简立方双层铁磁性薄膜中自旋波的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在Heisenberg模型的基础上,采用界面重参数化方法(Interface-rescaling approach),严格求解了简立方结构双层铁磁薄膜中自旋波的本征问题,且主要讨论了外磁场对体系能带结构和自旋波的影响。通过对所选体系进行数值计算和作图发现,外磁场对能带有以下三个方面的影响:(1)随着磁场的增强,子能带A、B都向上移动,且B带移动的速度远大于A带,表明22支模的能量随着磁场的增强都在增加,且B带中模的能量增加的快;(2)体模随横向自旋波γ值的变化基本呈周期性振荡变化,且随着磁场的增加,体模部分也在不断上移,说明能量也在不断增加,当磁场取某一临界值时,能带A、B处于分离状态,体模完全消失;(3)随着磁场的改变,界面模和禁闭模之间发生转换,且随着磁场的增加,界面模逐渐远离A带。另外磁场对自旋波的影响也存在以下三个方面:(1)磁场对自旋波波形有影响,它表现在通过改变磁场的值可以改变波的类型;(2)磁场对自旋波的调制现象有影响,当磁场达到某一临界值时,调制现象就消失了;(3)磁场对自旋波的振荡现象也有影响,我们发现改变磁场的值可以改变波形的振荡现象。
On the basis of the Heisenberg exchange model, the spin-wave eigen-problem in the ferromagnetic bilayers with simple cubic structure is solved exactly at the low temperature. With this theory, we focus on the effect of the magnetic field on the system band structure and spin waves in the paper. The results show that the magnetic field effected energy bands in three aspects as follows:(1) With the increasing of the magnetic field, band A and B are both moving up, and B moves faster than A. This phenomenon means that the energy of all the modes increases, and the energy of band B increases faster. (2) Bulk modes change with transverse spin waves periodically, and with the increase of the magnetic field, bulk modes move up too. When the magnetic field takes a certain critical value, band A and B are separation, moreover the bulk modes disappear. (3) As the magnetic field changes, the conversion takes between the interface modes and bulk modes, and with the magnetic field, the interface modes move away from band A. The effect of magnetic field on spin waves exists in the following three aspects:(1) The magnetic field influence on the waveform, which is exhibited in the type of the spin waves can be changed when the magnetic being changed. (2) The magnetic field have effect on the phenomenon of the spin wave modulation. When the magnetic field reaches a certain critical value, the modulation phenomenon disappears. (3) The magnetic field also have an impact on the spin-wave oscillations. We find that the oscillation of the waveform can be changed by the magnetic field excitation.
引文
[1]M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen VanDau and F. Petroff, Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices, Phys. Rev.Lett.,1988,61:2472.
    [2]S. A. Wolf et al., Spintronics:A Spin-Based Electronics Vision for the Future, Science 294,1488 (2001).
    [3]Sadamichi Maekawa and Teruya Shinjo, Spin dependent transport in magnetic nanostructures(Taylor, London and New York) 2002.
    [4]Jin Pyo Hong et al., Room temperature formation of half-metallic Fe3O4 thin films for the application of spintronic devices,Appl. Lett.83,1590 (2003).
    [5]Igor utic, Jaroslav Fabian, and S.Das Sarma, Spintronics:Fundamentals and applications, Rev. Mod. Phys. 76,323 (2004).
    [6]Ying Zhang and S. Das Sarma, Spin Polarization Dependence of Carrier Effective Mass in Semiconductor Structures:Spintronic Effective Mass, Phys. Rev. Lett.95,256603 (2005).
    [7]S. D. Bader, Opportunities in nanomagnetism, Rev. Mod. Phys.78,1 (2006).
    [8]B. Dieny et al., Magnetotransport properties of magnetically soft spin-valve structures, J. Appl. Phys.69,4774 (1991).
    [9]S. Parkin, D. Mauri, Spin engineering:Direct determination of the Ruderman-Kittel-Kasuya-Yosida far-field range function in ruthenium, Phys. Rev. B44,7131 (1991).
    [10]M. H. Kryder, L. R. Carley, Approaches to 10 Gbit/in2 recording, J. Appl. Phys.79,4485 (1996).
    [11]McMichael R D,Andrew Kunz,Localized ferromagnetic resonance in inhomogeneous thin films[J]. Phys.Rev.Lett.,2003,90:227601~1~4.
    [12]N. S. Almeida and D. L.Mills, Effective-medium theory of long-wavelength spin waves in magnetic superlattices, Phys. Rev. B38,6698(1988).
    [13]Y. Endo and T. Ayukawa, Magnetic properties of Heisenberg-type ferromagnetic films with a sandwich structure, Phys. Rev. B41,6777(1990).
    [14]H. T. Diep, Quantum effects in Heisenberg antiferromagnetic thin films, Phys. Rev. B43,8509 (1991).
    [15]B. A. Kalinikos, N. V. Kozhus and A. V. Zhuravlev, Excitation theory of propagating spin waves for anisotropic ferrite film, JAppl. Phys.69,6204 (1991).
    [16]Paolo politi, Maria Gloria Pini and Angelo Rettori, Elementary excitations and thermodynamical properties of ultrathin magnetic films,Phys.73,5504 (1993).
    [17]D. Loison and H. T. Diep, Effect of next-nearest-neighbor interaction in quantum Heisenberg antiferromagnetic triangular lattices, J. Appl. Phys. Rev. B46,8312 (1992).
    [18]Q. Hong and Q. L. Yang,Quantum theory of spin waves for magnetic-overlayer systems, Phys. Rev. B47, 7897(1993).
    [19]A. Moschel and K. D. Usadel, Magenetization of coupled ferromagnetic and antiferromagnetic films: Dependence on the interface coupling, Phys. Rev. B48,13991 (1993).
    [20]Ming Chen and Carl E. Patton, New perspective on the Green's function dipole-exchange spin wave theory for thin films, J.Appl. Phys.75,6084 (1994).
    [21]L. J. Jiang and M. G. Cottam, Theory of localized spin wave modes at surface steps on ferromagnetic films, J. Appl. Phys.85,5495 (1999).
    [22]M. Tamine, Magentic excitations localized near the interface between two ferromagnets, Sur. Sci.511,340 (2002).
    [23]H. Viet Nguyen, V. Thanh Ngo, H.T. Diep and V. Lien Nguyen, Field effects on the magnetic properties of three-layer film, Physica B:Condensed Matter 327,427 (2003).
    [24]S. V. Maleyev, Cubic magnets with Dzyaloshinskii-Moriya interaction at low temperature, Phys. Rev. B73,174402 (2006).
    [25]E. L.Albuquerque, Spin wave spectra in semi-infinite magnetic superlattices with nonuniaxial single-ion anisotropy, J. Appl. Phys.76,6552 (1994).
    [26]E. L. Albuquerrque, Spin wave spectra in semi-infinite magnetic superlattices with nonuniaxial single-ion anisotropy, J. Appl. Phys.76,6552 (1994).
    [27]J. W. Feng, G. J. Jin, A. Hu, S. S. Kang, S. S. Jiang and D. Feng, Magnetostatic modes in Fibonacci magnetic and nonmagnetic multilayers, Phys. Rev. B 52,15312 (1995).
    [28]I. V. Rojdestvenski, M. G. Cottam and A. N. Slavin, Dipole-exchange spin wave spectra of exchange-coupled magnetic multilayers calculated by transfer matrix formalism, J. Appl. Phys.79,5724 (1996).
    [29]X. G. Wang, N. N. Liu, S. H. Pan and G. Z. Yang, Phase transitions in a transverse spin-1/2 Ising ferroelectric superlattice, Phys. Lett. A 267,434 (2000).
    [30]M. Krawczyk et al., Theoretical study of spin wave resonance filling fraction effect in composite ferromagnetic [A|B|A] trilayer, J. Magn. Magn. Mater.246,93 (2002).
    [31]Z. G. Huang, Q. Feng and Y. W. Du, Surface critical properties of a face-centered cubic magnetic films, J. Magn. Magn. Mater.269,184 (2004).
    [32]A. Du, Y. Ma and Z. H. Wu, Magnetization and magnetic susceptibility of the Ising ferromagnetic/antiferromagnetic superlattice, J. Magn. Magn. Mater.305,233 (2006).
    [33]O. Iglesias, A. Valencia and A. Labarta, Monte Carlo simulation of the magnetic ordering in thin films with perpendicular anisotropy, J. Magn. Magn. Mater.196,819 (1999).
    [34]J. W. Tucker, A Monte Carlo study of thin spin-1 Ising films with surface exchange enhancement, J. Magn. Magn. Mater.210,383 (2000).
    [35]J. Riera, Quantum Monte Carlo simulations of the t-Jz model with stripes on the square lattice, Physica B 312-313,569(2002).
    [36]Sylvain Capponi, Congjun Wu, and Shou-Cheng Zhang, Current carrying ground state in a bilayer model of strongly correlated systems, Phys. Rev. B 70,220505 (2004).
    [37]C. Yasuda, S. Todo, K. Hukushima, F. Alet, M. Keller, M. Troyer, and H. Takayama, Neel Temperature of Quasi-Low-Dimensional Heisenberg Antiferromagnets, Phys. Rev. Lett.94,217201 (2005).
    [38]S. A. Leonel, O. A. Castro, B. V. Costa and C. P. Zimmermann, Comparative study between a two-dimensional anisotropic Heisenberg antiferromagnet with easy-axis single-ion anisotropy and one with easy-axis exchange anisotropy, J. Magn. Magn. Mater.305,157 (2006).
    [39]Ling Wang, K. S. D. Beach, and Anders W. Sandvik, High-precision finite-size scaling analysis of the quantum-critical point of S=1/2 Heisenberg antiferromagnetic bilayers, Phys. Rev. B 73,014431 (2006).
    [40]Mercier D, Levy JCS, Watson M. Spin-Wave modes in layered magnetic sandwich structures [J]. Phys.Rev B., 1991,43:3311~3317.
    [41]G. H. Yun, J. H. Yan and S.L. Ban, Interface-rescaling approach to the exact solutions of quantum low-energy eigenproblems for a ferromagnetic bilayer system, Phys. Rev. B 46,12045 (1992).
    [42]G. H. Yun, J. H. Yan, S. L. Ban and X. X. Liang, Properties of perfect confined modes and interface modes of spin-waves in a ferromagnetic bilayer system, Surf. Sci.318,177 (1994).
    [43]X. X. Liang et al., Theories of the electron-phonon interaction and spin-waves in layered materials, Inner Mongolia University Press,1994.
    [44]G. H. Yun and X. X. Liang, Conditions for the existence of interface spin waves in a biferromagnetic interface, Eur. Phys. J. B 35,261 (2003).
    45]云国宏,班士良,闫俊虎,等.铁磁双层薄膜中的自旋波[J].内蒙古大学学报(自然科学版),1994,25(5):511.
    46] Yun G H,Yan J H, Ban S L.Interface-rescaling approach to the exact solutions of quantum low-energy eigenproblems for a ferromagnetic bilayer system [J].Phys.Rev.,1992, B46:12045.
    [47]云国宏.磁性薄膜自旋波共振的量子力学研究[J].内蒙古大学学报(自然科学片),1993,24(2):160.
    [48]宋波,张福健,云国宏.磁性双层膜中的能带结构和色散关系[J],内蒙古大学学报(自然科学版),1999,30(3):321.
    [49]史晓霞,云国宏.双层薄膜中界面交换作用对自旋波能带结构的影响[J].内蒙古大学学报(自然科学版),2007,38(3):283.
    [50]W. P. Zhou, G. H. Yun, and X. X. Liang, Brillouin-zone mapping of the spin waves in a ferromagnetic bilayer system [J]. Eur. Phys. J.2007, B 55:37.
    [51]周文平.双层铁磁系统中自旋波的本征激发.保存地点:内蒙古大学,2007.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.