TiO_2/FTO纳米管有序阵列光电极的制备、CdS修饰及其光学特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二氧化钛具有独特的湿敏、气敏、紫外光吸收、光电转化及光催化性能,在传感器、介电材料、自清洁材料、有机-无机太阳能电池、光催化降解污染物等领域有着广阔的应用前景。TiO_2纳米管因其特殊的结构而表现出更加优异的性能。若将TiO_2纳米管(或多孔)膜高质量地转移至透明导电基底FTO上,制备出多孔TiO_2/FTO纳米薄膜,则其可直接作为光电极,以便在光电转换等领域得到更好的应用。本论文以“TiO_2/FTO纳米管有序阵列光电极的制备、CdS修饰及其光学特性的研究”为题,主要述及以下几方面的研究工作:
     1.以金属钛片为基底(0.2 mm),采用连续三步阳极氧化法,在含有NH4F的乙二醇溶液内,成功制备出大面积(18 mm×11 mm)自持多孔TiO_2纳米管阵列膜(管长≤1.5μm)。通过进一步研究发现,该自持薄膜不仅具有较高的晶化程度、较高的透射率(400~2500 nm),而且不同的阳极电压对薄膜的透射强度及光学能隙(Eg)都有明显的调制作用。
     2.利用实验室配制的TiO_2溶胶,成功将自持TiO_2纳米管阵列膜转移粘结至FTO导电玻璃上,经退火处理后形成TiO_2/FTO纳米管阵列膜光电极。
     3.采用序贯化学浴沉积方法,对TiO_2/FTO纳米管阵列膜光电极做CdS纳米颗粒修饰。实验发现,经CdS纳米颗粒修饰的TiO_2/FTO光电极,其帯隙宽度由原来的3.22 eV减小至2.43 eV,光吸收带边也由原来的380 nm红移至554 nm。研究表明,这种转移粘结法制备的TiO_2/FTO半透明光电极经CdS纳米颗粒修饰后,具有很宽的光谱响应特性,这是光电转换应用研究所期待的。这项研究对基于TiO_2纳米管阵列的光催化及光伏太阳电池的应用研究将是非常有益的。
TiO_2 nanomaterials have been widely studied due to their unique electrical and electrochemical properties which are suitable for sensing, catalysis and solar cells. In recent years, TiO_2 nanotubes with high surface-to-volume ratios have received considerable attention because of their potential applications of highly efficient photocatalysis and photovoltaic cells. If the TiO_2 nanotube membranes could be transferd onto the FTO substrates, the transparent and conductive TiO_2/FTO photoelectrode would have a better application in the photoelectric conversion filed. This dissertation titled“Highly ordered TiO_2/FTO nanotube array photoelectrode:fabrication, modification of CdS and its optical properties”mainly describes the following work and results:
     1. The large-scale (18 mm×11 mm), highly-ordered, vertically-oriented free-standing TiO_2 nanotube membranes were fabricated by three-step anodization Ti foils(0.2 mm) in ethylene glycol containing 0.25 wt.% NH4F. It is found that the optical energy gap (Eg) of TiO_2 nanotube membranes could not only have high transmissivity (400~2500 nm), but also be effectively modulated by different anodic voltage. Obviously, this work would be beneficial to apply in organic-inorganic photovoltaic devices.
     2. Then the as-prepared free-standing membranes were transferred to FTO-coated glass substrates with TiO_2 sol, and the semitransparent TiO_2/FTO photoelectrode was obtained after annealing treatment.
     3. The TiO_2/FTO photoelectrode was modified with CdS by the sequential-chemical bath deposition (S-CBD) method in order to extend the optical absorption range of bare TiO_2/FTO. The measurement results show that the band-gaps decrease from 3.22 eV for bare TiO_2/FTO to 2.43 eV for CdS-modified TiO_2/FTO. Meanwhile, the optical absorption band-edges of CdS-modified TiO_2/FTO have efficiently shifted from 380 nm to 554 nm, which could lead to an extended optical absorption range from the ultraviolet to the visible.
引文
[1] Gopal K M, Oomman K V, Maggie P. Solar energy materials & solar cell. 2006, 90: 2011.
    [2] Chen X B , Samuel S M. Chem. Rev. 2007, 107: 2891.
    [3] Shankar K, Mor G K, Paulose M, Varghese O K, Grimes C A. Journal of Non-Crystalline Solids. 2008, 354: 2767.
    [4] Park N G, Lagemaat J V, Frank A J. J. Phys. Chem. B., 2000, 104: 8989.
    [5]马保宏,李燕,王成伟等.物理学报, 2008, 57(1): 586~591.
    [6] HER H J, KIM J M, KANG C J, et al.. Journal of Physics and Chemistry of Solids, 2008, 69: 1301~1304.
    [7] CHEN P, YUM J H, ANGELIS F D, et al. Nano Lett., 2009, 9(6): 2487~2492.
    [8] Bang-Ying Yu, Ating Tsai, Shu-Ping Tsai, Ken-Tsung Wong, Yang Yang, Chih-Wei Chu and Jing-Jong Shyue. Nanotechnology, 2008, 19: 255202~255206.
    [9] MOR G K, KIM S, PAULOSE M, et al. Nano Lett., 2009, 9: 4250~4257.
    [10] ROY P, KIM D, PARAMASIVAM I, et al. Electrochem. Commun., 2009, 11(5): 1001~1004.
    [11] I. Paramasivam, J.M. Macak, P. Schmuki. Electrochem. Commun., 2008, 10: 71~75.
    [12] Gopal K. Mor, Oomman K. Varghese, Maggie Paulose, Karthik Shankar, Craig A. Grimes. Solar Energy Materials & Solar Cells, 2006, 90: 2011~2075.
    [13] Seung-Han Oh, Rita R. Finǒnes, Chiara Daraio, Li-Han Chen, Sungho Jin. Biomaterials, 2005, 26: 4938~4943.
    [14] Bangcheng Yang, Masaiki Uchida, Hyun-Min Kim, Xingdong Zhang. Biomaterials, 2004, 25: 1003~1010.
    [15]高濂,郑珊,张青红.北京:化学工艺出版社,2002,8-9.
    [16]法文君,咎菱,龚楚清,钟家怪.化学进展, 2008, 20(l): 19.
    [17] Haripriya E P , Kart hik S , Maggie P. J. Phys. Chem. C., 2007, 111: 7235.
    [18] Kart hik S , Gopal K M , Adriana F. J. Phys. Chem. C., 2007, 111: 21.
    [19] Maggie P , Kart hik S , Sorachon Y . J. Phys. Chem B.,2006, 110: 16179.
    [20] Regan B O, Gr?tzel M. Nature, 1991, 353: 737.
    [21] Adachi M, Murata Y, Okada I, Yoshikawa S. J. Electrochem. Soc., 2003, 150G493.
    [22] Paulose M, Shankar K, Varghese O K, Mor G K, Hardin B, Grimes C A. Nanotechnology, 2006, 17(1): 1446.
    [23] Nenov T, Yordanov S. Ceramic Sensor Device Materials, Sensor and Actuators B, 1992, (8): 117.
    [24] Roy M S.赵壁英译.《表面物理化学》,北京大学出版社, 1984, 53~80.
    [25] Oh S,Fin nes R R,Daraio C,et al. Biomaterials,2005,26: 4938~4943.
    [26] Tsuchiya H,Macak J M,Müller L,et al. Journal of Biomedical Materials Research Part A,2006,534~541.
    [27] Kunze J,Müller L,Macak J M,et al. Electrochimica Acta, 2008, 53: 6995~7003.
    [28] Xiao X,Tian T,Liu R,et al. Materials Chemistry and Physics,2007,106: 27~32.
    [29] Song Y,Schmidt-Stein F,Bauer S,et al. J. Am. Chem. Soc.,2009,131: 4230~4232.
    [30] Lai Y,Lin C,Wang H,et al. Electrochemistry Communications, 2008, 10: 387~391.
    [31] Hahn R,Ghicov A,Schmuki P,et al. Phys. Stat. Sol. (a), 2007, 204: 1281-1285.
    [32] Patrick H. Langmuir, 1996, 12: 1411.
    [33] Tomoko K, Masayoshi H, Akihiko H, Toru S, Koichi N. Langmuir, 1998, 14: 3160.
    [34] Gong D W, Grimes C A., Varghese O K, Hu WCh, Singh R S, Chen Z h, Elizabeth C D. J. Mater. Res., 2001, 16(12): 3331.
    [35]李燕,王成伟,赵新宏,王建.高等学校化学学报, 2006, 27: 1101.
    [36] Brinda B L, Peter K D, Charles R M. Chem. Mater., 1997, 9(3): 857.
    [37] Shinsuke Y, Tsuyoshi H, Hiroaki M, Ken K, Masayoshi U. Journal of Alloys and Compounds, 2004, 373(1-2): 312.
    [38] Tomoko K. Thin Solid Films, 2006, 496: 141.
    [39] Ou HH, Lo ShL. Separation and Purification Technology, 2007, 581: 79.
    [40] Lee ChK, Wang ChC, Lyu MD, Juang LCh, Liu ShSh, Hung ShH. J. Colloid and Interface Science, 2007, 316: 562.
    [41] Savage N, Chwieroth B, Ginwalla A, Patton B R, Dutta P K. Sens. Actuators B, 2002, 79: 17.
    [42] Mor G K,Varghese O K, Paulose M, Shankar K, Grimes C A. Solar Energy Mater Solar Cells, 2006, 90: 2011.
    [43] Paulose M, Shankar K, Varghese O K, Mor G K, Hardin B, Grimes C A. Nanotechnology, 2006,17: 1446.
    [44] Macak J M, Tsuchiya H, Schmuki P. Angew. Chem. Int. Edn., 2005, 44: 2100.
    [45] Zwilling V, Aucouturier M, Darque-Ceretti E. Electrochim. Acta., 1999, 45(6): 921.
    [46] GONG D, GRIMES C A, VARGHESE O K. Titanium oxide nanotube arrays prepared by anodic oxidation [J]. Journal of Materials Research, 2001, 16(12): 3331~3334.
    [47] Hahn R, Macak J M, Schmuki P. Electrochemistry Communications, 2007, 9: 947.
    [48] Yang Y, Wang X H, Li L T. Materials Science and Engineering B, 2008, 149: 58.
    [49] Xiao P, Garcia B B, Guo Q, Liu D W, Cao G Zh. Electrochemistry Communications, 2007, 9: 2441.
    [50]管东升,方海涛,逯好峰,孙涛,李峰,刘敏.化学进展, 2008, 20: 1868.
    [51] Mor G K, Varghese O K, Grimes C A. J. Mater. Res., 2003, 18(11): 2588.
    [52] Varghese O K, Gong D, Grimes C A. J. Mater. Res., 2003, 18(1): 156.
    [53] Taveira L V, Macak J M, Schmuki P. J. Electrochem. Soc., 2005, 152(10): B405.
    [54]程伟,徐金叶,胡静,金学军.无机化学学报,2009, 25(1): 92.
    [55]吴莲苹,赵莲花,万永彪,张志宏,韩阳.稀有金属材料与工程, 2008, 37(10) .
    [56] Mor G K, Varghese O K., Paulose M, Shankar K. Grimes C A. Solar Energy Materials & Solar Cells, 2006, 90: 2011.
    [1] GONG D, GRIMES C A, VARGHESE O K. Titanium oxide nanotube arrays prepared by anodic oxidation [J]. Journal of Materials Research, 2001, 16(12): 3331~3334.
    [2] ZHU W, LIU X, LIU H Q, et al. Coaxial heterogeneous structure of TiO_2 nanotube arrays with CdS as a superthin coating synthesized via modified electrochemical atomic layer deposition [J]. J. AM. CHEM. SOC., 2010, 132: 12619~12626.
    [3] ONG K G, VERGHESE O K, MOR G K, et al. Application of finite-difference time domain to dye-sensitized solar cells: The effect of nanotube-array negative electrode dimensions on light absorption [J]. Solar Energy Materials & Solar Cells, 2007, 91: 250~257.
    [4] ZHU K, NEALE N R, MIEDANER A, et al. Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO_2 nanotubes arrays [J]. Nano Lett., 2007, 7(1): 69~74.
    [5] LAW M, GREENE L E, JOHNSON J C, et al. Nanowire dye-sensitized solar cells [J]. Nature Materials, 2005, 4: 455~459.
    [6] HER H J, KIM J M, KANG C J, et al. Hybrid photovoltaic cell with well-ordered nanoporous titania–P3HT by nanoimprinting lithography [J]. Journal of Physics and Chemistry of Solids, 2008, 69: 1301~1304.
    [7] CHEN P, YUM J H, ANGELIS F D, et al. High Open-Circuit Voltage Solid-State Dye-Sensitized Solar Cells with Organic Dye [J]. Nano Lett., 2009, 9(6): 2487~2492.
    [8] YU B Y, TSAI A, TSAI S P, et al. Efficient inverted solar cells using TiO_2 nanotube arrays [J]. Nanotechnology, 2008, 19: 255202~255206.
    [9] MOR G K, KIM S, PAULOSE M, et al. Visible to Near-Infrared Light Harvesting in TiO_2 Nanotube Array-P3HT Based Heterojunction Solar Cells [J]. Nano Lett., 2009, 9: 4250~4257.
    [10] ROY P, KIM D, PARAMASIVAM I, et al. Improved efficiency of TiO_2 nanotubes in dye sensitized solar cells by decoration with TiO_2 nanoparticles [J]. Electrochem. Commun., 2009, 11(5): 1001~1004.
    [11]陈焘,罗崇泰.薄膜应力的研究进展[J].真空与低温, 2006, 12(2): 68~74.
    [12] EU S, HAYASHI S, UMEYAMA T, et al. Effects of 5-memberedheteroaromatic spacers on structures of porphyrin films and photovoltaic properties of porphyrin-sensitized TiO_2 cells [J]. Journal of Physical Chemistry C, 2007, 111: 3528~3537.
    [13] NEALE N R, KOPIDAKIS N, GR?LTZEL M, et al. Effect of a coadsorbent on the performance of dye-sensitized TiO_2 solar cells: Shielding versus band-edge movement [J]. Journal of Physical Chemistry B, 2005, 109: 23183~23189.
    [14] WANG J J, WANG D S, WANG J, et al. High transmittance and superhydrophilicity of porous TiO_2/SiO_2 bi-layer films without UV irradiation [J]. Surface & Coatings Technology, 2011, 205: 3596~3599.
    [15] CHEN C H, CHEN K C, HE J L. Transparent conducting oxide glass grown with TiO_2-nanotube array for dye-sensitized solar cell [J]. Curr. Appl. Phys., 2010, 10: S176~S179.
    [16]马保宏,李燕,王成伟等.多孔TiO_2/Al/SiO_2纳米复合结构的紫外光吸收特性研究[J].物理学报, 2008, 57(1): 586~591.
    [17]王成伟,马军满,李燕等.多孔TiO_2/FTO纳米有序阵列膜的可控生长研究[J].西北师范大学学报(自然科学版), 2010, 46: 37~42.
    [18] MOR G K, VARGHESE O K, PAULOSE M, et al. A review on highly ordered vertically oriented TiO_2 nanotube arrays: Fabrication, material properties, and solar energy applications [J]. Solar Energy Materials & Solar Cells, 2006, 90: 2011~2075.
    [19]王道爱,刘盈,王成伟等.阳极氧化法制备TiO_2纳米管阵列膜及其应用[J].化学进展, 2010, 22(6): 1035~1043.
    [20]董茂进,陈焘,王济洲等.真空度对TiO_2薄膜光学和结构特性的影响[J].真空与低温, 2010, 16(4): 233~237.
    [21] ZHAO L R, WANG J, LI Y, et al. Anodic aluminum oxide films formed in mixed electrolytes of oxalic and sulfuric acid and their optical constants [J]. Physica B, 2010, 405: 456~460.
    [1] Grimes, C. A.; Mor, G. K. TiO_2 NT Arrays Synthesis, properties, and Applications; Springer: Norwell, MA, 2009.
    [2] K. Shankar, J. I. Basham, O. K. Varghese, G. K. Mor, X. J. Feng, M. Paulose, J. A. Seabold, K. S. Choi, C. A. Grimes. J. Phys. Chem. C, 2009, 113: 6327.
    [3] O. K. Varghese, M. Paulose, T. J. Latempa, C. A. Grimes. Nano lett. 2009, 9: 731.
    [4] Qingwei Chen, Dongsheng Xu, Zhongyun Wu and Zhongfan Liu. Nanotechnology, 2008, 19: 365708.
    [5] Xian-Feng Gao, Wen-Tao Sun, Zhu-Dong Hu, Guo Ai, Yi-Ling Zhang, Shi Feng, Fei Li, and Lian-Mao Peng. J. Phys. Chem. C, 2009, 113: 20481~20485.
    [6] Wen Zhu, Xi Liu, Huiqiong Liu, Dali Tong, Junyou Yang, and Jiangying Peng. J. AM. CHEM. SOC., 2010, 132: 12619~12626.
    [7] Shaohuan Liu, Lixia Yang, Shihai Xu, Shenglian Luo, Qingyun Cai. Electrochem. Commun., 2009, 11: 1748~1751.
    [8] Gang Liu, Feng Li, Da-WeiWang, Dai-Ming Tang, Chang Liu, Xiuliang Ma, GaoQing Lu and Hui-Ming Cheng. Nanotechnology, 2008, 19: 025606 (6pp).
    [9] R. Ashai, T. Morokawa, T. Ohwaki, Y. Taga, Science, 2001, 293: 269.
    [10] K. Shankar, M. Paulose, G.K. Mor, O.K. Varghese, C.A. Grimes, J. Phys. D: Appl. Phys., 2005, 38: 3543.
    [11] W. Choi, A. Termin, M.R. Hoffmann, J. Phys. Chem., 1994, 98: 13669.
    [12] I. Paramasivam, J.M. Macak, P. Schmuki. Electrochemistry Communications, 2008, 10: 71~75.
    [13] Elizabeth V. Milsom, Jan Novak, Munetaka Oyama, Frank Marken. Electrochemistry Communications, 2007, 9: 436~442.
    [14] N. Sobana, M. Muruganadham, M. Swaminathan, J. Mol. Catal. A: Chem., 2006, 258: 124.
    [15] M. K. Seery, R. George, P. Floris, S. C. Pillai, J. Photochem. Photobiol. A: Chem., 2007, 189: 258.
    [16] A. Sclafani, J. M. Herrmann, J. Photochem. Photobiol. A: Chem., 1998, 113: 181.
    [17] I. M. Arabatzis, T. Stergiopoulos, M. C. Bernard, D. Labou, S. G. Neophytides, P.Falaras, Appl. Catal. B: Environ., 2003, 42: 187.
    [18] V. Iliev, D. Tomova, L. Bilyarska, A. Eliyas, L. Petrov. Appl. Catal. B: Environ., 2006, 63: 266.
    [19] V. Iliev, D. Tomova, L. Bilyarska, L. Petrov, Catal. Commun., 2004, 5: 759.
    [20] D. Hufschmidt, D. Bahnemann, J. J. Testa, C. A. Emilio, M. I. Litter. J. Photochem. Photobiol. A: Chem., 2002, 148: 223.
    [21] R. Vogel, P. Hoyer, H. Weller. J. Phys. Chem., 1994, 98: 3183.
    [22] S. C. Lin, Y. L. Lee, C. H. Chang, Y. J. Shen, Y. M. Yang. Appl. Phys. Lett., 2007, 90: 143517.
    [23] W. T. Sun, Y. Yu, H. Y. Pan, X. F. Gao, Q. Chen, L. M. Peng. J. Am. Chem. Soc., 2008, 130: 1124.
    [24] S. Banerjee, S. K. Mohapatra, P. P. Das, M. Misra. Chem. Mater., 2008, 20: 6784.
    [25] R. Plass, S. Pelet, J. Krueger, M. Gratzel. J. Phys. Chem. B, 2002, 106: 7578.
    [26] L. M. Peter, K. G. U. Wijayantha, D. J. Riley, J. P. Waggett. J. Phys. Chem. B, 2003, 107: 8378.
    [27] Q. Shen, T. Sato, M. Hashimoto, C. Chen, T. Toyoda. Thin Solid Films, 2006, 499: 299.
    [28] I. Robel, V. Subramanian, M. Kuno, P. V. Kamat. J. Am. Chem. Soc., 2006, 128: 2385.
    [29] J. A. Seabold, K. Shankar, R. H. T. Wilke, M. Paulose, O. K. Varghese, C. A. Grimes. K. S. Choi. Chem. Mater., 2008, 20: 5266.
    [30] X. F. Gao, H. B. Li, W. T. Sun, Q. Chen, F. Q. Tang, L. M. Peng. J. Phys. Chem. C, 2009, 113: 7531.
    [31] A. Zaban, O. I. Micic, B. A. Gregg, A. J. Nozik. Langmuir, 1998, 14: 3153.
    [32] Jinmyoung Joo, Darae Kim, Dong-Jin Yun, Hwichan Jun, Shi-Woo Rhee, Jae Sung Lee, Kijung Yong, Sungjee Kim and Sangmin Jeon. Nanotechnology, 2010, 21: 325604 (6pp).
    [33] Caolong Li, Jian Yuan, Bingyan Han, Li Jiang, et al. International journal of hydrogen energy. 2010, 35(13): 7073~7079.
    [34] Y. Yin, Z.G. Jin, F. Hou. Nanotechnology, 2007, 18: 495608.
    [35] C.L. Wang, L. Sun, H. Yun, J. Li, Y.K. Yue, C. J. Lin. Nanotechnology, 2009,20: 295601.
    [36] S. Banerjee, S. K. Mohapatra, P. P. Das, M. Misra. Chem. Mater., 2008, 20: 6784~6791.
    [37] Jing Bai, Jinhua Li, Yanbiao Liu, Baoxue Zhou, Weimin Cai. Applied Catalysis B: Environmental, 2010, 95: 408~413.
    [38] Gerardo Larramona, Christophe Chone′, Alain Jacob, Daisuke Sakakura, Bruno Delatouche, Daniel Pe′re′, Xavier Cieren, Masashi Nagino, and Roc?′o Bayo′n. Chem. Mater., 2006, 18: 1688~1696.
    [39] Chin Jung Lin, Yi Hsien Yu, Ya Hsuan Liou. Applied Catalysis B: Environmental, 2009, 93: 119~125.
    [40] N. K. Sahoo, K. V. S. R. Apparao. Appl. Phys. A, 1996, 63: 195.
    [41] L. R. Zhao, J. Wang, Y. Li, C. W. Wang, F. Zhou, W. M. Liu. Physica B, 2010, 405: 456~460.
    [42] P. Singh, D. Kaur,.Physica B, 2010, 405: 1258~1266.
    [43] Yan Li, Cheng-Wei Wang, Li-Rong Zhao and Wei-Min Liu. J. Phys. D: Appl. Phys., 2009, 42: 045407 (5pp).
    [44] David R. Baker and Prashant V. Kamat. Adv. Funct. Mater., 2009, 19: 805~811.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.