基于PROFIBUS-DP现场总线的智能电动执行机构关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电动执行机构是自动控制系统中重要的终端控制元件,它对整个自动控制系统的正常运行、调节品质的优劣具有重要影响。目前,我国工业中应用的传统电动执行机构,存在控制精度低、死区大、无网络通讯功能等缺点,无法适应现代工业生产要求。
     随着智能控制技术和现场总线技术的发展,电动执行机构的智能化和总线化成为该领域技术的必然发展趋势。因此,基于PROFIBUS-DP现场总线的智能电动执行机构关键技术的研究,成为一个非常具有实际应用价值的课题。
     本文主题是应用嵌入式系统设计方法,研制具有自主知识产权的智能电动执行机构,重点研究适用于电动执行机构的嵌入式PROFIBUS-DP总线接口模块。
     本文首先介绍了工业自动化仪表、特别是电动执行机构的发展历史和未来趋势,然后介绍了嵌入式系统和现场总线在仪表中的应用前景,为系统的总体设计提供思路和方向。
     其次,本文以CMX-Scheduler嵌入式实时操作系统内核作为研究对象,首先详细分析了CMX-Scheduler的源代码,重点分析研究该系统的内核原理、移植等细节,并对采用该嵌入式操作系统作为平台进行系统开发进行了深入的研究。基于现场总线技术设计智能型电动执行机构是本文的重点。论文首先对电动执行机构的主控制电路和系统软件结构进行总体设计。电动执行机构的主控制电路主要包括执行机构位置检测电路设计、红外通信接口电路设计、电机驱动电路设计以及PROFIBUS-DP总线通信接口电路设计等。以此电动执行机构硬件平台为基础,通过CMX-Scheduler系统移植工作,完成系统软件的设计实现。并且构建PROFIBUS-DP总线网络,对所设计的电动执行机构的相应功能进行测试,试验结果表明此电动执行机构可以实现PROFIBUS-DP总线通信功能。
     本文将PROFIBUS-DP现场总线控制系统作为研究对象,对引起系统可靠性下降的根源?故障进行了详细分析,对PROFIBUS-DP系统可能出现的故障类型进行了分类研究。论文从故障预防和故障容错两个方面研究了提高PROFIBUS-DP控制系统可靠性的有效措施,其中以冗余技术作为研究重点,研究实现PROFIBUS-DP控制系统冗余的两种主要方案:主站冗余和从站冗余。然后对它们的体系结构、工作机理以及所提供的故障保护功能进行了详细地分析。通过构建PROFIBUS-DP冗余系统,针对提出的方案进行了分析测试,试验结果表明,该方案能显著地提高PROFIBUS-DP总线控制系统的可靠性水平。
Electric actuator is a kind of important terminal-control instrument in automatic control system. It effects on the independence of the automatic control system. It plays an important role in the credibility of the control system. But now traditional electric actuator which are widely used in many factories in our country can't carry out fieldbus communication. Low precision, wide insensitive area and complicated connection are also traditional electric actuator't innate defects. Traditional electric actuator's capability can't meet modern industry production needs. With the development of fieldbus technology, the electric actuator is developed very fast. Fieldbus and intellectualization are general trend of the electric actuator development. Because of that, the development of the intelligent electric actuator based on the PROFIBUS-DP fieldbus technology is valuable.
     The main subject of this paper is using embedded systems design technology to develop the electric actuator which has independent intellectual property right and design PROFIBUS-DP interface module appling to electric actuator.
     After looking back the developing history of industrial automation instruments, especially electric actuator, this paper first introduces the application of embedded system and fieldbus for intellectualized instrument to make us design this actuator in reason.
     Secondly, CMX-Scheduler RTOS becomes the object of study.The paper analysed the source code of CMX-Scheduler. We studied the user programming on the embedded system, including system principles and transplanting details, so that the job prepared for the development of electric actuator.
     The stress of paper is using Fieldbus technology to develop the electric actuator. Firstly, the paper mainly discussed how the electric actuator is designed and and developed. The main control software and hardware of the actuator are analyzed and designed in brief. The main control circuit is designed and developed in detail mainly including the realization of location measurement circuit, the realization of motor drivering circuit, the realization of infrared communication circuit and the development of PROFIBUS-DP fieldbus communication interface.The paper introduced how to transplant CMX-Scheduler RTOS to the hardware platform of electric actuator and how to realize the software design of electric actuator.At the same time, we designed the PROFIBUS-DP network to test the functions of electric actuator. The result of experiment indicated that the electric actuator can realize the function of PROFIBUS-DP fieldbus communication.
     In this paper, the PROFIBUS-DP fieldbus control systerm is chosen as research subject. We first analyzed fault, the root that causes the unreliability of the system. The main faults of PROFIBUS-DP fieldbus control systerm are categorized and studied. The thesis studies the effective measurements to improve the reliability of PROFIBUS-DP through fault prevention and fault tolerant, especially redundancy technology. We realized the redundancy systerm of PROFIBUS-DP fieldbus control systerm, i.e. master redundancy, slave redundancy. This involves the definitions, architectures, functioning mechanisms of the three aspects. The respective functions of each are analyzed in detail.We constructed the redundancy systerm of PROFIBUS-DP fieldbus control systerm to test the functions of redundancy technology.The result of experiment indicated that the methods improve the reliability of PROFIBUS-DP very well.
引文
[1] 阳宪惠. 现场总线技术及应用[M],北京:清华大学出版社 1999,6:20-98.
    [2] 王鸿钮,重光.新一代的仪器仪表[J].仪器仪表技术,2002,1: 44-45.
    [3] 我国仪器仪表水平有待提高[J],仪器仪表与装置,2002,2: 12-34.
    [4] 邓 兵,潘俊民,潘志扬,数字化阀门电动执行机构[J].自动化仪表,2001,7: 17-19
    [5] 吴钦伟.世纪之交的自动化仪表一检测仪表与执行器的技术进展[J].自动化仪表,2000, 1: 1-5.
    [6] 禇银兴、施竹仁、巢 乐. 现场总线智能电动执行机构的研制[J].自动化仪表,2001,11: 23-25.
    [7] KirkZurel.嵌入式系统的C程序设计[M],北京:机械工业出版社,2002,1:12-78.
    [8]王 良,王高生,嵌入式数字伺服控制系统[J],测控技术,1997,16(5):5-9.
    [9]王 青,嵌入式计算机为核心的实时控制系统的一种测试方法[J].航空计算技术,1997,16(2):11-14.
    [10]张云生,实时控制系统软件设计原理及应用[M],北京,国防工业出版社,1998,2:22-78.
    [11] Jean Labrosse, uC/OS The Real-Time Kernel[M], R&D Publications, 5-60.
    [12]嵌入式实时操作系统 uC/OS-II(第二版) [M],邵贝贝等译,北京航空航天出版社,2003,6.
    [13] 刘国荣,梁景凯.计算机控制技术与应用[M].北京,机械工业出版社,1999,10.
    [14] Microchip微处理技术手册[M].2002,11:11-278.
    [15] 马忠梅,马岩. 单片机的c语言应用程序设计[M],北京航天航空大学出版社,1997.
    [16] 徐爱钧,彭秀华.单片机高级语言C51Windows环境编程与应用[M].北京,电子工业出版社,2001,3:34-90.
    [17] 王福瑞.单片微机测控系统设计大全[M],北京,北京航天航空大学出版社,1998,11:23-112.
    [18] 崔 建,李佳.西门子工业网络通信指南[M].北京:机械工业出版社,2004
    [19] 郝 莉,王东兴.PROFIBUS-DP从站开发研究[J].《北京机械工业学院学报》,2000,15(1):24-28.
    [20] 邢建春,王双庆,王平.SPC3在PROFIBUS-DP从站设计中的应用[J]《.自动化仪表》,2001,22(11):8-12.
    [21] Siemens AG SPC3 and DPS2 user description [M]. 2000,2: 21-101.
    [22] Profibus specification, PNO [M]. PROFIBUS organization, 1998,3.
    [23] Karlsrche EVDraft standard PROFIBUS DP [M].Germany: PROFIBUS organization, 1994
    [24] Germany PROFIBUS Interface Center.Manfred Popp The Rapid Way to PROFIBUS-DP [M].1997,11.
    [25] 常春华. 80C196单片机在现场总线控制器中的应用[J],《计算机工程与科学》2001,23(4):25-29.
    [26] 王庆丰,韩铎,夏继强.开发PROFIBUS-DP智能从站[J].《电测与表》.2003,40(3):5-10.
    [27]古名万,王晶晶.使用SPC3设计PROFIBUS-DP智能从站[J].《仪表技术》.2003,6(2):34-38.
    [28] 郁佳敏,万曼影,周欣.现场总线PROFIBUS智能化DP从站的设计[J].《自动化与仪表》2001,16(1):33-36.
    [29] Vitturi S. Some features of two FieldBus of the IEC 61158 standard [J]. Computer Standard, 2000,(3): 203-215.
    [30] S. Lee, K. C. Lee, M. H. Lee, and F. Harashima, “Integration of mobile vehicles for automated material handling using profibus and IEEE 802.11 networks,” IEEE Trans. Ind. Electron., 2002,3:693–701.
    [31] Tovar E. Cycle time properties of ProfiBus timed-token protocol [J].Computer Commutations, Elsevier Science, 1999,(12): 1026-1216.
    [32] SPC3 User Description Siemens[M], Siemens AG in Fed Rep of Germany ,2003,5:10-59
    [33] 王福来、吴世红 采用 SPC3 的智能型 PROFIBUS-DP 总线接口的开发[J],电气传动,2000, 11(2):51-54
    [34] 刘 强,甘永梅,王兆安.PROFIBUS-DP 现场总线通讯接口的开发[J].自动化与仪器仪表,2001,25(9):39—41.
    [35] D. Dement, D. Verkest, and H. D. Man. Operating system-based software generation for systems-on-chip.In Design Automation Conference [J].2000, 6.
    [36] J.P. Calve, Embedded Real-Time Systems. A Specification and Design Methodology [J].1993, 9.
    [37] PROFIBUS STANDARD (Translation of the German Standards DIN19245 Part I and Part2).PROFIBUS Nutzer organisation e.V Karlsruhe [M], Germany, 1991.
    [38] Siemens AG SPC3 Siemens PROFIBUS Controller [M].1996.
    [39] Siemens AG SIMATIC NET SPC3 Siemens PROFIBUS Contrller Hardware Description [M]. Siemens AG in Fed Rep of Germany,1998, 8.
    [40] 陈海东.PROFINET—面向自动化未来的以太网现场总线解决方案[J].现代制造, 2004,12(1):34-37.
    [41] 邢春香,夏继强,耿春明等.工业现场总线技术的新进展.北京航空航天大学学报[J],2004,30(4):358-362.
    [42] 吴功宜.计算机网络(第三版)[M].天津:南开大学出版社,1996.
    [43] 夏德海主编.现场总线技术[M].北京:中国电力出版社,2003.
    [44] 朱荣.现场总线及其网络集成.昆明理工大学学报[J],2001(1).
    [45] Siemens AG SIMATIC NET SPC3 Siemens PROFIBUS Contrller User Description[M]. Siemens AG in Fed Rep of Germany, 1998,8:24-90.
    [46] E.Tovar, F.Vasques, Cycle time properties of the PROFIBUS timed-token protocol[J],Computer Communications.1999,22: 1206-1216.
    [47] Andreas Willig, Adam Wolisz, Ring Stability of the PROFIBUS Token-Passing Protocol Over Error-Prone Links, IEEE Transactions onIndustrial Electronics[J], 2001,10:22-30.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.