,100rpm,5~10wt%SiO_2,pH10.5,1vol%H_2O_2n(111):40kPa,200rpm,5~10wt%SiO_2,pH10.5,1vol%H_2O_2p(100):40kPa,200rpm,5~10wt%SiO_2,pH10.5,2vol%H_2O_2p(111):60kPa,200rpm,5~10wt%SiO_2,pH10.5,2vol%H_2O_2
     在CMP电化学研究基础上,考察了n(100)和n(111)型半导体单晶硅片在纳米SiO_2浆料中不同抛光压力、抛光转速、SiO_2固含量、浆料pH值、H_2O_2浓度以及抛光时间等条件下的抛光速率,分析得出硅片CMP过程机理。研究发现,抛光速率随浆料中SiO_2固含量的增加会发生材料去除饱和现象:抛光速率随抛光压力和抛光转速增加而呈次线性方式增加,说明CMP是机械和化学协同作用的过程;抛光速率随抛光时间延长逐渐减小,但变化程度趋于平稳;抛光速率随浆料pH值和H_2O_2浓度变化曲线上出现最大值,是由于化学作用和机械作用达到动态平衡;相同条件下Si(100)晶面的抛光速率远大于Si(111)晶面;认为硅片CMP是一个成膜—去除—再成膜的循环往复过程;半导体硅片CMP动态电化学与抛光速率研究结果很好的一致性,表明电化学可作为硅片CMP过程及机理探讨的可靠方法,从而为硅片CMP研究提供了新思路。
     应用量子化学计算方法,探讨了硅片CMP的化学作用机理。模拟Si(111)面构造出一种硅簇模型,并推测硅片CMP过程得到的硅晶面为H中止;对反应势能面上的反应物、产物、中间体和过渡态的几何构型进行了全优化,研究了硅片CMP过程的反应路径:比较了浆料中采用不同碱对硅片的CMP效果;并从热力学角度研究了水对硅片CMP的作用机理,建立了相应的团簇结构模型以描述≡Si—O—Si≡等类物质的性质,计算得出了主要反应的溶解自由能和平衡常数,为进一步开展更深入的研究奠定了理论基础。
     成功配制出粗抛和中抛浆料(GRACE2040)并应用于北京有研硅股半导体硅片的CMP工业生产中。结果表明:GRACE2040作为粗抛或中抛浆料,其粗抛去除速率达到北京有研硅股质量要求;粗、中抛光垫的使用寿命超过正常值(20h);抛光硅片几何参数、表面质量参数、表面粗糙度和合格品率均超过国家及北京有研硅股质量标准。北京有研硅股认为,GRACE2040粗、中抛光液完全能满足现有抛光工艺的要求,建议采购部将其纳入合格分供方名录。
With the rapid development of the integrated circuit(IC),the requirement for high surface quality of single crystals silicon wafer keeps continuous increasing.At present,chemical mechanical polishing(CMP)is the only way that can realize global planarization.The study concerning the properties of the CMP slurry,the interactions between slurry and silicon wafer during CMP,the remove rate,and the CMP mechanism is of importance for both theoretical guide and practical application.In this paper,the several important aspects concerning the CMP process of silicon wafer have been investigated using the principles and methods of colloid chemistry,electrochemistry and quantum chemistry.
     The dispersion and stability properties of the nano-SiO_2 slurries in an aqueous phase has been systematically studied.The wetting and stability of the nano-SiO_2 particles in an aqueous system at different pH were investigated.The influence of dispersion method and addition of surfactants on the stability of the nano-SiO_2 slurries was also investigated. The dispersion behavior and mechanism of the nano-SiO_2 at different conditions were analyzed and discussed using surface zeta-potential, absorbency and adsorption and calculated interaction energy between particles.The research results indicate that the isoelectric point(pH_(IEP))of the nano-SiO_2 particles is approximately 2.In acidic media,the particles show a better wetting,while at basic media,a better stability.Their dispersion behavior correlated well with surface Zeta potential.With increasing pH,the surface Zeta potential of the particles increases,leading to a stable dispersion due to electrostatic exclusion.Mechanical stirring and ultrasonic dispersion both promote the dispersion of the particles.However, to keep the stability of the slurries it is necessary to use surfactants. Different types of surfactant show different dispersion mechanism. Non-ionic surfactant,Triton X-100,forms an adsorption layer on the particle surface,which produces pace steric hindrance effect and changes the surface Zeta potential which leads to electrostatic exclusion.Both of them contribute to the prevention of the particles aggregation.Cationic surfactant CPB and ionic surfactant SDBS stabilize the particle dispersion mainly via electrostatic exclusion effect.Using a mixture of Triton X-100/SDBS(1:1)enhances electrostatic the exclusion effect and space steric hindrance effect,significantly improves the dispersion of nano-SiO_2 particles,produces a slurry with 30 day stability,
     In terms of electrochemical experimental methods,the characteristics and the mechanism of corrosion film-forming on different types of semiconductor wafers and different crystal surfaces were systematically studied with a rotation disc electrode.The relationship between the film-forming and pH,the content of SiO_2,the concentration of H_2O_2 as well as the duration has been analyzed.With a self-made CMP device,the electrochemical behavior of the wafer during dynamic CMP process was further studied.The influence and mechanism of the pressure,rotation rate, the content of SiO_2,pH and concentration of H_2O_2 on the corrosion potential and electrical current density was investigated.The results indicate that the film-forming rate of the Si(100)face is higher than that of the Si(111)face.Film-forming is consistent with Miiller model.The pH of the slurry shows a significant influence on the corrosion potential and electrical current density.At pH=10.5,a highest passivation film was obtained,corresponding to a highest corrosion electrical current density, indicating that the rate of corrosion film-forming and film-removing of polishing is highest.Addition of H_2O_2 in the slurries as an oxidant accelerates film-forming and raises corrosion potential of CMP process, leading to a higher corrosion electric current and accelerating the removal of film.Increasing the pressure,rotation rate,and SiO_2 content enhances the removal of the passivation film.The optimal polishing conditions obtained via experiments are as following:
     n(100):40kPa,100rpm,5~10wt%SiO_2,pH10.5,1vol%H_2O_2
     n(111):40kPa,200rpm,5~10wt%SiO_2,pH10.5,1vol%H_2O_2
     p(100):40kPa,200rpm,5~10wt%SiO_2,pH10.5,2vol%H_2O_2
     p(111):60kPa,200rpm,5~10wt%SiO_2,pH10.5,2vol%H_2O_2
     Based on the study of electrochemistry,the polishing rates of n(100) and n(111)type single crystal silicon wafers with nano-SiO_2 slurries at different pressures,rotation rates,SiO_2 contents,pH values,H_2O_2 concentrations and durations were investigated.It is observed that increasing content of SiO_2 in the slurries results in a removal saturation. The polishing rate increases quasi-linearly with increasing pressure and rotation rate,indicting that CMP is a synergic process involving both mechanical and chemical effects.The polishing rate decreases gradually with increasing duration and finally reaches a constant value.On the other hand,a maximum of the polishing rate occurs with increasing pH and H_2O_2 concentration,indicating that a dynamic equilibration established between chemical and physical effect.Under the same conditions,the fact that the polishing rate of Si(100)face is significantly higher than that of Si(111) implies that the CMP process of the silicon wafer comprises of a cycle including forming-removal-reforming of film.The consistence between the study on the dynamic electrochemistry and the study on the remove rate in the CMP process of silicon wafer indicates that electrochemistry can be used as a reliable method to investigate the CMP process and its mechanism,thus providing a new route for the study of the CMP process.
     Using quantum chemistry calculation method,the mechanism of the chemical reactions involved in CMP process of the silicon wafer was discussed.A silicon cluster model simulating Si(111)surface has been established,allowing us to speculate that the silicon surface obtained in CMP is H-ended.In the simulation,the geometrical conformations of the reactants,product,intermediates and transition states in the reaction potential surfaces were optimized in order to find the reaction routes in the CMP process.The effect of CMP using different bases has been compared. The reaction mechanism of H_2O in the CMP process was studies based on thermodynamics.To simulate the properties of≡Si-O-Si≡cluster,group structure models have been constructed.With these models the dissolving free energy and equilibrium coefficient of the main reactions in this hydration system have been calculated,providing a theory foundation for further investigation.
     A coarse polishing and a fine polishing slurry(GRACE2040)have been formulated,which are now applied on an industrial scale in the CMP process in GRINM Semiconductor Materials Co.,Ltd,located in Beijing. As coarse polishing and fine polishing slurry,the coarse polishing removal rate of GRACE2040 completely meets the quality demand of GRINM.The life time of the coarse and intermediate polishing pads is higher than the normal values(20h).The geometrical parameter,surface quality,surface roughness and eligibility of the polished silicon wafer are higher than the national and GRINM quality standard.According to GRINM,GRACE2040 coarse and intermediate polishing slurries completely meet the demand of the CMP process.GRINM will suggest to its purchasing department the addition of GRACE2040 to the list of qualified product.
引文
[1]Hahn P O.The 300 mm silicon wafer—a cost and technology challenge.Microelectron Eng,2001,56(1-2):3-13
    [2]Steigerwald J M,Murarka S P,Gutmann R J.Chemical Mechanical Planarization of Microelectric Materials.New York,USA:John Wiley & Sons Inc.,1997.4-10
    [3]Gehman B L.In the age of 300 mm silicon,tech standards are even more crucial.Solid State Technol,2001,44(8):127-128
    [4]Schuler J.Technology and market for CMP.In:Semicon China 99 Technical Symposium,Beijing:1999,17-18
    [5]Palik E D,Glembocki O J,Heard I,Etching roughness for(100)silicon surfaces in aqueous KOH.J Appl Phys,1991,70(6):3291-3296
    [6]刘玉岭,檀柏梅,张楷亮.超大规模集成电路衬底材料性能及加工测试技术工程.北京:冶金工业出版社,2002.3-4
    [7]Michael A F.The early days of CMP.Solid State Technol,1997,40(5):81-861
    [8]Minoru T.Oxide CMP mechanisms.Solid State Technol,1997,40(7):1701-1706
    [9]Ohmi T,Tatal roomtemperature wet cleaning for Si substrate surface.J Electrochem Soc,1996,43:749-756
    [10]Miyashita M,Tusga T,Makihra K,et al.Dependence of surface microroughness of CZ,FZ and EPI wafers on wet chemical processing.J Electrochem Soc,1992,139:2133-2139
    [11]Mendel E.Polishing of silicon.Solid State Technol,1967,10(8):27-39
    [12]Malik F,Hasan M.Manufacturability of the CMP process.Thin Solid Films,1995,270:612-615
    [13]Jairath R,Farkas J,Huang C K,et al.Chemical-mechanical polishing:process manufacturability.Solid State Technol,1994,7:71-75
    [14]Luo Q,Ramarajan S,Babu S V.Modification of the Preston equation for the chemical mechanical polishing of copper.Thin Solid Films,1998,335(1-2):160-167
    [15]Martinez M A.A year later,CMP market has grown even hotter.Solid State Technol,1995,38(9):441-445
    [16]Malik F,Hasan M.Manufacturability of the CMP process.Thin Solid Films,1995,270:612-615
    [17]Jairath R,Farkas J,Huang C K.et al.Chemical Mechanical Polishing:Process manufacture ability.Solid State Technol,1994,7:71-75
    [18]夏海良,张安康.半导体器件制造工艺.上海:上海科学技术出版社,1986.15
    [19]Fury M A.Emerging developments in CMP for Semiconductor Planarization.Solid State Technol,1995,38(4):471-475
    [20]郭东明,康仁科,苏建修,等.超大规模集成电路制造中硅片平坦化技术的未来发展.机械工程学报,2003,39(3):100-105
    [21]郭东明,康仁科,金洙吉.大尺寸硅片的高效超精密加工技术.见:中国机械工程学会2002年年会论文集,北京:机械工业出版社,2002.135-139
    [22]苏建修,康仁科,郭东明.超大规模集成电路制造中硅片化学机械抛光技术分析.半导体技术,2003.28(10):27-32
    [23]翁寿松.CMP的最新动态.电子工业专业设备,2005,(20):7-9
    [24]谢中生.CMP平坦化工艺技术中的发展应用与设备前景.电子工业专用设备,1997,26(1):12-14
    [25]Ali I,Roy S,Shinn G.Chemical mechanical polishing of interlayer dielectric:A review.Solid State Technol.,1994,37(10):631-637
    [26]金荣寿.化学机械抛光方法及设备.中国专利,ZL97113484.7,2001-09-19
    [27]李吉成,李在锡,金硕珍.抛光组合物.中国专利,ZL99111114.1,2000-08-23
    [28]格罗弗S高坦,米勒L布莱恩.用于氧化物CMP的组合物.中国专利,ZL97181972.6,2000-03-29
    [29]Basim G B,Adler J J,Mahajan U et al.Effect of particle size of chemical mechanical polishing slurries for enhanced polishing with minimal defects.J Electrochem Soc,2000,147(9):3523-35281
    [30]Shon-Roy L T.CMP:market trends and technology.Solid State Technol,2000,43(6):67-68
    [31]张楷亮,宋志棠,封松林,等.ULSI化学机械抛光的研究与展望.微电子学,2005,35(3):226-230
    [32]Ohmi T,Imaoka T,Sugiyama I,Kezuka T.Metallic impurities segregation at the surface between Si wafer and liquid during wet cleaning.J Electrochem Soc,1992,139:1170-1175
    [33]Ken W.The evolution of silicon wafer cleaning technology.J Electrochem Soc,1990,137:1887-1891
    [34]Jeson J S,Raghavan S,Sperline R P.Behavior of polyethylene oxide based nonionic surfactants in silicon processing using alkaline solutions.J Electrochem Soc, 1995, 142: 621-626
    [35] Malik I J, Zhang J, Jensen A J, et al. Post-CMP cleaning of W and SiO_2: a model study. In: Mater Res Soc Symp Proc, 1995, 386: 109-114
    [36] De Larios J M, Ravkin M A, Hetherington D L, et al. Post-CMP cleaning for oxide and tungsten applications. Semiconductor Int, 1996,19(5): 121-128
    [37] Seo Y J, Lee W S, Kim S Y, et al. Optimization of post-CMP cleaning process for elimination of CMP slurry-induced metallic contaminations. J Mater Sci-Mater El,2001,12:411-415
    [38] Myers T L, Fury M A, Krusell W C. Post-tungsten CMP cleaning: issues and solutions. Solid State Technol, 1995, 38(6): 109-114
    [39] Whitlock W H. Dry surfaces cleaning with CO_2 snow. In: Fine Particle Society 20th Annual Meeting, Boston, MA, 1989.283-287
    [40] Tam A C, Leung W P, Zapka W, et al. Laser-cleaning techniques for removal of surface particulates. J Appl Phys, 1992, 71(7): 3515-3523
    [41] Fury M A. Emerging developments in CMP for semiconductor planarization—part 2. Solid State Technol, 1995, 38(7): 811-816
    
    [42] Singer P. Chemical mechanical polishing: A new focus on consumables. Semiconductor Int, 1994, 17(2): 481-486
    [43] PAN J T. Mechanical polishing process. In: Proceeding of 1999 CMP-MIC Conf. California, USA, 1999,423-429
    
    [44] Meikle S, et al. Chemical mechanical polishing technique and method of endpoint detection in chemical mechanical polishing process. In: IEDM 5. 1995, 467-472
    [45] Berman M, Bibby T, Smith A. Review of in-situ & in-line detection for CMP application. In: Semiconductor Fabtech 8th Edition, 2000,268-274
    [46] Sandhu S, Laurence D, Trung. T. Method of endpoint detection during chemical/mechanical planarization of semiconductor wafers. USA Patent, 5036015, 1991-06-30
    [47] Tang J S, Unger CA, Moon Y, et al. Low-k dielectric material chemical mechanical polishing process monitoring using acoustic emission. In: Proc of Low-Dielectric Constant Materials and Application in Microelectronics. Mat Res Soc Symp, 1997. 168-172
    [48] Chen H C, Hsu S L. Chemical mechanical planarization endpoint method using measurement of polishing pad temperature. USA Patent, 5597442, 1997-01-28
    
    [49] Jin R R. New generation CMP equipment and its impact on IC devices. J Electron Mater,2001,30.(12)
    [50]Takizawa R,Nakanishi T,Honda K,et al.Ultraclean technique for silicon wafer surfaces with HNO_3-HF systems.J Appl Phys,1988,L2210-L2215
    [51]Norga G J,Platero M,Black K A.mechanism of copper deposition on silicon from dilute hydrofluoric acid solution.J Electrochem Soc,1997,144:2801-2805
    [52]Ljungberg K,Jansson U,Bengtsson S,et al.Modification of silicon surface with H_2SO_4:H_2O_2:HF and HNO_3:HF for wafer bonding applications.J Electrochem Soc,1996,143:1709-1715
    [53]De Larios J M.Post CMP cleaning for oxide and tungsten applications.Semiconductor Int,1996,19(5):1211-1216
    [54]Wang Y L,Liu C,Feng M S,et al.A modified muti-chemicals spray cleaning process for post CMP cleaning application.Mater Chem Phys,1998,52(1):23-30
    [55]Myers T L,Fury M A,Krusell W C.Post tungsten CMP cleaning:Issues and solutions.Solid State Technol,1995,38(6):1091-1095
    [56]Anttila O J,Tilli M V.Effect of chemicals on metal contamination on silicon wafers.J Electrochem Soc,1992,139:1180-1185
    [57]Mouche L,Tardif F,Kelly J A.Particle deposition on silicon wafers during wet processes.J Electrochem Soc,1994,141:1684-1690
    [58]Preston F.The theory and design of plate glass polishing machines.J Soc Glass Tech,1927,11:214-256
    [59]Liu C W,Dai B T,Tseng W T,et al.Modeling of the wear mechanical during chemical-mechanical polishing.J Electrochem Soc,1996,143(2):716-721
    [60]Cook L M.Chemical process in glass polishing.J Non-Crystal Solids,1990,120:152-171
    [61]Rha S K,Lee W J,Lee S Y,et al.Improved TiN film as a diffusion barrier between copper and silicon.Thin Solid Films,1998,320:134-140
    [62]Tseng W T,Liu C W.Effect of mechanical characteristics on the chemical mechanical polishing of dielectric thin films.Thin Solid Films,1996,290-291:458-463
    [63]薛冬峰,铌酸锂、钽酸锂晶体的结构研究.化学研究,2002,13(4):1-3
    [64]Seok J,Sukam C P,et al.Multiscale material removal modeling of chemical mechanical polishing.Wear.2003,254:307-320
    [65]陈俊盼.白宝石晶体加工及检测技术:[硕士学位论文].长春:光学精密机械学院,1998
    [66] McGrath J, Davis C. The effect of thin film stress levels on CMP polish rates for PETEOS wafers. J Mater Process Tech, 2003,132: 16-20
    [67] Dan T, Fury M. Chemical mechanical polishing of polymer films. J Electron Mater, 1998,27(10): 1088-1094
    [68] Larsen-Basse J, Liang H. Probable role of abrasion in chemo-mechanical polishing of tungsten. Wear, 1999, 233-235: 647-654
    [69] Neirynck J M, Yang G R, Murarka S P, et al. Low dielectric constant materials-synthesis and applications in microelectronics. Mater Res Soc Symp Proc, 1995,381:229-234
    [70] Zhao Y, change L. A micro-contact and wear model for chemical-mechanical polishing. Wear, 2002, 252: 220-226
    [71] Chen J M, Fang Y C. Process Characterization and modeling-hydrodynamic characteristics of the thin fluid film in chemical-mechanical polishing. IEEE Trans Semiconduct Manuf, 2002, 15 (1): 39 -44
    [72] Steigerwald J, Zirpoli R, Myrarka S, et al. Metal dishing and erosion in the chemical-mechanical polishing of copper used for patten delineation. Mater Res Soc Symp Proc, ULSI-X, 1995: 55-59
    [73] Luo J, Dorfeld D A. Material removal regions in chemical mechanical planarization for sub-micron integrated circuit fabrication: coupling effects of slurry chemicals, abrasive size distribution and wafer-pad contact area. IEEE Trans Semiconduct Manuf, 2003,16(1): 45-56
    [74] Anantha R S, Wang J F. Microstructural and surface phenomena in metal CMP.Electrochem Soc Proc, 1996, 22: 258-266
    
    [75] Asare O K, Khan A. Chemical-mechanical polishing of tungsten: an electrophoretic mobility investigation of alumina-tungstate interactions.Electrochem Soc Proc, 1998, 7: 138-144
    [76] Oliver M R. CMP fundamentals and challenges. Mater Res Soc Symp Proc, 2000, 566: 73-79
    [77] Graf D, Schnegg A, Schmolke R, et al. Morphology and chemical composition of polishing silicon wafer surfaces. Electrochem Soc Proc, 2000, 96-22: 186-196
    
    [78] Hoshino T, Kurata Y, Terasaki Y, et al. Mechanism of polishing of SiO_2 films by CeO_2 particles. J Non-Crystal Solids, 2001, 283: 129-136
    [79] Luo J B, Gao F, Hu Z M, et al. Surface finish and performances of read/write heads by using ultra-fine diamond slurry in polishing process. Int J Nonlinear Sci, 2002, 3 (3-4); 449-454
    [80] Lei H, Luo J B, Pan Guo S, et al. Chemical mechanical polishing of computer hard disk substrate in SiO_2 colloidal slurry. Int J Nonlinear SCI, 2002, 3(3-4): 455-459
    [81] Stefan J S, Jan A S. Surface defects in polished silicon studied bycross-sectional transmission electron microscopy. J Am Ceram Soc, 1989, 72(7): 1135-1139
    [82] Kunz R R, Clark H R, Nitishin P M, et al. High resolution studies of crystalline damage induced by lapping and single-point diamond machining of Si (100) . J Mater Res, 1996,11(5): 1228-1237
    [83] Zhao Y W, Chang L, Kim S H. A mathematical model for chemical-mechanical polishing based on formation and removal of weakly bonded molecular species. Wear, 2003,254: 332-339
    [84] Qin K, Moudgil B, Park C W . A chemical mechanical polishing model incorporating both the chemical and mechanical effects. Thin Solid Films , 2004, 446(2): 277-281
    [85] Ouma D O , Modeling of chemical mechanical polishing for dielectric planarization: [Doctor's Degree Thesis]. Massachusetts Institute of Technology, USA, 1999
    [86] Bielmann M , Chemical mechanical polishing of Tungsten: [Master's Degree Thesis]. University of Florida, USA, 1998
    [87] Luo Q, Chemical mechanical polishing of Copper thin films: [Doctor's Degree Thesis]. Clarkson University, USA, 1997
    
    [88] Liu Y L, Zhang K L, Wang F, et al. Investigation on the final polishing and technique of silicon substrate in ULSI. Microelectron Eng, 2003, 66: 438-444
    [89] Stein D J, Cecchi J L. Atomic force microscopy, lateral force microscopy, andtransmission electron microscopy investigations and adhesion force measurements for elucidation of tungsten removal mechanisms. J Mater Res, 1999, 14(9): 3695-3706
    [90] Bielman M, Mahajan U, Singh R K. Effect of particles size during tungsten chemical mechanical polishing. Electrochem Solid St, 1999, 2(8): 401-403
    [91] Luo J F, Dornfeld D A. Material removal mechanism in chemical mechanical polishing: theory and modeling. IEEE T Semiconduct M, 2001, 14(2): 112-133
    [92] Raider S I, Flitsch R, Palmer. Oxide growth on etched silicon in air at room temperature, J Electrochem Soc, 1975, 122: 413-419
    [93] Higashi G S, Chabal Y J, Trucks G W. Ideal hydrogen termination of the Si(111) surface.Appl Phys Lett,1990,56(7):656-661
    [94]Watanabe S,Shigeno M,Nakayama N.Silicon-monohydride termination of Si(111)surface formed by boiling water.Jpn.J Appl Phys,1991,35:3575-3580
    [95]Sawara K,Yasaka T,Miyazzaki S.Atomic scale flatnessof chemically cleaned silicon surfaces studied by infrared attenuated-total-reflection spectroscopy.Jpn.J Appl Phys,1992,31:L931-L936
    [96]Watanabe S,Nakayama N,Ito T.Homogeneous hydrogen-terminated Si(111)surface formed using aqeous HF solution and water.Appl Phys Lett,1991,59(12):1458-1462
    [97]Rao A V,Chazalviel J N,Chemical trends in the electromodulated infrared vibrational spectroscopy of various silicon/electrolyte interfaces.J Electrochem Soc,1987,134:2777-2783
    [98]Rao A V,Chazaviel J N,Ozanam F.Infrared-reflection spectroscopy.J Appl Phys,1986,60(2):696-701
    [99]Ozanam F,Djebri A,Chazalviel J N.The hydrogenated silicon syrface in organic electrolytes probed through in-situ IR spectroscopy in the ATR geometry.Electrochim.Acta,1996,45(5):687-692
    [100]Burrows V A,Higashi G S,Chabal Y J.Infrared spectroscopy of Si(111)surfaces after HF treatment:Hydrogen termination and surface morphology.Appl Phys Lett,1988,52(25):2145-2150
    [101]Kasparian J,Elwenspoek M,Allougue P.Digital computation and in situ STM approach of silicon anisotropic etching.Surf Sci,1997,388:50-55
    [102]Turner D R.Electropolishing silicon in HF solution.J Electrochem Soc,1958,195:402-408
    [103]Memming R,Schwandt G..Potential distribution and formation of surface states at the silicon-electrolyte interface.Surf.Sci,1966,4:109-116
    [104]汪斌华,黄婉霞,刘雪峰,等.纳米SiO_2的光学特性研究.材料科学与工程学报,2003,21(4):514-517
    [105]Li X H,Cao Z,Zhang Z J,et al.Surface-modification in situ of nano-SiO_2 and its structure and tribological properties.Applied Surface Science,2006,252(22):7856-7861
    [106]Tucker T.The evolution of CMP technology in device manufacturing applications and challenges.Semiconductor FABTECH ICG,Publishing Ltd,London,UK,1995,(2):265-272
    [107]Cochrane H.Aqueous colloidal dispersion of fumed silica without a stabilizer.USA Patent,5116535,1992-05-26
    [108]Miller D G.Aqueous colloidal dispersion of fumed silica,acid and stabilizer.USA Patent,5246624,1992-09-21
    [109]何斌,王相田,刘伟.纳米SiO_2水溶胶的制备技术研究及应用.上海化工,2000,(9):14-17
    [110]Basim G B,Moudgil B M.Effect of soft agglomerates on CMP slurry performance.J Colloid Interf Sci,2002,256(1):137-142
    [111]Basim G B,Vakarelski I U,Moudgil B M.Role of interaction forces in controlling the stability and polishing performance of CMP slurries.J Colloid Interf Sci,2003,263(2):506-515
    [112]Knoblich B,Gerber Th.Aggregation in SiO_2 sols from sodium silicate solutions.J Non-Crystal Solids,2001,283(1-3):109-113
    [113]Rao A V,Nilsen E,Einarsrud M A.Effect of precursors,methylation agents and solvents on the physicochemical properties of silica aerogels prepared by atmospheric pressure drying method.J Non-Crystal Solids,2001,296(3):165-171
    [114]Tsai M S.The study of formation colloidal silica via sodium silicate.Mater Sci Eng:B,2004,106(1):52-55
    [115]Sudheendra L,Raju A R.peptide-induced formation of silica from tetraethylorthosilicate at near-neutral pH.Mater Res Bull,2002,37(1):151-159
    [116]赵振国,吴佩强,羌笛,等.胶体与界面化学实验.北京:北京大学出版社,1993.159-160
    [117]宋晓岚,邱冠周,杨振华,等.水相介质中纳米CeO2的分散行为.稀有金属,2005,29(2):167-171
    [118]陈允魁.红外吸收光谱法及其应用.上海:上海交通大学出版社,1993.132-133
    [119]高濂,孙静,刘阳桥.纳米粉体的分散及表面改性.北京:化学工业出版社,2003.144-146
    [120]王相田,胡黎明,顾达.超细颗粒分散过程分析.化学通报,1995,(5):13-17
    [121]毋伟,邵磊,卢寿慈.机械力化学在高分子合成中的应用.化工新型材料,2000(2):10-14
    [122]黄新民,吴玉程,郑玉春.纳米功能复合涂层.功能材料,2000,31(4):419-420
    [123]Derjaguin B V,Laudau L.Acta physicochim.USSR 1941,14:633-662
    [124]Verwey E J W,Overbeek J Th.G..Theory of stability of lyophobic colloids.Elsevier,Amsterdam,1948
    [125]马运柱,范景莲,黄伯云.超细纳米颗粒在水介质的分散行为.矿冶工程.2003,10:23(5):43-46
    [126]马文有,田秋,曹茂盛,等.纳米颗粒分散技术研究进展——分散方法与机理(1)[J].中国粉体技术,2002,8(3):28-31
    [127]Pau C H著,周祖康,马季铭译.胶体与表面化学原理.北京:北京大学出版社.1986.188-190
    [128]顾志明,姬广斌,李凤生.超细无机粉体的水中分散研究综述.南京理工大学学报,1999,23(5):470-473
    [129]王相田,刘伟,金宇尧,程光伟.化学机械抛光浆料的制备与性能研究.华东理工大学学报,1998,24(6):6-12
    [130]李廷盛,尹其光,等.超声化学.北京:科学出版社,1995.156-159
    [131]杨金龙,吴建銧,黄勇,等.陶瓷粉末颗粒尺寸测试、表征及分散(三)陶瓷粉末在液体介质中的分散及分散评价.硅酸盐通报,1995,(1):67-77
    [132]Meguro K,Esumi K.Interactions between pigment and surfactant.J Coat Technol,1990,62(786):69-77
    [133]顾志明,姬广斌,李凤生.超细无机粉体的水中分散研究综述.南京理工大学学报,1999,23(5):470-473
    [134]Zhang X G.Electrochemistry of silicon and its oxide.New York:Kluwer Academic / Plenum Publishers,2001:46-49
    [135]Ghandhi S K.VLSI fabrication principles.New York:John Willey & Sons,1983
    [136]Palik E D,Glembocki O J,Heard I,et al.Study of bias-dependent etching of Si aqueous KOH.J Electrochem Soc,1987,134:404-409
    [137]Messmer C,Billo J C.The surface energy of Si,GaAs,and Gap.J Appl Phys,1981,52(7):4623-4628
    [138]佘思明.半导体硅材料学.长沙:中南工业大学出版社,1990.2-4
    [139]Pourbaix M.Atlas of Electrochemical Equilibria in Aqueous Solutions.Houston:National Association of Corrosion Engineers,1975.56-58
    [140]Uhlig H H,Revie R W.Corrosion and Corrosion Control.New York,USA:John Wiley&Sons Inc:1998.336-339
    [141]Steigerwald J M,Muraka S P,Gutmann R J,et al.Effect of copper ions in the slurry on the chemical-mechanical polish rate of titanium.J Electrochem Soc,1994,141(12):3512-3516
    [142] Du T, Tamboli D, Luo Y, et al. Electrochemical characterization of copper chemical mechanical planarization in KIO3 slurry. Appl Surf Sci, 2004, 229: 167-174
    [143] Kneer E A, Raghunath C, Raghavan S. Electrochemistry of chemical vapor deposited tungsten films with relevance to chemical mechanical polishing. J Electrochem Soc, 1996,143(12): 4093-4100
    [144] Kneer E A, Raghunath C, Mathew V, et al. Electrochemical Measurements during the Chemical Mechanical Polishing of Tungsten Thin Films. J Electrochem Soc, 1997,144(9): 3041-3049
    [145] Stein D J, Hetherington D, Guilinger T, et al. In situ electrochemical investigation of tungsten electrochemical behavior during chemical mechanical polishing. J Electrochem Soc, 1998, 145(9): 3190-3196
    [146] Lim G, Lee J H, Kim J, et al. Effects of oxidants on the removal of tungsten in CMP process. Wear, 2004, 257: 863-868
    [147] Vijayakumar A, Du T, Sundaram K B, et al. Polishing mechanism of tantalum films by SiO_2 particles. Microelectron Eng, 2003, 70: 93-101
    [148] Kalligal C G, Duquette D J, Murarka S P. An investigation of slurry chemistry used in chemical mechanical planarization of Aluminum. J Electrochem Soc, 1998, 145(6): 2074-2081
    [149] Zhang L, Raghavan S, Meikle S, et al. Inhibition of alumina deposition during tunsten chemical mechanical planarization through the use of citric acid. J Electrochem Soc, 1999, 146(4): 1442-1447
    [150] Hong S K, Tsai W T. Efect of applied potential on the chemical mechanical polishing of aluminum in phosphoric acid base slurry. J Electrochem Soc, 2000, 147(6): 2136-2142
    [151] Heyboer W L C M, Spierings G A C M, van den Meerakker J E A M. Chemomechanical silicon polishing. J Electrochem Soc, 1991, 138(3): 774-777
    
    [152] Muylader J V, Besson J, Pourbaix M, et al. Silicon, In: Atlas of electrochemicalequilibria in aqueous solutions. Houston: National Association of Corrosion Engineers, 1974:458
    [153] Kaufman F B, Thompson D B, Broabie R E, et al. Chemical-mechanical polishing for fabricating patterned W metal features as chip interconnects. J Electrochem Soc, 1991, 138(11): 3460-3464
    
    [154]何捍卫.铜化学机械抛光电化学机理与抛光速率得研究:[博士学位论文].长 沙:中南大学,2002
    [155]Luo J F.Integrated modeling of chemical mechanical planarization/polishing (CMP)for integrated circuit fabrication:[Doctor's Degree Thesis].Berkeley:University of California,2003
    [156]孙跃.金属腐蚀与控制.哈尔滨:哈尔滨工业大学出版社,2003.136-140
    [157]Du T,Chen J,Cao D.N,N-Dipropynoxy methyl amine trimethyl phosphonate as corrosion inhibitor for iron in sulfuric acid.J Mater Sci,2001,36(16):3903-3907
    [158]Du T,Tamboli D,Desai V,et al.Chemical mechanical polishing of tantalum:oxidizer and pH effects.J Mater Sci Mater Electron,2004,15(2):87-90
    [159]曹楚南.电化学阻抗谱导论.北京:科学出版社,2002.1-19
    [160]Schmuki P,BOhni H,Bardwell J A.In situ characterization of anodic silicon oxide films by AC impedance measurements.J Electrochem Soc,1995,142(5):1705-1712
    [161]Bertagna V,Erre R,Rouelle F,et al.Electrochemical study for the characterization of wet silicon oxide surfaces.Electrochim Acta,2001,47,129-136
    [162]Du T,Tamboli D,Desai V.Electrochemical characterization of copper chemical mechanical polishing.Microelectron Eng,2003,69:1-9
    [163]Zeidler D,Stavreva Z,Plotner M,et al.Characterization of Cu chemical mechanical polishing by electrochemical investigations.Microelectron Eng,1997,33:259-265
    [164]Macdonald D D.Transient techniques in electrochemistry.New York:Plenum Press,1977.295-298
    [165]Du T,Tamboli D,Luo Y,et al.Electrochemical characterization of copper chemical mechanical planarization in KIO_3 slurry.Appl Surf Sci,2004,229:167-174
    [166]Forsberg M.Effect of process parameters on material removal rate in chemical mechanical polishing of Si(100).Microelectron Eng,2005,77:319-326
    [167]Fusstetter H,Schnegg A,Graef D,et al.Impact ofchemomechanical polishing on the chemical composition and morphology of the silicon surface.Mat Res Soc Symp Proc,1995,386:97-108
    [168]Fusstetter H,Schnegg A,Graef D,et al.Impact of chemomechanical polishing on the chemical composition and morphology of the silicon surface.Mat Res Soc Symp Proc,1995,386:97-108
    [169] Seo Y J, Kim N H, Lee W S. Chemical mechanical polishing and electrochemical characteristics of tungsten using mixed oxidizers with hydrogen peroxide and ferricnitrate. Mater Lett, 2006, 60: 1192-1197
    [170] Fury M A, Scherber D L, Stell M A, et al. Chemical-Mechanical planarization of aluminum-based alloys for multilevel metallization. Mater Res Soc Bull, 1995, 20: 61-64
    [171] Fayolle M, Romagna F. Copper CMP evaluation: planarization issues. Microelectron Eng, 1997, 37-38: 135-141
    [172] Fayolle M, Sicurani E, Morand Y. W CMP process integration: consumables evaluation-electrical results and end point detection. Microelectron Eng, 1997, 37-38: 347-352
    [173] Stein D J, Hetherington D, Guilinger T, et al. In situ electrochemical investigation of tungsten electrochemical behavior during chemical mechanical polishing. J Electrochem Soc, 1998, 145(9): 3190-3196
    [174] Steigerwald J M, Murarka S D. Chemical processes in the chemical mechanical polishing of copper. Mater Chem Phys, 1995, 41: 217-228
    [175] Zeidler D, Stavreva Z, Plotner M, et al. Characterization of Cu chemical mechanical polishing by electrochemical investigations. Microelectron Eng, 1997, 33: 259-265
    [176] Du T, Tamboli D, Desai V. Electrochemical characterization of copper chemical mechanical polishing. Microelectron Eng, 2003, 69: 1-9
    
    [177] Chen J C, Lin S R, Tsai W T. Effects of oxidizing agent and hrdrodynamic condition on copper dissolution in chemical mechanical polishing electrolytes. Appl Surf Sci, 2004, 233: 80-90
    
    [178] Ahmadi G, Xia X. A Model for Mechanical Wear and Abrasive Particle Adhesion during the Chemical Mechnical Polishing Process. J Electrochem Soc, 2001, 148(3): G99-109
    [179] Sukharev V. Fluctuation Model of chemical Mechanical Planarizaion. J Electrochem Soc, 2001, 148(2): G172-G177
    
    [180] Wrschka P, Hernandez Y, Hsu T S, et al. Polishing Parameter Dependencies and Surface Oxidation of Chemical Mechanical Polishing of Al Thin Films. J Electrochem Soc, 1999, 146(7): 2689-2696
    
    [181] Liu C W, Dai B T, Tseng W T, et al. Modeling of the Wear Mechanical during Chemical-Mechnical Polishing. J Electrochem Soc, 1996, 143(3): 716-721
    [182]李秀娟,金洙吉,苏建修,等.铜布线化学机械抛光技术分析.中国工程,2005,16(10):896-900
    [183]Luo J F.Integrated modeling of chemical mechanical planarization/polishing (CMP)for integrated circuit fabrication:from particle scale to die and wafer scales:[Doctor's Degree Thesis].Berkeley:University of California,2003
    [184]Luo J,Dornfeld D A.Material removal mechanism in chemical mechanical polishing:theory and modeling.IEEE Trans Semicond Mauf,2001,14(2):112-133
    [185]Lu Z.Investigation of slurry systems in metal and dielectric chemical mechanical polishing:[Doctor's Degree Thesis].Potsdam:Clarkson University,2004
    [186]Paul E.A model of chemical mechanical polishing Ⅱ Polishing pressure and speed.J Electrochem Soc,2002,149(5):305-308
    [187]马俊杰,潘国顺,雒建斌,等.计算机硬磁盘CMP中抛光工艺参数对去除率的影响.润滑与密封,2004,(1):1-3
    [188]Nakamura K,Kishii S,Arimoto Y.Recondition-free polishing for interlayer-dielectric planarization.Jpn J Appl Phys,1997,36:1525-1528
    [189]武晓玲,刘玉岭,王胜利,等.pH值对铌酸锂晶片抛光速率及抛光表面的影响.半导体技术,2007,32(1):37-39
    [190]袁育杰,刘玉岭,张远祥,等.铝薄膜CMP影响因素分析.微纳电子技术,2006,(2):107-111
    [191]王胜利,袁育杰,刘玉岭.铜CMP中工艺参数对抛光速率的影响.润滑与密封,2006,(7):113-119
    [192]Park S W,Kim C B,Kim S Y,et al.Design of experimental optimization for ULSI CMP process applications.Microelectron Eng,2003,66(1-4):488-495
    [193]曹丽梅,胡岳华,徐兢,等.半导体工业中的化学机械抛光(CMP)技术.湖北化工,2000,(4):7-9
    [194]Slater J C.A simplification of the Hartree-Fock method.Phys Rev,1951,81(3):385-390
    [195]Frenkel D,Smit B.Understanding Molecular Simulation.In:Algorithms to Applications,2nd Edition.San Diego:Academic Press,2002.345-359
    [196]Pople J A,Santry D P,Segal G A.Approximate Self-Consistent Molecular Orbital Theory Ⅰ.Invariant Procedures.J Chem Phys,1965,43(10):S129-S135
    [197]Pople J A,Segal G A.Approximate Self-Consistent Molecular Orbital Theory Ⅱ.Calculations with Complete Neglect of Differential Overlap.J Chem Phys,1965, 43(10): S136-S149
    [198] http://www. gaussian. com/
    [199] http: //www. accelrys. com/products/mstudio/
    [200] Trogolo J A, Rajan K. Near surface modification of silica structure induced by chemical/mechanical polishing. J Mater Sci, 1994,29(17): 4554-4558
    [201] Dunken H H. Glass Surfaces. In: M. Tomozeawa and R. H. Doremus, eds. Treatise on Materials Science and Technology, vol20. New York: Academic Press Inc., 1982.1-7
    [202] Dpremus R H. Glass II. In: M. Tomozeawa and R. H. Doremus, eds. Treatise onMaterial Science and Technology, vol17. New York: Academic Press Inc. , 1979. 41-43
    [203] Rappich J, Lewerenz H J, Gerischer H. The Surface of Si(111 )during Etching in NaOH Studied by FTIR Spectroscopy in the ATR Technique. J Electrochem Soc,1993,140(12): L187-L189
    [204] Pietsch G J, Chabal Y J, Higashi G S. The atomic-scale removal mechanism during chemo-mechanical polishing of Si(100)and Si( 111). Surf Sci, 1995, 331-333(1): 395-401
    [205] Pietsch, G J, Chabal Y J, Higashi G S. Infrared-absorption spectroscopy of Si(100) and Si(111) surfaces after chemomechanical polishing. J Appl Phys, 1995, 78(3): 1650-1658
     [206] Weldon M K, Queeney K T, Gurevich A B, et al. Si-H bending modes as a probe of local chemical structure: Thermal and chemical routes to decomposition of H_2O on Si(100)-(2×1). J Chem Phys, 2000,113(6): 2440-2446
    [207] Luo H, Chidsey C E. D-Si(111)(1 × 1) surface for the study of silicon etching in aqueous solutions. Appl Phys Lett, 1998, 72(4): 477-479
    [208] Barone V, Cossi M. Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model. J Phys Chem A, 1998, 102(11): 1995-2001
    [209] Cossi M, Rega N, Scalmani G, Barone V. Energies, structures and electronic properties of molecules in solution with the C-PCM solvation model. J Comp Chem, 2003,24(6): 669-681
    [210] Boys F S, Bernardi F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys, 1970, 19(4): 553-566
    [211] Theo B, David J S. Surface spectroscopy and electrochemical characterisation ofmetal dithizonates covalently attached to gold by a self-assembled cysteamine monolayer. J Chem Soc, Faraday Trans, 1998, 94(5): 691-694
    [212] Armitage D A. Comprehensive Organometallic Chemistry. UK, Pergamon: Oxford Press, 1982. 1-5
    [213] Rochow E G. Comprehensive Inorganic Chemistry. UK, Pergamon: Oxford Press, 1973. 123-128
    [214] Holmes R R. The stereochemistry of nucleophilic substitution of tetracoordinate silicon. Chem Rev, 1990, 90(1): 17-31
    [215] Hajdasz D J, Squires R R. Hypervalent silicon hydrides: SiH5. J Am Chem Soc, 1986, 108(11): 3139-3140
    [216] Philipsen H G, Kelly J J. Anisotropy in the Anodic Oxidation of Silicon in KOH Solution. J Phys Chem B, 2005,109(36): 17245-17253
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.