E-钙粘蛋白N-糖链的功能及其作用机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
E-钙粘蛋白(E-cadherin,又称uvomorulin,cell-CAM 120/80和Arc-1)是一类钙离子依赖的介导相邻细胞间粘附的Ⅰ型跨膜糖蛋白。E-钙粘蛋白包含一个具有5个钙粘蛋白重复序列的胞外结构域,主要控制钙粘蛋白间的相互作用;一个跨膜结构域和一个位于胞浆内的高度保守的C-末端序列。
     E-钙粘蛋白分子中有6个潜在的N—糖基化位点(N-X-S/T),其中一个存在于胞内肽段的位点糖基化可能性不大,其余5个均存在于胞外肽段范围内,分别为AA372-374(N-P-T),AA554-556(N-S-T),AA566-568(N-G-S),AA619-621(N-T-S)和AA634-636(N-W-T)。进一步比较研究发现,5个潜在糖基化位点中,只有AA566-568为人独有的,而其它4个潜在糖基化位点较为保守,在小鼠和鸡E-钙粘蛋白中同样存在。
     E-钙粘蛋白在许多上皮组织细胞中有表达。许多研究表明肿瘤细胞表面E-钙粘蛋白的异常表达与肿瘤细胞的增殖,去分化,侵袭和转移均有关系。而E-钙粘蛋白缺失可能是肿瘤细胞恶性增殖和侵袭转移的一个重要原因,因为当肿瘤细胞中重新导入E-钙粘蛋白后,会导致细胞增殖和侵袭能力的下降,所以E-钙粘蛋白被认为是一种抑癌基因,同时又是一种侵袭转移抑制基因。
     E-钙粘蛋白作为一种糖蛋白,其分子中的N-糖链在肿瘤细胞的增殖、侵袭和转移中的作用还不清楚。为了阐明E-钙粘蛋白N-糖链在肿瘤细胞的增殖、侵袭和转移中的作用,我们首先将E-钙粘蛋白分子中潜在的N-糖基化位点,Asn372,Asn554,Asn566,Asn619和Asn634分别突变成谷氨酰胺Gln,构建突变不同糖基化位点的E-钙粘蛋白基因真核表达质粒,分别去除E-钙粘蛋白不同位点上潜在的N—糖链,我们还构建了一个同时缺失上述5个糖基化位点的E-钙粘蛋白基因真核表达质粒,分别将这些质粒及野生型质粒转入不表达E-钙粘蛋白的MDA-MB-435高侵袭性的乳腺癌细胞株,得到了相应的稳定转染细胞株。研究E-钙粘蛋白糖链缺失前后对细胞间聚集、细胞周期、增殖、迁移和伸展等生物学行为的影响;E-钙粘蛋白N-糖链对E-钙粘蛋白分拣、转运和分泌等的影响;N-糖链对E-钙粘蛋白介导的信号通路的影响,以阐明E-钙粘蛋白分子中N-糖链的生理功能。
     为了阐明E-钙粘蛋白各糖基化位点上N-糖链的存在情况,我们用肼解法、凝集素法、糖苷酶酶解法和质谱方法检测了E-钙粘蛋白N-糖链的分布情况,结果发现当Asn-372,Asn-554,Asn-566和Asn-619 N-糖基化位点突变后,从肼解法的结果可以看出E-钙粘蛋白的糖链含量明显下降,提示在这四个位点上均有N-糖链存在。观察Mu-372/554/566/619的情况我们可以看到当Asn-372,Asn-554,
E-cadherin (also known as uvomorulin, L-CAM, Cell-CAM 120/80 and Arc-1) is a type-1 single-span transmembrane glycoprotein, it mediates cell-cell adhesion by calcium-dependent homotypic intractions between neighboring cells. The full-length human E-cadherin gene (CDH1) spans a region of approximately 100 kb, it contains 16 exons and it is located on chromosome 16q22.1, and was isolated by Berx G et al. in 1995. The full-length cDNA of human E-cadherin is 2815 bp, and was cloned by Rimm DL in 1994. The predicted molecular mass of the unglycosylated and unprocessed protein is 97kDa, after it is glycosylated the molecular weight is about 120kDa.Six N-X-S/T consensus sequences for N-linked glycosylation are found in the human E-cadherin protein. The one in the cytoplasmic domain is probably not utilized, the other five sites is in the extracellular domain. Four of these five sites are conserved in human, mouse and chicken E-cadherins. The remaining site at codons 566-568 is unique to the human protein.E-cadherin consists of three parts: an extracellular portion that contains five homologous segments called cadherin domains; a transmembrane segment; and a highly conserved cytoplasmic domainIn the first extracellular repeat domain, there is a motif at AA229-231 (H-A-V) which is necessary for homotypic interaction. The catenins (pl20~(ctn), b-catenin, plakoglobin and a-catenin) bind to the cytoplasmic tails of E-cadherin. b-catenin and plakoglobin compete for binding to the socalled catenin-binding domain (CBD) and mediate the attachment of cadherin to the actin cytoskeleton via a-catenin. In contrast, p120 associates with the cadherin juxtamembrane domain (JMD) and does not bind to a-catenin.E-cadherin is expressed in most epithelial tissues. Several immunohistochemical studies have reported a strong correlation between E-cadherin loss and the initiation and progression of tumors. This loss appears to be a key event in acquisition of invasive capacity, because re-expression of E-cadherin suppresses the invasion of tumor cells in vitro. For these reasons, E-cadherinhas been termed an 'invasion suppressor'.As a type-I transmembrane glycoprotein, the functions of N-glycan chain in E-cadherin is poorly understood. In order to explore the role of E-cadherin N-sugar
    chain in the initiation and progression of tumors, we prepared mutant human E-cadherin which was analyzed by site-directed replacement of each of the five glycosylation sites, Asn-372, Asn-554, Asn-566, Asn-619 and Asn-634 with Gin, individually. Furthermore, we prepared mutant human E-cadherin was replaced by all of these five glycosylation sites, in order to eliminate N-sugar chains being attached to the extracellular region. To examine the effect of the loss of the sugar chain on the E-cadherin function and observed cell biological behavior, including cell proliferation, cell cycle, cell spreading, cell aggregation and cell invasion, these mutants were constantly expressed in MDA-MB-435 breast cells, which E-cadherin was unexpressed in mRNAand protein level.When we transfected these six mutant plasmids and wild-type E-cadherin into MDA-MB-435cell line we found that Mu-372, Mu-554, Mu-566, Mu-619 and wild-type cell lines can normally express the E-cadherin protein, and Mu-634 and Mu-all can express E-cadherin only at mRNA levels, the protein expression of E-cadherin is too less to be measured by western-blot. So we can speculate that the suar chain at Asn-634 site is important to the E-cadherin stability. In order to further demonstrated the role of the suar chain at Asn-634 site, we construct the Mu-372/554/566/619 cell lines which only reserved the Asn-634 sugar chain on E-cadherin molecule, we found that Mu-372/554/566/619 cell line also can normally express E-cadherin protein, thus we can confirmed that Asn-634 sugar chain is very important to reserve the E-cadherin molecule stability. Additionally, when we delete the sugar chain at Asn372, Asn554, Asn566, Asn619 sites, respectively. The distribution of E-cadherin was changed. In the wild-type cell line, the E-cadherin equably distributed on the cell surface, and in the Mu-372, Mu-554, Mu-566, Mu-619 cell lines, E-cadherin was aggregated on the cell, but we can not confirm it is located on the cell surface or in the cytoplasm. To explore this, we isolated cell membrane protein and cytoplasma protein, and we measured the level of E-cadherin in these two type protein by western-blot, we found that E-cadherin can only detect at membrane protein, in the cytoplasma, we did not find E-cadherin. So we can confirm that E-cadherin was aggregated on the cell surface, and it also imply that the deletion of sugar chain at Asn-372, Asn-554, Asn-566 and Asn-619 sites did not affect the sorting or trafficking of E-cadherin.In order to explore the condition of N-linked glycosylation at this six sites, we measured the glycosylation of E-cadherin by Hrp-hyrazinium, Hrp-ConA and Mass
    spectrum method. We found the mutation of Asn-372, Asn-554, Asn-566 and Asn-619 glycosylation site significantly reduced the sugar contents by Hrp-hyrazinium method. It suggested that there are sugar chains at these sites. Asn-634 site may also have sugar chain because of obviously dying at Mu-372/554/566/619 cell line by Hrp-hyrazinium and the Hrp-ConA method. From the Hrp-ConA dying, we can speculate that the sugar chain at Asn-566, Asn-619 and Asn-634 sites may be biantenna structure, and the sugar chain at Asn-372 and Asn-554 sites are not biantenna structure.In order to determine the role of various N-sugar chain of E-cadherin in cell proliferation, we mearured the proliferation change of the mutant cell lines and wild-type cell line by MTS system, and found the proliferation ability of Mu-634 cell line is significantly lower than that of wild-type cell line, the proliferation ability of Mu-619 and Mu-all cell lines also decreased. When we measured the cell cycle of these mutant cell lines by the flow cytometry we found that the Gl phase of Mu-634, Mu-619 and Mu-all cell lines were increased compare with the wild type cell line. Up to this, we can speculate the reason of decreased proliferation is the Gl arrest in Mu-634, Mu-619 and Mu-all cell lines. To explore the molecular mechanism of these changes, we measured the protein level of CyclinDl, CyclinE, Cdk2, cyclin dependent kinase inhibitor P21 and P27, E-cadherin associated signal protein P-catenin and P120ctn, and other signal molecules such as PKB and Gsk-3p by western-blot. We discovered the expression of CyclinDl was reduced in Mu-634, Mu-619 and Mu-all cell lines, especially in Mu-634, Mu-619, and cyclinE and Cdk2 have no change in their protein level. The cyclin dependent kinase inhibitor P27 level was relatively high in these three cell lines. The P-catenin level was dramaticly decreased in Mu-634 cell line. The expression of Gsk-3p was increased in Mu-634 and Mu-619 compare with wild type cell lines, and the level of PKB was decreased in these two cell lines. It suggest that the deletion of sugar chain at Asn-634 site promoted the expression of Gsk-3p, and this protein make P-catenin unstable in cytoplasma, and inhibit the trancripation of CyclinDl or the increased Gsk-3p directly affect cyclinDl, and caused it degradation. Additionally, the reduced expression of PKB is also one of the reason that caused cyclinDl decreased.We further explored the role N-sugar chain in cell invasion. We observed the changes of invasiveness ability in vitro by Matrigel-transwell method. We discovered that the invasion ability was dramatically decreased in Mu-372, Mu-619 and Mu-634
引文
1. Takeichi, M. (1990). Cadherins: a molecular family important in selective cell cell adhesion. Annu. Rev. Biochem. 59, 237-252.
    2. Nagafuchi, S., Shirayoshi, Y., Okazaki, K., Yasuda, K. and Takeichi, M.(1987). Transformation of cell adhesion properties by exogenously introduced E-cadherin cDNA. Nature 329, 341-343.
    3. Ringwald, M., Schuh, R., Vestweber, D., Eistetter, H., Lottspeich, F., Engel,J., Dolz, R., Jahnig, F., Epplen, J., Mayer, S. et al. (1987)
    4. Ringwald M, Schuh R, Vestweber D, Eistetter H, Lottspeich F, Engel J, Dolz R, Jahnig F, Epplen J, Mayer S, et al. The structure of cell adhesion molecule uvomorulin. Insights into the molecular mechanism of Ca2+-dependent cell adhesion. EMBO J. 6, 3647-3653.
    5. Aberle, H., Butz, S., Stappert, J., Weissig, H., Kemler, R. and Hoschuetzky, H. (1994). Assembly of the cadherin-catenin complex in vitro with recombinant proteins. J. Cell Sci. 107, 3665-3663.
    6. Ozawa, M., Baribault, H. and Kemler, R. (1989). The cytoplasmic domain of the cell adhesion molecule uvomorulin associates with three independent proteins structurally related in different species. EMBO J. 8, 1711-1717.
    7. Reynolds, A. B., Daniel, J., McCrea, P. D., Wheelock, M. J., Wu, J. and Zhang, Z. (1994). Identification of a new catenin: the tyrosine kinasesubstrate p120cas associate with E-cadherin complexes. Mol. Cell. Biol. 14, 8333-8342.
    8. Jou, T.-S., Stewart, D. B., Stappert, J., Nelson, W. J. and Marrs, J. A.(1995). Genetic and biochemical dissection of protein linkages in the cadherin-catenin complex. Proc. Natl. Acad. Sci. USA 92, 5067-5071.
    9. Ozawa, M. and Kemler, R. (1998). The membrane-proximal region of the Ecadherin cytoplasmic domain prevents dimerization and negatively regulates adhesion activity. J. Cell Biol. 142, 1605-1613.
    10. Yap, A. S., Niessen, C. M. and Gumbiner, B. M. (1998). The juxtamembrane region of the cadherin cytoplasmic tail supports lateral clustering, adhesive strengthening and interaction with p120ctn. J. Cell Biol. 141, 779-789.
    11. Lu, Q., Paredes, M., Medina, M., Zhou, J., Cavallo, R., Peifer, M., Orecchio, L. and Kosik, K. S. (1999). □ -catenin, an adhesive junction-associated protein which promotes cell scattering. J. Cell Biol. 144, 519-532.
    12. Anastasiadis PZ, Renolds AB (2000) The pl20 catenin family: complex roles in adhesion, signaling and cancer. J Cell Sci. 2000 Apr;113 ( Pt 8):1319-34.
    13. Kitada, T.,Miyoshi, E., Noda, K., Higashiyama, S., Ihara, H., Matsuura, N., Hayashi, N., Kawata, S., Matsuzawz Y, Taniguchi, N. The addition of Bisecting N-Acetylglucosamine Residues to E-cadherin Down-regulates the Tyrosine Phosphorylation of β-catenin. J Biol. Chem. 2001, Vol. 276(l):475-480 .
    14. Rimm D.L. Morrow J.S. Molecular Cloning of Human E-cadherin Suggests A Novel Subdivision Of The Cadherin Superfamily. B.B.R.C. 1994, 200(3): 1754-61.
    15. Yoshimura M, Ihara Y Matsuzawa Y, and Taniguchi N. Aberrant Glycosylation of E-cadherin Enhances Cell-Cell Binding to Suppress Metastasis The Journal of Biological Chemistry 1996 June 7; 271(23): 13811-13815.
    16. Michael Boubelik , Lubica Draberet al. Carbohydrate-Mediated Sorting in Aggregating Embryonal Carcinoma Cells pp. B.B.R.C. 1996 224: 283-288.
    17. D. F. Wyss, J. S. Choi, J. Li, et al. Conformation and Function of the N-Linked Glycan in the Adhesion Domain of Human CD2. Science 1995 269:1273-1278.
    18. Jayadev-S, Smith-RD et al N-linked glycosylation is required for optimal Atla angiotensin receptor expression in COS-7 cells Endocrinology. 1999 May; 140(5): 2010-7.
    19. Nakagawa-H, Zheng-M et al Detailed oligosaccharide structures of human integrin alpha 5 beta 1 analyzed by a three-dimensional mapping technique Eur-J-Biochem 1996 Apr 1; 237(1): 76-85.
    20. Zheng-M, Fang-H et al. Functional Role of N-glycosylation in alpha 5 Beta 1 Integrin Receptor. J Biol Chem 1994, 269(16): 12325-12331.
    21. Guo HB, Lee I et al. Aberrant N-glycosylation of betal integrin causes reduced alph5betal integrin clustering and stimulation cell migration. Cancer Research 2002 Dec 1; 62(23):6837-45.
    22. Rodriguez-Boulan, E. and Nelson, W. J. (1989). Morphogenesis of the polarized epithelial phenotype. Science 245, 718-725.
    23. McNeill, H., Ozawa, M., Kemler, R. and Nelson, W. J. (1990). Novel function of the cell adhesion molecule uvomorulin as an inducer of cell surface polarity. Cell 62,309-316.
    24. Marrs, J. A., Napolitano, E. W., urphy-Erdosh, C, Mays, R. W., Reichardt, L. F. and Nelson, W. J. (1993). Distinguishing roles of the membrane-cytoskeleton and cadherin mediated cell-cell adhesion in generating different Na+-K+-ATPase distributions in polarized epithelia. J.Cell Biol. 123, 149-164.
    25. Yeaman, C, Grindstaff, K. K. and Nelson, W. J. (1999). New perspectives on mechanisms involved in generating epithelial cell polarity. Physiol. Rev.79, 73-98.
    26. Takeichi-M. Cadherin cell adhesion receptors as a morphogenetic regulator. Science. 1991 Mar 22; 251: 1451-5.
    27. Daniel, C. W., Strickland, P. and Friedman, Y. (1995). Expression and functional role of E- and P-cadherins in mouse mammary ductal morphogenesis and growth. Dev. Biol. 169,511-519.
    28. Stewart, D., Barth, A. I. M. and Nelson, W. J. (2000). Differential regulation of endogenous cadherin expression in MDCK cells by cell-cell adhesion and activation of beta-catenin signaling. J. Biol. Chem 275, 20707-20716.
    29. Takeichi, M. (1993). Cadherins in cancer: implications for invasion andmetastasis. Curr. Opin. Cell. Biol. 5, 806-811.
    30. Birchmeier, W. and Behrens, J. (1994). Cadherin expression in carcinomas: role in the formation of cell junctions and the prevention of invasiveness. Biochim. Biophys.Acta 1198, 11-26.
    31. Jiang, W. G. (1996). E-cadherin and its associated protein catenins, cancerinvasion and metastasis. Brit. J. Surg. 83,437-446.
    32. Berx, G, Becker, K. F., Hofler, H. and van Roy, F. (1998). Mutations of the human E-cadherin (CDH-1) gene. Human Mutation 12, 226-237.
    33. Behrens, J. (1999). Cadherins and catenins: role in signal transduction and tumor progression. Cancer Met. Rev. 18, 15-30.
    34. Behrens J, Mareel MM, Van Roy FM, Birchmeier W. Dissecting tumor cell invasion: epithelial cells acquire invasive properties after the loss of uvomorulin-mediated cell-cell adhesion. J Cell Biol. 1989 Jun;108(6):2435-47.
    35. Frixen UH, Behrens J, Sachs M et al. E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells. J Cell Biol. 1991 Apr;113(l):173-85.
    36. Navarro, P., M. Gomez, A. Pizarro, C. Gamallo, M. Quintanilla, and A. Cano.1991. A role for the E-cadherin cell-cell adhesion molecule during tumor progression of mouse epidermal carcinogenesis. J. Cell Biol. 115:517-533.
    37. Miyaki, M., K. Tanaka, R. Kikuchi-Yanoshita, M. Muraoka, M. Konishi, and M. Takeichi. 1995. Increased cell-substratum adhesion, and decreased gelatinase secretion and cell growth, induced by E-cadherin transfection of human colon carcinoma cells. Oncogene. 11:2547-2552.
    38. St. Croix, B., C. Sheehan, J.W. Rak, V.A. Florenes, J.M. Slingerland, and R.S. Kerbel. 1998. E-Cadherin-dependent growth suppression is mediated by the cyclin-dependent kinase inhibitor p27(KIPl). J. Cell Biol. 142:557-571.
    39. Woods, D.F., and P.J. Bryant. 1991. The discs-large tumor suppressor gene of Drosophila encodes a guanylate kinase homolog localized at septate junctions. Cell. 66:451-464.
    40. Wodarz, A. 2000. Tumor suppressors: linking cell polarity and growth control. Curr. Biol. 10:R624-R626.
    41. Wong AST, Gumbiner BM. Adhesion- independent mechanism for suppression of tumor cell invasion by E-cadherin. J Cell Biol. 2003 Nov.; 161(6):1191-1203.
    42. Gottardi CJ, Wong E and Gumbiner BM. E-Cadherin suppresses cellular transformation by Inhibiting beta-catenin signaling in an adhesion-independent manner. J Cell Biol. 2001 May; 153 (5): 1049-1059.
    43. Daniel, J. M. and Reynolds, A. B. (1999). The catenin p120(ctn) interacts with Kaiso, a novel BTB/POZ domain zinc finger transcription factor. Mol.Cell Biol. 19,3614-3623.
    44. Anastasiadis PZ and Reynolds AB. The p120 catenin family: complex roles in adhesion, signaling and cancer. J cell Sci. 2000, 113:1319-1334.
    45. Pece-S, Chiariello-M et al. Activation of the Protein Kinase Akt/PKB by the Formation of E-cadherin-mediated Cell-cell Junctions. J Biol Chem. 1999, 274 (27): 19347-19351.
    46. Liu Z, Brattain MG and Appert H. Differential display of reticulocalbin in the highly invasive cell line, MDA-MB-435, versus the poorly invasive cell line, MCF-7. Biochem Biophys Res Commun. 1997 Feb 13;231(2):283-9.
    47. Berx G, Staes K, van Hengel J, Molemans F, Bussemakers MJ, van Bokhoven A, van Roy F. Cloning and characterization of the human invasion suppressor gene E-cadherin (CDH1). Genomics. 1995 Mar 20;26(2):281-9.
    48.Spector DL, Goldman RD and Leinwand LA. 《Cells A Laboratory Manual》黄培堂等译。
    49.Sambrook J, Fritsch EF, Maniatia T.《Molecular Cloning A Laboratory Manual》2nd ed.金冬雁等译。
    50.Frederick M. Ausubel et al. 《Short Protocols in Molecular Biology》颜子颖等译。
    51.Diefienbach CW and Dveksler GS 《PCR Primer: A Laboratory Manual》黄培堂等译。
    52.司徒镇强 吴军正《细胞培养》
    53. Parodi, A. J. and Leloir, L. F. (1979) The role of lipid intermediates in the glycosylation of proteins in the eucaryotic cell. Biochim. Biophys. Acta 559, 1-37.
    54. Hubbard, S. C. and Ivatt, R. J. (1981) Synthesis and processing of asparagine-linked oligosaccharides. Annu. Rev. Biochem. 50, 555-583.
    55. Kornfeld, R. and Komfeld, S. (1985) Assemby of asparagine-linked oligosaccharides. Annu. Rev. Biochem. 54, 631-664.
    56. Kornfeld, R. and Komfeld, S. (1985) Assemby of asparagine-linked oligosaccharides. Annu. Rev. Biochem. 54, 631-664.
    57. Trombetta, E. S., Simons, J. F. and Helenius, A. (1996) Endoplasmic reticulum glucosidase Ⅱ is composed of a catalytic subunit, conserved from yeast to mammals, and a tightly bound noncatalytic HDEL-containing subunit. J. Biol. Chem. 271, 27509-27516.
    58. D'Alessio, C., Ferna! ndez, F., Trombetta, E. S. and Parodi, A. J. (1999) Genetic evidence for the heterodimeric structure of glucosidase Ⅱ. The effect of disrupting the subunit-encoding genes on glycoprotein folding. J. Biol. Chem. 274, 25899-25905.
    59. Jelinek-Kelly, S. and Herscovics, A. (1988) Glycoprotein biosynthesis in Saccharomyces cerevisiae. Purification of the a-mannosidase which removes one specific mannose residue from Man9GlcNAc. J. Biol. Chem. 263, 14757-14763.
    60. Varki, A. (1993) Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3, 97-130.
    61. Tarentino AL and Plummer TH. Enzymatic deglycosylation of asparagine-linked glycans: purification, properties, and specificity of oligosaccharide-cleaving enzymes from Flavobacterium meningosepticum. Methods Enzymol. 1994; 230: 44-57.
    62. Maley F Trimble RB Tarentino AL, Plummer TH. Characterization of glycoproteins and their associated ligosaccharides through the use of endoglycosidases. Anal Biochem. 1989 Aug 1; 180(2): 195-204.
    63. Bayer EA, Ben-Hur H and Wilchek M. Biocytin hydrazide—a selective label for sialic acids, galactose, and other sugars in glycoconjugates using avidin-biotin technology. Anal Biochem. 1988 May 1; 170(2): 271-81.
    64. Cummings RD. Use of lectins in analysis of glycoconjugates. Methods Enzymol. 1994; 230: 66-86.
    65. Cunningham BA, Leutzinger Y, Gallin WJ, Sorkin BC, Edelman GM. Linear organization of the liver cell adhesion molecule L-CAM. Proc. Natl. Acad. Sci. USA. 81,5787-5791(1984)
    66. Dwek, R. A. (1995) Glycobiology: More functions for oligosaccarides. Science 269, 1234-1235
    67. Taniguchi, N., and Ihara, Y. (1995) Recent progress in the molecular biology of the cloned N-acetylglucosaminyltransferases. Glycoconj. J. 12, 733-738.
    68. Tifft CJ, Proia R, and Camerini-otero RD. The folding and cell surface expression of CD4 requires glycosylation. J Biol. Chem. Vol. 267(5):3268-3273.
    69. Scheiffele P Simons K. N-glycans as apical sorting signals in epithelial cells. Nature. 1995 Nov 2;378(6552):96-8.
    70. Morais VA, Costa MT and Costa J.N-glycosylation of recombinant human fucosyltransferase III is required for its in vivo folding in mammalian and insect cells. Biochim Biophys Acta. 2003 Jan 20; 1619(2):133-8.
    71. Tsuda T Ikeda Y Taniguchi N. The Asn-420-linked sugar chain in human epidermal growth factor receptor suppresses ligand-independent spontaneous oligomerization. Possible role of a specific sugar chain in controllable receptor activation. J Biol Chem. 2000 Jul 21;275(29):21988-94.
    72. Konig, R., Ashwell, G. and Hannover, J. A. (1988) Glycosylation of CD4. Tunicamycin inhibits surface expression. J. Biol. Chem. 263, 9502-9507.
    73. Marquardt T Helenius A. Misfolding and aggregation of newly synthesized proteins in the endoplasmic reticulum. J Cell Biol. 1992 May;117(3):505-13.
    74. Davis MA Ireton RC Reynolds AB. A core function for p120-catenin in cadherin turnover. J Cell Biol. 2003 Nov 10;163(3):525-34.
    75. Chen YT Stewart DB Nelson WJ. Coupling assembly of the E-cadherin/beta-catenin complex to efficient endoplasmic reticulum exit and basal-lateral membrane targeting of E-cadherin in polarized MDCK cells. J Cell Biol. 1999 Feb 22;144(4):687-99.
    76. Utsunomiya T Doki Y Takemoto H. et al. Correlation of beta-catenin and cyclin Dl expression in colon cancers. Oncology. 2001;61(3):226-33.
    77. Kimura Y, Shiozaki H, Doki Y, Yamamoto M, Utsunomiya T, Kawanishi K, Fukuchi N, Inoue M, Tsujinaka T, Monden M: Cytoplasmic beta-catenin in esophageal cancers. Int J Cancer 1999;84:174 - 178.
    78. Noe V, Fingleton B, Jacobs K, Crawford HC, Vermeulen S, Steelant W, Bruyneel E, Matrisian LM, Mareel M. Release of an invasion promoter E-cadherin fragment by matrilysin and stromelysin-1. J Cell Sci. 2001 Jan;l 14(Pt 1):111-118.
    79. Shirayoshi Y, Nose A, Iwasaki K, Takeichi M. N-linked oligosaccharides are not involved in the function of a cell-cell binding glycoprotein E-cadherin. Cell Struct Funct. 1986 Sep;11(3):245-52.
    80. Aberle H, Bauer A, Stappert J, Kispert A, Kemler R. beta-catenin is a target for the ubiquitin-proteasome pathway. EMBO J. 1997 Jul l;16(13):3797-804.
    81. Kawai Y, Yamaguchi T, Yoden T, Hanada M, Miyake M. Effect of protein phosphatase inhibitors on the development of mouse embryos: protein phosphorylation is involved in the E-cadherin distribution in mouse two-cell embryos. Biol Pharm Bull. 2002 Feb;25(2): 179-83.
    82. Lickert H, Bauer A, Kemler R, Stappert J. Casein kinase II phosphorylation of E-cadherin increases E-cadherin/beta-catenin interaction and strengthens cell-cell adhesion. J Biol Chem. 2000 Feb 18;275(7):5090-5.
    83. Kaufman RJ. Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translation controls. Gene Dev, 1999,13:1211-1233.
    84. Patil C, Walter P. Intracellular signaling from the endoplasmic reticulum to the neucleus: the unfolded protein response in yeast and mammals. Curr Opin Cell Biol, 2001, 13:349-355
    85. Friedlander R, Jarosch E, Urban J et al. A regulatory link between ER associated protein degradation and the unfolded-protein response. Nat Cell Biol., 2000, 2:379-384.
    86. Onuki R, Bando Y, Suyama E, Katayama T, Kawasaki H, Baba T, Tohyama M, Taira K. An RNA-dependent protein kinase is involved in tunicamycin-induced apoptosis and Alzheimer's disease. EMBO J. 2004 Feb 25;23(4):959-968.
    87. Chunthapong J, Seftor EA, Khalkhali-Ellis Z, Seftor RE, Amir S, Lubaroff DM, Heidger PM Jr, Hendrix MJ. Dual roles of E-cadherin in prostate cancer invasion. J Cell Biochem. 2004 Mar 1;91(4):649-61.
    88. Ryniers F, Stove C, Goethals M, Brackenier L, Noe V, Bracke M, Vandekerckhove J, Mareel M, Bruyneel E. Plasmin produces an E-cadherin fragment that stimulates cancer cell invasion. Biol Chem. 2002 Jan;383(l):159-65.
    89. Katayama M, Hirai S, Kamihagi K, Nakagawa K, Yasumoto M and Kato I. Soluble E-cadherin fragments increased in circulation of cancer patients. Br J Cancer. 1994 Mar;69(3):580-5.
    90. Davies G, Jiang WG, Mason MD. Matrilysin mediates extracellular cleavage of E-cadherin from prostate cancer cells: a key mechanism in hepatocyte growth factor/scatter factor-induced cell-cell dissociation and in vitro invasion. Clin Cancer Res. 2001 Oct;7(10):3289-97.
    91. Brodsky, J. L. and McCracken, A. A. (1997) ER-associated and proteasome-mediated protein degradation : how two topologically restricted events came together. Trends Cell Biol. 7, 151-156.
    92. Plemper, R. K. and Wolf, D. H. (1999) Retrograde protein translocation : ERADication of secretory proteins in health and disease. Trends Biochem. Sci. 24, 266-270.
    93. Hong, E., Davidson, A. R. and Kaiser, C. A. (1996) A pathway for targeting soluble misfolded proteins to the yeast vacuole. J. Cell Biol. 135, 623-633.
    94. Jorgensen, M. U., Emr, S.D. and Winther, J. R. (1999) Ligand recognition and domain structure of Vps10p, a vacuolar protein sorting receptor in Saccharomyces cerevisiae. Eur. J. Biochem. 260,461-469.
    95. Ronnett, G. V., Knutson, V. P., Kohanski, R. A., Simpson, T. L. and Lane, M. D. (1984) Role of glycosylation in the processing of newly translated insulin proreceptor in 3T3-L1 adipocytes. J. Biol. Chem. 259, 4566-4575.
    96. Slieker, L. J., Martensen, T. M. and Lane, M. D. (1986) Synthesis of epidermal growth factor receptor in human A431 cells. Glycosylation dependent acquisition of ligand binding activity occurs post-translationally in the endoplasmic reticulum. J. Biol. Chem. 261, 15233-15241.
    97. Williams, A. M. and Enns, C. A. (1991) A mutated transferrin receptor lacking asparagine-linked glycosylation sites shows reduced functionality and an association with binding immunoglobulin protein. J. Biol. Chem. 266, 17648-17654.
    98. Hickman, J. and Kornfeld, S. (1978) Effect of tunicamycin on IgM, IgA and IgG secretion by mouse plasmacytoma cells. J. Immunol. 121, 990-996.
    99. Taylor, A. K. and Wall, R. (1988) Selective removal of a heavy-chain glycosylation site causes immunoglobulin A degradation and reduced secretion. Mol. Cell. Biol. 8,4197-4203.
    l00. Dube, S., Fisher, J. W. and Powell, J. S. (1988) Glycosylation at specific sites of erythropoietin is essential for biosynthesis, secretion, and biological function. J. Biol. Chem. 263, 17516-17521.
    l01. Semenkovich, C. F., Luo, C. C, Nakanishi, M. K., Chen, S. H., Smith, L. C. and Chan, L. (1990) In vitro expression and site-specific mutagenesis of the cloned human lipoprotein lipase gene. Potential N-linked glycosylation site asparagine 43 is important for both enzyme activity and secretion. J. Biol. Chem. 265, 5429-5433.
    102.Hinck L, Nathke IS, Papkoff J, Nelson WJ. Dynamics of cadherin/catenin complex formation: novel protein interactions and pathways of complex assembly. J Cell Biol. 1994 Jun;125(6): 1327-40.
    103.Huber AH, Stewart DB, Laurents DV, Nelson WJ, Weis WI. The cadherin cytoplasmic domain is unstructured in the absence of beta-catenin. A possible mechanism for regulating cadherin turnover. J Biol Chem. 2001 Apr 13;276(15):12301-9.
    104.Watabe, M, A. Nagafuchi, S. Tsukita, and M. Takeichi. 1994. Induction of polarized cell-cell association and retardation of growth by activation of the E-cadherin-catenin adhesion system in a dispersed carcinoma line. J. Cell Biol. 127:247-256.
    105.Kandikonda, S., D. Oda, R. Niederman, and B.C. Sorkin. 1996. Cadherin-mediated adhesion is required for normal growth regulation of human gingival epithelial cells. Cell Adhes. Commun. 4:13-24.
    106. Takahashi, K., and K. Suzuki. 1996. Density-dependent inhibition of growth involves prevention of EGF receptor activation by E-cadherin-mediated cell cell adhesion. Exp. Cell Res. 226:214-222.
    107. Kuwahara I, Ikebuchi K, Hamada H, Niitsu Y, Miyazawa K, Ohyashiki K, Fujisawa H, Furukawa K. Changes in N-glycosylation of human stromal cells by telomerase expression. Biochem Biophys Res Commun. 2003 Feb 7;301(2):293-7.
    108.Nagao M, Morishita E, Hanai Y, Kobayashi K, Sasaki R. N-glycosylation-defective receptor for erythropoietin can transduce the ligand-induced cell proliferation signal. FEBS Lett. 1995 Oct 16;373(3):225 -8.
    109.Calle Y, Palomares T, Castro B, del Olmo M, Alonso-Varona A. Removal of N-glycans from cell surface proteins induces apoptosis by reducing intracellular glutathione levels in the rhabdomyosarcoma cell line S4MH. Biol Cell. 2000;92(8-9):639-46.
    110. Ohta T, Kitamura K, Maizel AL, Takeda A. Alterations in CD45 glycosylation pattern accompanying different cell proliferation states. Biochem Biophys Res Commun. 1994 May 16;200(3):1283-9.
    111. Morgan, D.O. 1995. Principles of CDK regulation. Nature. 374:131-134.
    112. Kemp MQ, Jeffy BD, Romagnolo DF. Conjugated linoleic acid inhibits cell proliferation through a p53-dependent mechanism: effects on the expression of G1-restriction points in breast and colon cancer cells. J Nutr. 2003 Nov;133(ll):3670-7.
    113. Beniston RG, Campo MS. Quercetin elevates p27(Kipl) and arrests both primary and HPV16 E6/E7 transformed human keratinocytes in G1. Oncogene. 2003 Aug 21;22(35):5504-14.
    114. Deeds L, Teodorescu S, Chu M, Yu Q, Chen CY. A p53-independent Gl cell cycle checkpoint induced by the suppression of protein kinase C alpha and theta isoforms. J Biol Chem. 2003 Oct 10;278(41):39782-93.
    115.Persad S, Troussard AA, McPhee TR, Mulholland DJ, Dedhar S.Tumor suppressor PTEN inhibits nuclear accumulation of beta-catenin and T cell/lymphoid enhancer factor 1-mediated transcriptional activation. J Cell Biol.b 2001 Jun 11;153(6):1161-74.
    116. Shtutman, M., J. Zhurinsky, I. Simcha, C. Albanese, M. D'Amico, R. Pestell, and A. Ben-Ze'ev. 1999. The cyclin Dl gene is a target of the β-catenin/LEF-1 pathway. Proc. Natl. Acad. Sci. USA. 96:5522-5527.
    117.Tetsu, O., and F. McCormick. 1999. p-catenin regulates expression of cyclin Dl in colon carcinoma cells. Nature. 398:422—426.
    118.Behrens, J. 2000. Control of beta-catenin signalling in tumor development. Ann. NY Acad. Sci. 10:21-33.
    119. Lin, S.-Y, W. Xia, J.C. Wang, K.Y. Kwong, B. Spohn, Y. Wen, R.G. Pestell, and M.-C.H. Hung. 2000. P-catenin, a novel prognostic marker for breast cancer: Its role in cyclin Dl expression and cancer progression. Proc. Natl.Acad. Sci. USA. 97:4262-4266.
    120. Diehl JA Zindy F Sherr CJ Inhibition of cyclin Dl phosphorylation on threonine-286 prevents its rapid degradation via the ubiquitin-proteasome pathway. Genes Dev. 1997 Apr 15;ll(8):957-72.
    121. Diehl JA Cheng M Roussel MF Sherr CJ Glycogen synthase kinase-3beta regulates cyclin Dl proteolysis and subcellular localization. Genes Dev. 1998 Nov 15;12(22):3499-511.
    122. Nicholson KM, Anderson NG. The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal 2002,14: 381-395.
    123.Muise-Helmericks RC, Grimes HL, Bellacosa A, Malstrom SE, Tsichlis PN, Rosen N. Cyclin D expression is controlled post-transcriptionally via a phosphatidylinositol 3-kinase/Akt-dependent pathway. J Biol Chem. 1998 Nov 6;273(45):29864-72.
    124. Grille SJ, Bellacosa A, Upson J, Klein-Szanto AJ, van Roy F, Lee-Kwon W, Donowitz M, Tsichlis PN, Larue L. The protein kinase Akt induces epithelial mesenchymal transition and promotes enhanced motility and invasiveness of squamous cell carcinoma lines. Cancer Res. 2003 May ;63(9):2172-8.
    125.Roovers K, Davey G, Zhu X, Bottazzi ME, Assoian RK. α 5β1 integrin controls cyclin Dl expression by sustaining mitogen-activated protein kinase activity in growth factor-treated cells. Mol Biol Cell. 1999, 10: 3197-3204.
    126. Bottazzi ME, Zhu X, Bohmer RM, Assoian RK. Regulation of p21cipl expression by growth factors and the extracellular matrix reveals a role for transient ERK in Gl phase. J Cell Biol 1999, 146: 1255-1264.
    127. Stockinger A, Eger A, Wolf J, BeugH, Foisner R. E-cadherin regulates cell growth by modulating proliferation-dependent beta-catenin transcriptional activity. J Cell Biol. 2001 Sep 17;154(6):1185-96.
    128.Bracke ME, Depypere H, Labit C, Van Marck V, Vennekens K, Vermeulen SJ, Maelfait I, Philippe J, Serreyn R, Mareel MM. Functional downregulation of the E-cadherin/catenin complex leads to loss of contact inhibition of motility and of mitochondrial activity, but not of growth in confluent epithelial cell cultures. Eur J Cell Biol. 1997 Dec;74(4):342-9.
    129. Mueller S Cadenas E Schonthal AH. p21WAFl regulates anchorage-independent growth of HCT116 colon carcinoma cells via E-cadherin expression. Cancer Res. 2000 Jan 1;60(l): 156-63.
    130. Kantak SS, Kramer RH. E-cadherin regulates anchorage-independent growth and survival in oral squamous cell carcinoma cells. J Biol Chem. 1998 Jul 3;273(27):16953-61.
    131. Day ML, Zhao X, Vallorosi CJ, Putzi M, Powell CT, Lin C, Day KC. E-cadherin mediates aggregation-dependent survival of prostate and mammary epithelial cells through the retinoblastoma cell cycle control pathway. J Biol Chem. 1999 Apr 2;274(14):9656-64.
    132.E1-Deiry, W. S. p21/p53, cellular growth control and genomic integrity. Curr. Topics Microbiol. Immunol., 227: 121-137, 1998.
    133. Harper, J. W., and Elledge, S. J. Cdk inhibitors in development and cancer. Curr. Opin. Genet. Dev., 6: 56-64, 1996.
    134.Sherr, C. J., and Roberts, J. M. Inhibitors of mammalian Gl cyclin-dependent kinases. Genes Dev., 9: 1149-1163,1995.
    135. Waga, S., Harmon, G. J., Beach, D., and Stillman, B. The p21 inhibitor of cyclin dependent kinases controls DNA replication by interaction with PCNA. Nature (Lond.), 369: 574-578, 1994.
    136. Gran~a, X., and Reddy, E. P. Cell cycle control in mammalian cells: role of cyclins, cyclin dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors (CKIs). Oncogene, 11:211-219,1995.
    137.Thoreson MA Anastasiadis PZ Daniel JM et al. Selective uncoupling of pl20(ctn) from E-cadherin disrupts strong adhesion. J Cell Biol. 2000 Jan 10;148(l):189-202.
    138.Peifer M Polakis P. Wnt signaling in oncogenesis and embryo genes is—a look outside the nucleus. Science. 2000 Mar 3;287(5458):1606-9.
    139.Polakis P. Wnt signaling and cancer. Genes Dev. 2000 Aug 1 ;14(15): 1837-51.
    140.Yamamoto, H., Kishida, S., Kishida, M., Ikeda, S., Takada, S., and Kikuchi, A. 1999. Phosphorylation of axin, a Wnt signal negative regulator, by glycogen synthase kinase-3P regulates its stability. J. Biol. Chem. 274: 10681-10684.
    141. Dominguez, I., Itoh, K., and Sokol, S.Y. 1995. Role of glycogen synthase kinase 3 beta as a negative regulator of dorsoventral axis formation in Xenopus embryos. Proc. Natl. Acad. Sci. 92: 8498-8502.
    142. He, X., Saint-Jeannet, J.P., Woodgett, J.R., Varmus, H.E., and Dawid, I.B. 1995. Glycogen synthase kinase-3 and dorsoventral patterning in Xenopus embryos. Nature 374: 617-623.
    143. Ikeda, S., Kishida, S., Yamamoto, H., Murai, H., Koyama, S., and Kikuchi, A. 1998. Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3P and P-catenin and promotes GSK-3p-dependent phosphorylation of β -catenin. EMBO J. 17: 1371-1384.
    144. Itoh, K., Krupnik, V.E., and Sokol, S.Y. 1998. Axis determination in Xenopus involves biochemical interactions of axin, glycogen synthase kinase 3 and beta-catenin. Curr. Biol. 8: 591-594.
    145.Nakamura, T., Hamada, F., Ishidate, T., Anai, K., Kawahara, K., Toyoshima, K., and Akiyama, T. 1998a. Axin, an inhibitor of the Wnt signalling pathway, interacts with beta- catenin, GSK-3beta and APC and reduces the beta-catenin level. Genes Cells 3: 395-403.
    146. Sadot E, Geiger B, Oren M, Ben-Ze'ev A.Down-regulation of beta-catenin by activated p53. Mol Cell Biol. 2001 Oct;21(20):6768-81.
    147. Comijn, J., G. Berx, P. Vermassen, K. Verschueren, L. van Grunsven, E. Bruyneel, M. Mareel, D. Huylebroeck, and F. van Roy. 2001. The two-handed E box binding zinc finger protein SIPldownregulates E-cadherin and induces invasion. Mol. Cell. 7:1267-1278.
    148. Matsumura, T., R. Makino, and K. Mitamura. 2001. Frequent down-regulation of E-cadherin by genetic and epigenetic changes in the malignant progression of hepatocellular carcinomas. Clin. Cancer Res. 7:594-599.
    149. Crawford, H.C., B.M. Fingleton, L.A. Rudolph-Owen, K.J. Goss, B. Rubinfeld, P. Polakis, and L.M. Matrisian. 1999. The metalloproteinase matrilysin is a target of P-catenin transactivation in intestinal tumors. Oncogene. 18:2883-2891.
    150.Gradl, D., M. Kuhl, and D. Wedlich. 1999. The Wnt/Wg signal transducer P-catenin controls fibronectin expression. Mol. Cell. Biol. 19:5576-5587.
    151.Grosheva, I., M. Shtutman, M. Elbaum, and A.D. Bershadsky. 2001. p120 catenin affects cell motility via modulation of activity of Rho-family GTPases: a link between cell-cell contact formation and regulation of cell locomotion. J. Cell Sci. 114:695-707.
    152.Noren, N.K., B.P. Liu, K. Burridge, and B. Kreft. 2000. p120 catenin regulates the actin cytoskeleton via Rho family GTPases. J. Cell Biol. 150:567-580.
    153.Prokhortchouk A, Hendrich B, Jorgensen H, Ruzov A, Wilm M, Georgiev G, Bird A, Prokhortchouk E. The p120 catenin partner Kaiso is a DNA methylation-dependent transcriptional repressor. Genes Dev. 2001 Jul
    154. Doki, Y., Shiozaki, H., Tahara, H., Inoue, M., Oka, H., Iihara, K., Kadowaki, T., Takeichi, M. and Mori, T. (1993). Correlation between Ecadherin expression and invasiveness in vitro in a human esophageal cancer cell line. Cancer Res. 53, 3421-3426.
    155.Vleminckx, K., Vakaet Jr., L., Mareel, M., Fiers, W. and Van Roy, F. (1991). Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals and invasion suppressor role. Cell 66, 107-119.
    156. Sommers CL, Thompson EW, Torri JA, Kemler R, Gelmann EP, Byers SW. Cell adhesion molecule uvomorulin expression in human breast cancer cell lines: relationship to morphology and invasive capacities. Cell Growth Differ. 1991 Aug;2(8):365-72.
    157.Takatoshi kitada Eiji Miyoshi et al. The addition of Bisecting N-Acetylglucosamine Residues to E-cadherin Down-regulates the Tyrosine Phosphorylation of P-catenin. J Biol. Chem. 2001, Vol. 276(l):475-480.
    158. Richardson A, Malik RK, Hildebrand JD, Parsons JT Inhibition of cell spreading by expression of the C-terminal domain of focal adhesion kinase (FAK) is rescued by coexpression of Src or catalytically inactive FAK: a role for paxillin tyrosine phosphorylation. Mol Cell Biol. 1997 Dec;17(12):6906-14.
    159. Tamura M, Gu J, Matsumoto K, Aota S, Parsons R, Yamada KM Inhibition of cell migration, spreading, and focal adhesions by tumor suppressor PTEN. Science. 1998 Jun 5;280(5369):1614-7.
    160. Huang ZY Wu Y Hedrick N Gutmann DH. T-cadherin-mediated cell growth regulation involves G2 phase arrest and requires p21(CIPl/WAFl) expression. Mol Cell Biol. 2003 Jan;23(2):566-78.
    161. Jiang WG Hiscox S Hallett MB et al. Regulation of the expression of E-cadherin on human cancer cells by gamma-linolenic acid (GLA).Cancer Res. 1995 Nov l;55(21):5043-8.
    162. Busk M, Pytela R, Sheppard D. Characterization of the integrin alpha v beta 6 as a fibronectin-binding protein. J Biol Chem. 1992 Mar 25;267(9):5790-6.
    163.Albini A. Tumor and endothelial cell invasion of basement membranes. The matrigel chemoinvasion assay as a tool for dissecting molecular mechanisms. Pathol Oncol Res. 1998;4(3):230-41.
    164. Mareel, M.M., F.M. Van Roy, and M.E. Bracke. 1993. How and when do tumor cells metastasize? Crit. Rev. Oncog. 4:559-594.
    165.Margulis A, Andriani F, Fusenig N, Hashimoto K, Hanakawa Y, Garlick JA. Abrogation of E-cadherin-mediated adhesion induces tumor cell invasion in human skin-like organotypic culture. J Invest Dermatol. 2003 Nov;121(5): 1182-90.
    166. Conacci-Sorrell M, Simcha I, Ben-Yedidia T, Blechman J, Savagner P, Ben-Ze'ev A. Autoregulation of E-cadherin expression by cadherin-cadherin interactions: the roles of beta-catenin signaling, Slug, and MAPK. J Cell Biol. 2003 Nov 24;163(4):847-57.
    167. Suriano G, Mulholland D, de Wever O, Ferreira P, Mateus AR, Bruyneel E, Nelson CC, Mareel MM, Yokota J, Huntsman D, Seruca R.The intracellular E-cadherin germline mutation V832 M lacks the ability to mediate cell-cell adhesion and to suppress invasion. Oncogene. 2003 Aug 28;22(36):5716-9.
    168. Chen H, Paradies NE, Fedor-Chaiken M, Brackenbury R. E-cadherin mediates adhesion and suppresses cell motility via distinct mechanisms. J Cell Sci. 1997 Feb;110(Pt3):345-56.
    169. Perez-Moreno M, Jamora C, Fuchs E. Sticky business: orchestrating cellular signals at adherens junctions. Cell. 2003 Feb 21;112(4):535-48.
    170.Dwek, R. A., Christopher, J. E., David, J. H., and Mark, R. W. (1993) Annu. Rev. Biochem. 62, 65-100.
    171. Yoshimura M, Nishikawa A, Ihara Y, Taniguchi S, Taniguchi N. Suppression of lung metastasis of B16 mouse melanoma by N-acetylglucosaminyltransferase III gene transfection. Proc Natl Acad Sci U S A. 1995 Sep 12; 92(19): 8754-8.
    172. Novak A, Hsu SC, Leung-Hagesteijn C, Radeva G, Papkoff J, Montesano R, Roskelley C, Grosschedl R, Dedhar S. Cell adhesion and the integrin-linked kinase regulate the LEF-1 and beta-catenin signaling pathways. Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4374-9.
    173.Genda T, Sakamoto M, Ichida T, Asakura H, Hirohashi S. Loss of cell-cell contact is induced by integrin-mediated cell-substratum adhesion in highly-motile and highly-metastatic hepatocellular carcinoma cells. Lab Invest. 2000 Mar;80(3):387-94.
    174. Wu C. Keightley S.Y. et al: Integrin-linked Protein Kinase Regulates Fibronectin Matrix Assembly, E-cadherin Expression, and Tumorigenesity. J. Biol. Chem. 1998. 273:528-536.
    175. Behrens J, Vakaet L, Friis R, Winterhager E, Van Roy F, Mareel MM, Birchmeier W. Loss of epithelial differentiation and gain of invasiveness correlates with tyrosine phosphorylation of the E-cadherin/beta-catenin complex in cells transformed with a temperature-sensitive v-SRC gene. J Cell Biol. 1993 Feb;120(3):757-66.
    176. Chattopadhyay N, Wang Z, Ashman LK, Brady-Kalnay SM, Kreidberg JA. alpha3betal integrin-CD151, a component of the cadherin-catenin complex, regulates PTPmu expression and cell-cell adhesion. J Cell Biol. 2003 Dec 22;163(6):1351-62.
    177. Calautti, E., Cabodi, S., Stein, P. L., Hatzfeld, M., Kedersha, N. and Paolo Dotto, G. (1998). Tyrosine phosphorylation and src family kinases control keratinocyte cell-cell adhesion. J. Cell Biol. 141, 1449-1465.
    178. Papkoff, J. (1997). Regulation of complexed and free catenin pools by distinct mechanisms. Differential effects of Wnt-1 and v-Src. J. Biol. Chem. 272, 4536-4543.
    179.Huber AH Weis WI. The structure of the beta-catenin/E-cadherin complex and the molecular basis of diverse ligand recognition by beta-catenin. Cell. 2001 May 4;105(3):391-402.
    180. Stephens L, Anderson K, Stokoe D, Erdjument-Bromage H, Painter GF, Holmes AB, Gaffney PR, Reese CB, McCormick F, Tempst P, Coadwell J, Hawkins PT. Protein kinase B kinases that mediate phosphatidylinositol 3,4,5-trisphosphate-dependent activation of protein kinase B. Science. 1998 Jan 30;279(5351):710-4.
    181. Itoh N, Semba S, Ito M, Takeda H, Kawata S, Yamakawa M. Phosphorylation of Akt/PKB is required for suppression of cancer cell apoptosis and tumor progression in human colorectal carcinoma. Cancer. 2002 Jun 15;94(12):3127-34.
    182.Maier D, Jones G, Li X, Schonthal AH, Gratzl O, Van Meir EG, Merlo A. The PTEN lipid phosphatase domain is not required to inhibit invasion of glioma cells. Cancer Res. 1999 Nov l;59(21):5479-82.
    183. Filippo G.G., Erkki R. Integrin Signaling. Science, 1999 285:1028.
    184.Hsia DA, Mitra SK, Hauck CR, Streblow DN, Nelson JA, Ilic D, Huang S, Li E, Nemerow GR, Leng J, Spencer KS, Cheresh DA, Schlaepfer DD. Differential regulation of cell motility and invasion by FAK. J Cell Biol. 2003 Mar 3;160(5):753-67.
    185.Persad S, Attwell S, Gray V, Mawji N, Deng JT, Leung D, Yan J, Sanghera J, Walsh MP, Dedhar S. Regulation of protein kinase B/Akt-serine 473 phosphorylation by integrin-linked kinase: critical roles for kinase activity and amino acids arginine 211 and serine 343. J Biol Chem. 2001 Jul 20;276(29):27462-9.
    186. Gilles C, Polette M, Pierre J, Birembaut P, Foidart JM. Epithelial-tomesenchymal transition in HPV-33-transfected cervical keratinocytes is associated with increased invasiveness and expression of gelatinase A. Int J Cancer 1994;59:661 -6.
    187. Polette M, Birembaut P. Matrix metalloproteinases in breast cancer. Breast J 1996;2:209 -20.
    188. Polette M, Gilles C, de Bentzmann S, Gruenert D, Tournier JM, Birembaut P. Association of .broblastoid features with the invasive phenotype in human bronchial cancer cell lines. Clin Exp Metastas 1998; 16:105 - 12.
    189. Nawrocki-Raby B, Gilles C, Polette M, Bruyneel E, Laronze JY, Bonnet N, Foidart JM, Mareel M, Birembaut P. Upregulation of MMPs by soluble E-cadherin in human lung tumor cells. Int J Cancer. 2003 Jul 20;105(6):790-5.
    190. Calvisi DF, Ladu S, Factor VM, Thorgeirsson SSActivation of {beta}-catenin provides proliferative and invasive advantages in c-myc/TGF-{alpha} hepatocarcinogenesis promoted by phenobarbital. Carcinogenesis. 2004 Jan 23.
    191. Cozzolino M, Stagni V, Spinardi L, Campioni N, Fiorentini C, Salvati E, Alema S, Salvatore AM. p120 Catenin is required for growth factor-dependent cell motility and scattering in epithelial cells. Mol Biol Cell. 2003 May; 14(5): 1964-77.
    192. Muller T, Choidas A, Reichmann E, Ullrich A. Phosphorylation and free pool of beta-catenin are regulated by tyrosine kinases and tyrosine phosphatases during epithelial cell migration. J Biol Chem. 1999 Apr 9;274(15):10173-83.
    193. Li Y, Bharti A, Chen D, Gong J, Kufe D. Interaction of glycogen synthase kinase 3beta with the DF3/MUC1 carcinoma-associated antigen and beta-catenin. Mol Cell Biol. 1998 Dec;18(12):7216-24.
    194. Schroeder JA, Adriance MC, Thompson MC, Camenisch TD, Gendler SJ. MUCl alters beta-catenin-dependent tumor formation and promotes cellular invasion. Oncogene. 2003 Mar 6;22(9):1324-32.
    195. Deng J, Miller SA, Wang HY, Xia W, Wen Y, Zhou BP, Li Y, Lin SY, Hung MC. beta-catenin interacts with and inhibits NF-kappa B in human colon and breast cancer. Cancer Cell. 2002 Oct;2(4):323-34.
    196. Widlund HR, Horstmann MA, Price ER, Cui J, Lessnick SL, Wu M, He X, Fisher DE. Beta-catenin-induced melanoma growth requires the downstream target Microphthalmia-associated transcription factor. J Cell Biol. 2002 Sep 16;158(6):1079-87.
    197. Kuroda S, Fukata M, Nakagawa M, Fujii K, Nakamura T, Ookubo T, Izawa I, Nagase T, Nomura N, Tani H, Shoji I, Matsuura Y, Yonehara S, Kaibuchi K. Role of IQGAP1, a target of the small GTPases Cdc42 and Racl, in regulation of E-cadherin- mediated cell-cell adhesion. Science. 1998 Aug 7;281(5378):832-5.
    198. Reynolds, A. B., Roesel, D. J., Kanner, S. B. and Parsons, J. T. (1989). Transformation-specific tyrosine phosphorylation of a novel cellular protein in chicken cells expressing oncogenic variants of the avian cellular src gene. Mol. Cell Biol. 9, 629-638.
    199. Ozawa, M. and Kemler, R. (1998). The membrane-proximal region of the Ecadherin cytoplasmic domain prevents dimerization and negatively regulates adhesion activity. J. Cell Biol. 142, 1605-1613.
    200. Aono, S., Nakagawa, S., Reynolds, A. B. and Takeichi, M. (1999). p120(ctn) acts as an inhibitory regulator of cadherin function in colon carcinoma cells. J. Cell Biol. 145,551-562.
    201.Ohkubo, T. and Ozawa, M. (1999). p120(ctn) binds to the membraneproximal region of the E-cadherin cytoplasmic domain and is involved in modulation of adhesion activity. J. Biol. Chem. 274, 21409-21415.
    202. van Hengel, J., Vanhoenacker, P., Staes, K. and van Roy, F. (1999). Nuclear localization of the p120(ctn) Armadillo-like catenin is counteracted by a nuclear export signal and by E-cadherin expression. Proc. Nat. Acad. Sci.USA 96, 7980-7985.
    203.Kinch, M. S., Petch, L., Zhong, C. and Burridge, K. (1997). E-cadherin engagement stimulates tyrosine phosphorylation. Cell Adhes. Commun. 4, 425-437.
    204. Skoudy, A., Llosas, M. D. and Garcia de Herreros, A. (1996b). Intestinal HT-29 cells with dysfunction of E-cadherin show increased pp60src activity and tyrosine phosphorylation of pl20-catenin. Biochem. J. 317, 279-284.
    205.Pece S, Chiariello M, Murga C, Gutkind JS. Activation of the protein kinase Akt/PKB by the formation of E-cadherin-mediated cell-cell junctions. Evidence for the association of phosphatidylinositol 3-kinase with the E-cadherin adhesion complex. J Biol Chem. 1999 Jul 2;274(27):19347-51.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.