小肠脂肪酸结合蛋白基因多态性与2型糖尿病肾病相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:小肠脂肪酸结合蛋白(FABP2)是由小肠简单柱状上皮细胞分泌的一种蛋白质,具有将长链脂肪酸从细胞膜转运至内质网的功能。人类FABP2基因存在多个位点多态性,外显子(exon)2中第54位上鸟嘌呤(G)和腺嘌呤(A)的置换会引起结合脂肪酸的能力的变化。该位点多态性与胰岛素抵抗、2型糖尿病及其并发症的发生密切相关。本文随机300例2型糖尿病患者为糖尿病组和80例无糖尿病对照组(糖耐量正常)为研究对象,测定FABP2基因编码区exon2第54位点的基因型,以便了解FABP2 54基因型多态性与2型糖尿病肾病的关系。
     方法:收集2型糖尿病患者及健康查体的无糖尿病对照者的空腹外周血标本,全血用于提取基因组DNA,血清用于检测生化指标。应用聚合酶链反应-限制性片段长度多态性分析法(PCR-PFLP)测定300例2型糖尿病患者和80例正常对照者的FABP2 54位点基因型。采用重组DNA技术对目的基因进行测序,应用比色法以及ELISA法测定血清游离脂肪酸(FFA)和血清脂联素(adiponcctin)水平。应用SPSS13.0软件对临床资料进行统计分析。
     结果:(1)天津地区汉族存在FABP2 Ala54Thr多态性,可产生多态性片段:野生型FABP2 54Ala/Ala;突变型FABP2 54Ala/Thr、Thr/Thr;基因变异频率符合Hardy-Weinberg遗传平衡定律(P>0.05)。(2)在2型糖尿病组突变型FABP2 54Ala/Thr、Thr/Thr基因型频率与Thr等位基因频率显著高于无糖尿病对照组(P<0.05)。(3)2型糖尿病组FABP2突变型54Ala/Thr、Thr/Thr基因型患者的空腹血浆甘油三酯(TG)水平和空腹游离脂肪酸(EVA)水平显著高于FABP2野生型Ala/Ala基因型患者(P<0.05)。(4)2型糖尿病各组中FABP2突变型54Ala/Thr、Thr/Thr基因型患者的胰岛素抵抗指数显著高于各组FABP2野生型54 Ala/Ala基因类型患者(P<0.05)。(5)天津地区2型糖尿病合并肾病各组FABP2突变型54Ala/Thr、Thr/Thr基因型频率与Thr等位基因频率显著高于正常对照组和2型糖尿病正常白蛋白尿组(P<0.05)(6)FABP2 54Thr基因型是2型糖尿病合并肾病的独立危险因素,(P<0.05)。(7)糖尿病肾病组血清脂联素水平显著高于糖尿病正常蛋白尿组(P<0.05);2型糖尿病组FABP2突变型54 Ala/Thr和Thr/Thr基因类型患者的空腹血清脂联素水平显著低于FABP2野生型Ala/Ala基因型患者(P<0.05)。
     结论:(1)天津地区汉族人存在FABP2基因多态性,基因变异频率符合Hardy-Weinberg遗传平衡定律,提示样本具有群体代表性。(2)FABP2基因多态性可能是2型糖尿病发生的遗传易感因素。(3)FABP2基因多态性是2型糖尿病患者脂质代谢异常的影响因素。(4)FABP2基因多态性与2型糖尿病胰岛素抵抗有关。(5)FABP2基因多态性是涉及2型糖尿病肾病发生的遗传易感因素;携带FABP2基因突变型Ala/Thr和Thr/Thr的个体发生2型糖尿病肾病的风险增高。
Objective: The human intestinal fatty acid binding protein (FABP2) isexcreted only from the absorptive simple columnar epithelial cells of the small intestine and ittransports long-chain fatty acids from the plasma membrane to the endoplasmic reticulum. TheFABP2 gene which G for A substitution in codon 54 of exon 2 can alter the ability ofbinding fatty acid. This polymorphism is close correlated with insulin resistance, type2 DM and its complications. The aim of this study is to investigate the prevalence ofthe polymorphism and explore the relation of FABP2 gene variation with type 2diabetic nephropathy.
     Methods: After an overnight fast, all subjects'venous blood was drawn forDNA extraction and for measuring some biochemistry parameters. Using PCR-RFLPdetecting the 54 A/T polymorphism in exon2 of FABP2 gene. And then, this genewas cloned so as to sequence the polymorphism of the FABP2 gene. We useindependently colorimetric method and ELASA method to determine the fasting FFAand adiponectin.
     Results:(1) G for A substitution in FABP2 codon 54 of exon 2 results in thesubstitution of threonine(Thr) for alanine(Ala).(2)The frequence of genotype Ala/Thr&Thr/Thr and Thr allel significantly increased in type 2 DM as compared with that innormally control(P<0.05). (3)The patients with type 2 DM who carry Ala/Thr andThr/Thr genotype had a significantly higher level of fasting plasma TG(P<0.05) andfasting FFA(P<0.05) than those with wild-type. (4) The patients with type 2 DM whocarry Ala/Thr and Thr/Thr genotype had a significantly higher level of insulinresistance index than those with wild-type. (5)The frequence of genotype Ala/Thr andThr/Thr significantly increased in diabetic nephropathy as compared with that innormally control and type 2 DM without nephropathy(P<0.05) (6) FABP2 Thr54 genotype is independent risk factor, (P<0.05). (7) The serum adiponectin levels aremarkedly increased in diabetic nephropathy than diabetes without nephropathy ; Thepatients with type 2 DM who carry Ala/Thr and Thr/Thr genotype had a significantlylower level of serum adiponectin (P<0.05) than those with wild-type.
     Conclusion: (1)FABP2 gene polymorphism is exist in Tianjin Hangpopulation, and the codon-54 of mutant genotypic frequencies are in Hardy-Weinbergequilibrium. (2) FABP2 gene polymorphism is associated with type 2 DM. (3)FABP2polymorphism may have a certain contribution to dyslipidemia. (4)FABP2polymorphism may be associated with insulin resistance. (5)FABP2 genepolymorphism is associated with diabetic nephropathy, Individuals with FABP254Ala/Thr and Thr/Thr has a higher risk of diabetic nephropathy.
引文
(1) 廖二元,超楚生.内分泌学(下册)[M].第一版,北京人民卫生出版社,2001,1434。
    (2). Trevisan R.Vedovato M.Tiengo A. The epidemiology of diabetes mellitus[J]. Nephrol Dial Transplant,1998,13:2-5.
    (3) 张素华,余路,邱鸿鑫,等.家族性非胰岛素依赖型糖尿病患者的家系调查[J],中华医学杂志,1996,76:435-439。
    (4) 茅彩萍,顾振纶.糖尿病肾病发病机制的研究进展[J].中国血液流变杂志2002,12:148-152.
    (5) Ayode OE, Alebiosu CO, Salako BL. Diabetic nephropathy: a review of the natural history, burden, risk factors and treatment[J].J Nate Med Assoc, 2004,96:1445-1454.
    [6] Zimmerman AW, HT,Veerkamp JH. Members of the fatty acid-binding protein family inhibit cell-free protein synthesis[J]. FEBS Lett 1998, 437: 183-186.
    [7] R. -Z. Liu, E. M. Denovan-Wright, and J. M. Wright. Structure, mRNA expression and linkage mapping of the brain-type fatty acid-binding protein gene (fabp7) from zebrafish (Danio redo) [J]. FEBS J., 2003, 270:715-725.
    [8] Bernlohr DA, Simpson MA, Hertzel AV, et al. Intracellular lipid-binding proteins and their genes [J]. Annu Rev Nutr, 1997,17: 277-303.
    [9] Sacchettinf JC, Gordon JI. Rat intestinanl fatty acid binding proteins, A model system for an analyzing the forces that can bind fatty acids to proteins [J]. J Biol Chem 1993,268:18399-18402.
    [10] Sweetser DA, Birkenmeier EH, Klisak IJ, et al. The human and rodent intestinal fatty acid binding protein genes. A comparative analysis of their structure, expression, and linkagerelationships [J]. J Biol Chem 1987, 262: 16060-16071.
    [11] Prochazka M, Lillioja S, Tait JF, et al. Linkage of chromosomal markers on 4q with a putative gene determining maximal insulin action in Pima Indians [J]. Diabetes 1997, 42: 514-519.
    [12] Edward P. Weiss, Michael D. Brown, Alan R. Shuldiner et al. Fatty acid binding protein-2 gene variants and insulin resistance: gene and gene-environment interaction effects [J]. Physiological Genomics 2002,10:145-157.
    [13] Baler LI, Bogardus C, and Sacchettini JC. A polymorphism in the human intestinal fatty acid binding protein alters fatty acid transport across Caco-2 cells [J]. J Biol Chem, 1996, 271: 10892-10896.
    [14] Rissanen J, Pihlajamaki J, Heikkinen S, et al. The Ala54Thr polymorphism of the fatty acid binding protein 2 gene does not influence insulin sensitivity in Finnish nondiabetic and NIDDM subjects[J]. Diabetes, 1997, 46: 711-712.
    [15] Lopez-Miranda J, Galluzzi JR, Marin C, et al. The Ala54Thr polymorphism at the fatty acid binding protein-2 locus is associated with insulin sensitivity in response to dietary fat[J]. Circulation. 2002 102: 11701-11702.
    [16] Carmen Marin, Francisco Perez-Jimenez, Purificacion Gomez, et al. The Ala54Thr polymorphism of the fatty acid-binding protein 2 gene is associated with a change in insulin sensitivity after a change in the type of dietary fat [J]. Am. J. Clinical Nutrition, 2005, 82:196-200.
    [17] M Lefevre, JC Lovejoy, SR Smith, et al. Comparison of the acute response to meals enriched with cis- or trans-fatty acids on glucose and lipids in overweight individuals with differing FABP2 genotypes [J]. Metabolism. 2005, 54: 1652-1658.
    [18] 潘亚,李晓楠.脂联素与代谢综合症关系的研究进展[J].国际儿科学杂志,2006;33:1673-1674.
    [19] Edward P Weiss, Josef Brandauer, Onanong Kulaputana, et al. FABP2 Ala54Thr genotype is associated with glucoregulatory function and lipid oxidation after a high-fat meal in sedentary nondiabetic men and women [J]. Am. J. Clinical Nutrition, 2007, 85:102-108.
    [20] Hegele RA. A review of intestinal fatty acid binding protein gene variation and the plasma lipoprotein response to dietary components[J]. Clin Biochem 1998 31:609-612
    [21] Jennifer R. G, drienne C, James B.M, Association of the Ala54Thr Polymorphism in the Intestinal Fatty Acid-Binding Protein With 2- h Post challenge Insulin Levels in the Framingham Offspring Study [J], Diabetes Care 2001, 24: 1161-1166
    [22] S Boullu-Sanchis, F Lepretre, G Hedelin, er al. Type 2 diabetes mellitus: association study of five candidate genes in an Indian population of Guadeloupe, genetic contribution of FABP2 polymorphism[J]. Diabetes Metab, 1999, 25(2): 150-156.
    [23] Cecilia Albala, Jose L. Santos, Mariana Cifuentes, et al. Intestinal FABP2 A54T Polymorphism: Association with Insulin Resistance and Obesity in Women [J]. Obes. Res.2004, 12: 340-344.
    [24] Warram JH,MartinB C, Krolewski AS,et al. Slow glucose removal rate and hyperinsulinemia, precede the development of Type 2 diabetes in the offspring of diabetic parents [J]. Ann Int Med, 1990,113:909-915.
    [25] Lillioja S, Mott DM,Spraul M, et al.Insulin resistant, and insulin secretory dysfunction as precursors of non-insulin dependent diabetes mellitus. Prospective studies of Pima Indians. [J] N Engl J Med, 1993,32 9:1988-1992.
    [26] Tritos NA, Mantzoros A. Syndrome of severe insulin resistance[J]. J Clin Endocrinol Metab, 1998, 83: 3025-3029.
    [27] Ivy JL, Zderic TW, and Fogt DL. Prevention and treatment of non-insulin-dependent diabetes mellitus. [J] Exerc Sport Sci Rev.1999 27: 31-36.
    [28] McGarry JD. Dysregulation of fatty acid metabolism in the etiology of type 2 diabetes[J]. Diabetes,2001,50:6-7
    [29] Angeliki Georgopoulos, Omer Aras and Michael Y. Tsai. Codon-54 Polymorphism of the Fatty Acid-Binding Protein 2 Gene Is Associated with Elevation of Fasting and Postprandial Triglyceride in Type 2 Diabetes. [J] J. Clin. Endocrinol. Metab., 2000. 85: 3155-3160.
    [30] S Nakanishi, K Yamane, N Kamei, et al. The effect of polymorphism in the intestinal fatty acid-binding protein 2 gene on fat metabolism is associated with gender and obesity amongst non-diabetic Japanese-Americans. [J] Diabetes Obes Metab, 2004; 6: 45-9.
    [31] Mero N, Syvanne M, Taskinen MR. Postprandial lipid metabolism in diabetes. [J] Atherosclerosis. 1998 141: S53-S55
    [32] Luis H. Canani, Cladssa Capp, Daniel P.K. Ng, et al. The Fatty Acid-Binding Protein-2 A54T Polymorphism Is Associated With Renal Disease in Patients With Type 2 Diabetes. [J] Diabetes, 2005, 54:3326-3330.
    [33] Tsilibary EC. Micmvascular basement membranes in diabetes mellitus. [J] J Pathol, 2003, 200(4): 537-546.
    [34] 钱荣立 项坤三,中国糖尿病防治指南[M],第一版,北京大学医学出版社 2004,132-134。
    [35] 郑承红 柯淑红 陈如泉,糖尿病微血管病变临床病理研究探讨.[J]华中医学杂志,2006.30:1007-5534.
    [36] Dedov I I, Shestakov M V, Kochemasova T V, etal. Endothelial dysfunction in the development of vascular complications in diabetes mellitus[J]. Ross Fiziol Zh Im I MSechenova, 2001, 87: 1073-1084.
    [37] Jacobson S H, Egberg N, Hylander B, et al. Correlation between soluble markers of endothelial dysfunction in patients with renal failure[J]. Am J Nephrol. 2002. 22: 42-47.
    [38] HO Steinberg, G Paradisi, G Hook, et al. Free fatty acid elevation impairs insulin-mediated vasodilation and nitric oxide production. [J] Diabetes, 2000. 49: 1231.
    [39] Steer P, Vessby B, Lind L. Endothelial vasodilatory function is related to the proportions of saturated fatty acids and alpha-linolenic acid in young men, but not in women. [J] Eur J Clin Invest 2003 33: 390-396.
    [40] Lu ZH, Mu YM, Wang BA, et al. Saturated free fatty acids, palmitic acid and stearic acid, induce apoptosis by stimulation of ceramide generation in rat testicular Leydig cell.[J]Biochem Biophys Res Commun, 2003, 303: 1002-1007.
    [41] Stimabukuro M. Zhou YT. Levi M. et al. Fatty acid-induced beta cellapoptosis: a link between obesity and diabetes. [J] Proc Natl Acad Sci USA, 1998, 95: 2498-2502.
    [42] Perassolo MS, Almeida JC, Pra RL,et al. Fatty acid composition of serum lipid fractions in type 2 diabetic patients with microalbuminuria. [J] Diabetes Care 2003 26:613-618.
    [43] Agren JJ, Vidgren HM, Valve RS, et al. Postprandial responses of individual fatty acids in subjects homozygous for the threonine-or alanine-encoding allele in codon 54 of the intestinal fatty acid binding protein 2 gene. [J] Am J Clin Nutr.2001 73:31-35.
    [44]Pinkney JH,DenverAE,Mohamed AV,et al. Insulin resistance in non insulin-dependent diabetes mellitus is associated with microalbuminuria independently of ambulatory blood pressure[J ]. J Diabetes Complications, 1995,9:230-234.
    [45]Chan JC, Tomlinson B,NichollsMG, et al. Albuminuria, insulin resistance and dyslipidaemia in Chinese patients with non-insulin-dependent diabetes[J]. Diabete Med,1996,13:150-155
    [46] Hoehner CM, Green Lund KJ, Rith Najarian S, et al. Association of the Insulin Resistance Syndrome and Microalbuminuria among Nondiabetic Native Americans. The InterTribal Heart project. [J]JAm Soc Nephrol, 2002, 13: 1626-1634.
    [47] Krentz AJ. Lipoprotein abnormalities and their consequences for patients with type 2 diabetes. [J]Diabetes Obes Metab, 2003, 5:19-27.
    [48] Looker HC, Krakoff J, Funahashi T, etal. Adiponectin concentrations are influenced by renal function and diabetes in Pima Indians with type 2 diabetes.[J] J Clin Endocrinol Metab,2004,89:4010-4017
    [49] Soberer PE, Williams S, Fogliano M, et al. Anovel serum protein similar to C1 q, produced exclusively in adipocytes [J]. J Biol Chem.1995, 270: 26746-26749.
    [50] Halleux CM, Takahashi M, Delporte ML, et al. Secretion of adiponectin and regulation of apM1 gene expression in human visceral adipose tissue[J]. Biochem Biophys Res Commun, 2001,288: 1102-1107.
    [51] 徐琳,谢璇,许正伟.脂联素与糖尿病肾病及非糖尿病肾病的关系.[J]国际内分泌代谢杂志,2006,26:12-13.
    [52] Maeda N, Takahashi M,Funahashi T, et al.PPAR-γ, ligands increase expression and plasm concentrations of adiponectin, adipose-derived protein [J].Diabetes,2001,50(9): 2094-2099.
    [53] Helen C. Looker, Jonathan Krakoff, Tohru Funahashi, et al.Adiponectin Concentrations Are Influenced by Renal Function and Diabetes Duration in Pima Indians with Type 2 Diabetes[J]. J. Clin. Endocrinol Metab,2004, 89(8): 4010-4017.
    [54] Sipilainen R, Uusitupa M, Heikkinen S, et al. Variants in the human intestinal fatty acid binding protein 2 gene in obese subjects. [J] J Clin Endocrinol Metab 1997 82: 2629-2632.
    [55] Hayakawa T, Nagai Y, Nohara E, et al. Variation of the fatty acid binding protein 2 gene is not associated with obesity and insulin resistance in Japanese subjects. [J] Metabolism, 1999, 48:655-657
    1 Bernlohr DA, Simpson MA, Hertzel AV, and Banaszak LJ. Intracellular lipid-binding proteins and their genes. Annu Rcv Nutr 1997 17:277-303
    2 Baier LJ, Bogardus C, and Sacchettini JC. A polymorphism in the human intestinal fatty acid binding protein alters fatty acid transport across Caco-2 cells. J Biol Chem 1996 271: 10892-10896,
    3 Prochazka M, Lillioja S, Tait JF, Knowler WC, Mott DM, Spraul M, Bennett PH, and Bogardus C. Linkage of chromosomal markers on 4q with a putative genc determining maximal insulin action in Pima Indians. Diabetes 1997 42: 514-519.
    4 Edward P. Weiss~1, Michael D. Brown~1, Alan R. Shuldiner~(2,3) and James M.Hagberg~1。Fatty acid binding protein-2 gene variants and insulin resistance: gene and gene-environment interaction effects. Physiological Genomics 2002 10: 145-157
    5 Rissanen J, Pihlajamaki J, Heikkinen S, Kekalaien P, Kumsisto J, and Laakso M. The Ala54Thr polymorphism of the fatty acid binding protein 2 gene does not influence insulin sensitivity in Finnish nondiabetic and NIDDM subjects. Diabetes1997 46: 711-712,
    6 Ivy JL Zderic TW, and Fogt DL Prevention and treatment of non-insulin-dependent diabetes mellitus. Exerc Sport Sci Rev1999 27: 1-36.
    7 Lopez-Miranda J, Galluzzi JR, Matin C, Bravo D, Paz E, Perez-Martinez P, Fernandez de la Puebla RA, Ordovas JM, and Perez-Jiminez E The Ala54Thr polymorphism at the fatty acid binding protein-2 locus is associated with insulin sensitivity in response to dietary fat (Abstract). Circulation 2002 102: Ⅱ701-Ⅱ702,
    8 Paula DN Dworatzek, Robert A Hegole, and Thomas MS Woleve. Postprandial lipemia in subjects with the threonine 54 variant of the fatty acid-binding protein 2 gene is dependent on the type of fat ingested Am. J. Clinical Nutrition, Jnn 2004; 79: 1110-1117.
    9 Carmen Marin, Francisco Perez-Jimenez, Purificacion Gomez, Javier Delgado, Juan Antonio Paniagua, Aquiles Lozano, Bggona Cortes, Yolanda Jimenez-Gemez, Maria Jose Gomez, and Jose Lopez-Miranda. The Ala54Thr polymorphism of the fatty acid-binding protein 2 gene is associated with a change in insulin sensitivity after a change in the type of dietary fat Am. J. Clinical Nutrition, Jul 2005; 82: 196-200.
    10 M Lefevre, JC Lovejoy, SR Smith, JP Delany, C Champagne, MM Most, Y Denkins, L de Jonge, J Rood, and GA Bray. Metabolism, Comparison of the acute response to meals enriched with cis- or trans-fatty acids on glucose and lipids in overweight individuals with differing FABP2 genotypes. Dec 2005; 54(12): 1652-8.
    11 Cecilia Albala, Jose L. Santos, Mariana Cifuentes, Ana C. Villarroel, Lydia Lera, Claudio Liberman, Barbara Angel, and Francisco Perez-Bravo. Intestinal FABP2 A54T Polymorphism: Association with Insulin Resistance and Obesity in Women. Obes. Res., Feb 2004; 12: 340.
    12 Simona Stan, Marie Lambert, Edgard Delvin, Gilles Paradis, Jennifer O'Loughlin, James A. Hanley, and Emile Levy Intestinal fatty acid binding protein and microsomal triglyceride transfer protein polymorphisms in French-Canadian youth.j. Lipid Res., Feb 2005; 46:320-327.
    13 MF McCarty. The A54T polymorphism of fatty acid-binding protein 2 may entail a reduction in fat-stimulated secretion of GIP that potentiates the adverse impact of fatty diets on insulin sensitivity. Med Hypotheses, Oct 2003; 61(4): 458-62.
    14 S Nakanishi, K Yamane, N Kamei, M Okubo, and N Kohno. The effect of polymorphism in the intestinal fatty acid-binding protein 2 gene on fat metabolism is associated with gender and obesity amongst non-diabetic Japanese-Americans. Diabetes Obes Metab, Jan 2004; 6(1): 45-9.
    15 Cristina Lara-Castro, Gary R. Hunter, Jennifer C. Lovejoy, Barbara A. Gower, and Jose R. FernandezJ. Association of the Intestinal Fatty Acid-Binding Protein Ala~(54)Thr Polymorphism and Abdominal Adipose Tissue in African-American and Caucasian Women Clin. Endocrinol. Metab., Feb 2005; 90:1196-1201.
    16 Angeliki Georgopoulos, Omer Aras, Marina Noutsou, and Michael Y. Tsai. Unlike Type 2 Diabetes, Type 1 Does Not Interact with the Codon 54 Polymorphism of the Fatty Acid Binding Protein 2 Gene. J. Clin. Endocrinol. Metab., Aug 2002; 87: 3735-3739.
    17 NL Duarte, S Colagiuri, T Palu, XL Wang, and DE Wilcken. Obesity, Type Ⅱ diabetes and the Ala54Thr polymorphism of fatty acid binding protein 2 in the Tongan population. Mol Genet Metab, Jul 2003; 79(3): 183-8.
    18 P Wanby, P Palmquist, I Ryden, L Brattstrom, and M Carlsson. The FABP2 gene polymorphism in cerebrovascular disease. Acta Neurol Scand, Dec 2004; 110(6):355-60.
    19 P Wanby, P Palmquist, L Brudin, and M Carlsson. Genetic variation of the intestinal fatty acid-binding protein 2 gene in carotid atherosclerosis. Vase Med, May 2005; 10(2): 103-8.
    20 Luis H. Canani, Clarissa Capp, Daniel P.K. Ng, Serena G. L. Choo, Ana Luiza Maia, Gustavo B. Nabinger, Katia Santos, Daisy Crispim, Israel Roisemberg, Andrzej S. Krolewski, and Jorge L. Gross. The Fatty Acid-Binding Protein-2 A54T Polymorphism Is Associated With Renal Disease in Patients With Type 2 Diabetes. Diabetes, Nov 2005; 54: 3326-3330.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.