毛细管电泳电化学发光检测单细胞中的谷胱甘肽
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一章首先对毛细管电泳的基本原理及其发展状况进行了简单介绍。然后就毛细管电泳应用于单细胞分析(包括单细胞采样,单细胞分析检测方法,及单细胞溶膜等)分别进行了叙述,并对电化学发光检测技术在毛细管电泳的应用以及电化学发光传感器的固定化及应用进行了介绍。
     第二章采用了毛细管电泳-电化学发光检测的方法对大鼠腹腔肥大细胞中的谷胱甘肽进行了检测,确定了检测的最佳实验条件为:发光试剂Ru(bpy)_3~(2+)的浓度为400×10~(-3)mol·L~(-1), pH值为75,浓度为500×10~(-2)mol·L~(-1)的NaH2PO4- Na2HPO4缓冲液,分离电压为12kV,检测电势为12V(vs.Ag/Agcl);得到大鼠腹腔肥大细胞提取液中平均每个细胞的谷胱甘肽含量为187 fmol。
     第三章采用毛细管电泳-电化学发光的方法对单个大鼠腹腔肥大细胞、单个人宫颈癌细胞(Hela细胞)和B淋巴细胞瘤细胞(Ramos细胞)中的谷胱甘肽的含量进行了测定;得到单个肥大细胞中谷胱甘肽的含量为930-259 fmol,单个B淋巴细胞瘤细胞(Ramos细胞)中GSH的含量为26-65 fmol,单个人宫颈癌细胞(Hela细胞)中谷胱甘肽的含量为243-57_2 fmol,与文献报道的相近。
     第四章探索将Ru(bpy)_3~(2+)固定在电极上的方法,最终通过CNT/Nafion将发光试剂联吡啶钉修饰在碳纤维簇微盘电极上,制成了发光信号强而稳定的微型电极,并进一步探讨了其在毛细管电泳中的应用。
     第五章制作了毛细管电泳电穿孔与单细胞进样器组合装置,初步探讨了细胞绎过电穿孔衍生的脉冲影响。
In the chapter I, at first the basic principles of capillary electrophoresis and its development were introduced briefly. Then the appliance of capillary electrophoresis in single-cell analysis (including single-cell sampling, analysis detection methods of single cell, and the techniques of lysing single cell respectively), the work for capillary electrophoresis with electrochemiluminescence detection was summarized , in the end immobilization and application of electrochemiluminescence sensor were introduced.
     In the chapter II, we used capillary electrophoresis-electrochemiluminescence (ECL) to detect the content of glutathione in rat peritoneal mast cells based on tris(2,2'-bipyridine) ruthenium(II) (Ru(bpy)_3~(2+)) which is the concentration of 4.00×10~(-3) mol-L~(-1), The optimum conditions of separation and detection are 5.00×10~(-2) mol-L~(-1) NaH2PO4- Na2HPO4 (pH 7.5) for the buffer solution, 12 kV for the separation voltage, 10 kV and 10 s for the injection voltage and the injection time, and 1.2 V (vs. Ag/AgCl) for the detection potential. The amount of glutathione (GSH) in individual rat peritoneal mast cell on average is 18.7 fmol.
     In the chapter III, the method of capillary electrophoresis with electrochemiluminescence deteaion was used to detect the content of glutathione in single cells. The detected content of glutathione in individual rat peritoneal mast cells was from 9.30 to 25.9 fmol. The content of single B lymphoma cells (Ramos cell) is from 2.6 to 6.5 fmol and the amount of single human cervical cancer cells (Hela cell) is from 24.3 to 57.2 fmol.
     In the chapter IV, several kinds of methods to fix Ru(bpy) 32 + on the carbon fiber micro-disk bundle electrode surface was attempted, in the end we made the micro-electrode which was immobilized Ru(bpy)_3~(2+) in carbon nanotubes (CNT)/Nafion composite film onto the carbon fiber micro-disk bundle electrode. Its electrochemiluminescence was strong and stability. We studied its application in capillary capillary electrophoresis preliminary.
     In the chapter V, the device of single-cell electroporation apparatus with the single-cell electroporation injector was made. The effect of electric pulse for the cell was studied initially during the progress of electroporation.
引文
[1]林炳承,毛细管电泳导论[M],北京科学出版社,1996:1-4
    [2]陈义,毛细管电泳技术及应用[M],北京化学工业出版社,2006:1-7
    [3] Everaerts F. M., Verheggen T., Isotachophoresis, Electrophoretic analysis in capillaries[J], J. Chromatogr. A, 1970, 53: 315-328
    [4] Hjerten S., Free zone electrophoresis [J]. Chromatogr. Rev., 1967, 9: 122-129
    [5] Jongenson J. W., Lukacs K. D., Zone electrophoresis in open-tubular glass capillaries[J], Anal. Chem., 1981, 53: 1298-1302
    [6] Jongenson J. W., Lukacs K. D., Free-zone electrophoresis in glass capillaries [J], Clin. Chem., 1981, 27: 1551-1553
    [7] Jongenson J. W., Lukacs K. D., Capillary zone electrophoresis [J]. Science, 1983, 222: 222-226
    [8] Du Y., Li B. L., Wei H., et. al, Multifunctional Label-Free Electrochemical Biosensor Based on an Integrated Aptamer[J], Anal. Chem., 2008, 80: 5110–5117
    [9]徐祖民,毛细管电泳芯片研究进展,黔西南民族师范高等专科学校学报[J],2009,4:118-121
    [10] Carmen C., Leif S., Esthe T., et. al, Molecularly imprinted capillary electrochromatography for selective determination of thiabendazole in citrus samples.[J], Journal of Chromatography A,2008, 1179: 216-223
    [11] Jemere A., Martinez D., Finot M., et. al, Microfluidics and Miniaturization Capillary electrochromatography with packed bead beds in microfluidic devices[J], Electrophoresis, 2009,30: 4237-4244
    [12] Fishman H., Amudi N., Lee T., et. al, Spontaneous Injection in Microcolumn Separations[J], Anal. Chem., 1994, 66: 2318–2329
    [13] Dose E., Guiochon G., Internal standardization technique for capillary zone electrophoresis[J], Anal. Chem., 1991, 63: 1154–1158
    [14] Zhao S. L., Li X. T.,Liu Y. M., Integrated Microfluidic System with Chemiluminescence Detection for Single Cell Analysis after Intracellular Labeling[J], Anal. Chem., 2009, 81: 3873–3878
    [15] Chen Y. , Zhang L. , Xu L. J., et. al, Assay of bradykinin metabolites in human body fluids by CE-LIF coupled with transient ITP preconcentration[J], Electrophoresis, 2009, 30: 2300-2306
    [16]魏培海,李关宾,毛细管电泳-电化学检测系统中微电极技术的最新进展[J],分析测试学报, 1999,18:81-84
    [17] Wang W. Y. , Geng C. H., Zhang Y. L., et. al,. CE-ED Separation and Determination of Seasonal Content Variations of Some Active Ingredients in Toona sinensis (A. Juss) Roem Leaves [J]. Chromatographia, 2007, 66, 697-701
    [18] Xing X. P., Cao Y. H., et. al, Determination of 3-chloro-1,2-propanediol in soy sauces by capillary electrophoresis with electrochemical detection [J]. Food Control, 2007, 18: 167-172
    [19] Dickson J. A., Ferris M. M., Milofsky R. E., Tris(2,2’-bipyridyl)ruthenium(III) as achemiluminescent reagent for detection in capillary electrophoresis[J], J. High Resol. Chromatogr., 1997, 20: 643-646
    [20] Wang X., Bobbit D. R., In situ cell for electrochemically generated Ru(bpy)33+-based chemiluminescence detection in capillary electrophoresis[J], Anal. Chim. Acta, 1999, 383: 213-219
    [21] Sun H. W., Su M., Li L. Q., Simultaneous Determination of Tetracaine, Proline, and Enoxacin in Human Urine by CE with ECL Detection.[J], Journal of Chromatographic Science, 2010, 48: 49-54
    [22] Tokel N. E., Bard A. J., Electrogenerated chemiluminescence Ix electrochemistry and emission from systems containing tris (2,2'-bipyridine) ruthenium(II)dichloride[J], J. Am. Chem. Soc., 1972, 94: 2862-2863
    [23] McCord P., Bard A. J., Electrogenerated chemiluminescence of ruthenium (II) 4,4’-diphenyl-2,2'-bipyridine and ruthenium(II) 4,7-diphenyl-1,10-phenanthroline systems in aqueous and acetonitrile solutions[J], J. Electroanal. Chem., 1991, 318: 91-99
    [24] Li X., Song B., Yuan B. Q. , et. al, Enantioseparation of Dioxopromethazine Hydrochloride in Urine with Liquid–Liquid Extraction by CE-ECL Detection.[J]. Chromatographia, 2009, 70: 1291-1293
    [25] Noffsinger J .B., Danielson N. D., Generation of chemiluminescence upon reaction of aliphatic amines with tris(2, 2,-bipyridine)ruthenium(III)[J], Anal. Chem., 1987, 59: 865-868
    [26] Rubinstein I., Bard A. J., Electrogenerated chemiluminescent determination of oxalate[J], Anal.Chem., 1983, 55: 1580-1582
    [27] Brune S. N., Bobbit D. R., Role of electron-donating/withdrawing character,pH,and stoichiometry on the chemiluminescent reaction of tris(2, 2’- bipyridyl)chromium(Ⅲ) with amino acids[J], Anal.Chem., 1992, 64: 166-170
    [28] Downey T. M., Nieman T. A., Cheniluminescence detection using regenerable tris(2, 2’- bipyridyl)ruthenium(Ⅱ) immobilized in Nafion [J], Anal.Chem., 1992, 64: 261-265
    [29] Martin A. F., Nieman T. A., Glucose quantitation using an immobilized glucoseehydrogenase enzyme reactor and a tris(2, 2’- bipyridyl)ruthenium(Ⅱ) chemiluminescent sensor[J], Anal.Chim.Acta., 1993, 281: 475-481
    [30] Yuan J. P., Li T., Yin X. B., et. al, Characterization of Prolidase Activity Using Capillary Electrophoresis with Tris(2,2‘-bipyridyl)ruthenium(II) Electrochemiluminescence Detection and Application To Evaluate Collagen Degradation in Diabetes Mellitus [J], Anal. Chem., 2006, 78: 2934–2938
    [31] Zorzi M., Pastor P., Magno F., A single calibration graph for the direct determination of ascorbic and dehydroascorbic acids by electrogenerated luminescence based on Ru(bpy)32+ in aqueous solution [J], Anal.Chem., 2000, 72: 4934-4939
    [32] Ding, Y. S., Garcia, C. D., Determination of nonsteroidal anti-inflammatory drugs in serum by microchip capillary electrophoresis with electrochemical detection[J], Electroanalysis, 2006, 18: 2202-2209
    [33] Dayse L., Silva, P. D., Rüttinger, H. H., Development of capillary electrophoresis methods for quantitative determination of taurine in vehicle system and biological media[J], Electrophoresis, 2006, 27: 2330-2337
    [34] Weng, Q. F., Jin W. R., Determination of free intracellular amino acids in single mouse peritoneal macrophages after naphthalene-2,3-dicarboxaldehyde derivatization by capillary zone electrophoresis with electrochemical detection[J], Electrophoresis, 2001, 22: 2797-2803
    [35] Zhou T. S., Wu F., Shi G. Y., Study on pharmacokinetics and tissue distribution of norvancomycin in rats by CE with electrochemical detection[J], Electrophoresis, 2006, 27: 1790-1796
    [36] Krylov S. N., Arriaga E, Zheru Z. et. al, Single-cell analysis avoids sample processing bias[J], J.Chromatogra. B, 2000, 741 (1): 31-35.
    [37] Jin W. R., Li W., Xu Q., Quantitative determination of glutathione in single human erythrocytes by capillary zone electrophoresis with electrochemical detection[J], Electrophoresis, 2000, 21: 774-779
    [38] Jin W. R., Dong Q., Ye X., et. al, Assay of glutathione in individual mouse peritoneal macrophages by capillary zone electrophoresis with electrochemical detection[J], Anal. Biochem., 2000, 285: 255-259
    [39] Krylov S. N., Starke D. A., Arriaga. E. A., et. al, Instrumentation for chemical cytometry[J], Anal. Chem., 2000, 72: 872-877
    [40] Wallingford R. A., Ewing A. G., Capillary zone electrophoresis with electrochemical detection in 12.7μm diameter columns[J], Anal. Chem. 1988, 60:1972-1975
    [41] Ewing A. G., Wallingford R. A., Olefirowicz T. M., Capillary electrophoresis[J], Anal. Chem.1989, 61: 292-303
    [42] Wallingford R. A., Ewing A. G.,Characterization of a microinjector for capillary zone electrophoresis[J], Anal. Chem. 1987, 59: 678-681
    [43] Olefirowicz T. M., Ewing A. G.,Capillary electrophoresis in 25μm diameter capillaries: application to cytoplasmic analysis[J], Anal. Chem. 1990, 62: 1872-1876
    [44] Brian I., Walt D. R., Optical Imaging Fiber-Based Single Live Cell Arrays: A High-Density Cell Assay Platform[J], Anal. Chem. 2002, 74: 3046-3054
    [45]治卿,毛细管电泳与化学发光/生物发光联用技术用于单细胞分析[D].上海:上海交通大学,2007:38-42
    [46] Xue Q., Yeung E. S., Differences in the chemical reactivity of individual molecules of an enzyme[J], Nature, 1995, 373: 681-682
    [47] Zhang Z., Krylov S., Arriaga E. A., et. al, One-dimensional protein analysis of an HT29 human colon adenocarcinoma cell[J], Anal. Chem., 2000, 72: 318-322
    [48] Cruz, L., Moroz, L. L., Gillette R., et. al, Nitrite and nitrate levels in individual molluscan neurons: Single cell capillary electrophoresis analysis[J], J. Neurochem., 1997, 69: 110-115
    [49] Dong Q.,Wang X., Zhu L., et. al, Method of intracellular naphthalene-2, 3-dicarboxal-dehyde derivatization for analysis of amino acids in a single erythrocyte by capillary zone electrophoresis with electrochemical detection[J], J. Chromatogr. A, 2002, 959: 269-279
    [50] Jankowski, J. A., Tracht S., Sweedler J. V., Assaying single cells with capillary electrophoresis[J], Tr. Anal. Chem., 1995, 14: 170-176
    [51] Tong W., Yeung E. S., Determination of insulin in single pancreatic cells by capillary electrophoresis and laser-induced native fluorescence[J], J. Chromatogr.B, 1996, 685:35-40
    [52] Tong W., Yermg E. S., Monitoring single-cell pharmacokinetics by capillary electrophoresis and laser-induced native fluorescence[J], J. Chromatogr.B, 1997, 689: 321-325
    [53] Zorzi M., Pastor P., Magno F., A single calibration graph for the direct determination of ascorbic and dehydroascorbic acids by electrogenerated luminescence based on Ru(bpy)32+ in aqueous solution [J]. Anal.Chem., 2000, 72: 4934-4939
    [54] Hofstadler, S. A., Severs, J. C., Smith, R. D., et. al, Analysis of single cells with capillary electrophoresis electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry[J], Rapid Commun. Mass Spectrom., 1996, 10: 919-922
    [55] Downey T. M., Nieman T. A., Chemiluminescence detection using regenerable Tris(2, 2, -bipirydyl) ruthenium (Ⅱ) immobilized in Nafion[J]. Anal. Chem, 1992, 64: 261-268
    [56] Egashira N., Kumasako H., Ohga K., Fabrication of afiber-optic-based elecrtochemiluminescence sensor and its app1ication to the determination of oxalate [J]. Anal.Sci, 1990, 6: 903-904
    [57] Huang W. H., Cheng W., Zhang Z. L., Transport, location, and quantal release monitoring of ingle cells on a microfluidic device[J], Anal. Chem., 2004, 76: 483-488
    [58]程伟,黄卫华,庞代文等,微流控芯片操纵传输及实时检测单细胞量子释放[J],高等学校化学学报,2003,24:1585-1587
    [59] Gao J. Y., Fang X. F., Zhao L., Integration of single cell injection, cell lysis, separation and detection of intracellular constituents on a microfluidic chip[J], Lab on a Chip, 2004, 4: 47-52
    [60]翁前锋,单细胞分析[D],山东:山东大学,2001:156-163
    [61]孙雪梅,毛细管电泳安培检测酶及在单细胞中的应用[D],山东:山东大学,2003:117-118
    [62] Sun X. M., Niu Y., Bi S., et. al, Determination of ascorbic acid in individual rat hepatocyte cells based on capillaryelectrophoresis with electrochemiluminescence detection[J]. Electrophoresis, 2008, 29: 2918–2924
    [63] Alexander N. Khramov, Maryanne M. Collinson, Electrogenerated Chemiluminescence of Tris(2,2’-bipyridyl)ruthenium(II) Ion-Exchanged in Nafion?Silica Composite Films[J], Anal. Chem., 2000, 72: 2943–2948
    [64] Choi H. N., Cho S. H., Lee W. Y., Electrogenerated Chemiluminescence from Tris(2,2’-bipyridyl)ruthenium(II) Immobilized in Titania?Perfluorosulfonated Ionomer Composite Films [J], Anal. Chem., 2003, 75: 4250–4256
    [65] Guo Z. H., Dong S. J., Electrogenerated Chemiluminescence from Ru(Bpy)32+ Ion-Exchanged in Carbon Nanotube/Perfluorosulfonated Ionomer Composite Films[J], Anal. Chem., 2004, 76: 2683–2688
    [66] Shi L. H., Liu X. Q., Li H. J., et. al, Electrochemiluminescent Detection Based on Solid-Phase Extraction at Tris(2,2’-bipyridyl)ruthenium(II)-Modified Ceramic Carbon Electrode[J], Anal. Chem., 2006, 78: 7330–7334
    [67] Li J., Xu Y. H., Wei H., et. al, Electrochemiluminescence Sensor Based on Partial Sulfonation of Polystyrene with Carbon Nanotubes[J], Anal. Chem., 2007, 79: 5439–5443
    [68] Dvorak O., Armond K.M., Electrode modificationby the sol-gel method[J], J. Phys.Chem., 1993, 97: 2646-2648
    [69] Yi C. Q., Tao Y., Wang B., et. al, Electrochemiluminescent determination of methamphetamine based on tris(2, 2’- bipyridyl)ruthenium(Ⅱ) ion-association in organically modified silicate films[J], Anal . Chim. Acta, 2005, 541: 73-81
    [70] Wang H., Xu G., Dong S., Electrochemiluminescence sensor using tris(2, 2’- bipyridyl)ruthenium(Ⅱ) immobilized in Eastman-AQ55D-silica composite thin-films[J], Anal.chim.Acta., 2003, 480: 285-290
    [71] Collinson M. M., Novak B., Martin S. A., et. al, Electrochemiluminescence of Ruthenium(Ⅱ) Tris(bipyridine) encapsulated in sol-gei glasses [J], Anal. chem., 2000, 72: 2914-2918
    [72] Zhu L., Li Y., Tian F.,et. al, Electrochemiluminescent determination of glucose with a sol-gel derived ceramic-carbon composite electrode as a renewable optical fiber biosensor [J], Sensors and Actuators B, 2002, 84: 265-270
    [73] Rubinstein I., Bard A. J., Nafion-coated electrodes and electrogenerated chemiluminescence of surface attached Ru(bpy)32+[J], J. Am. Chem. Soc, 1980, 102: 6461-6644
    [74] Marin A. F., Nieman T. A., Glucose quantitation using an immobilize glucose -dehydrogenase enzyme reactor and tris(2, 2’-bipyridyl)Ruthenium(Ⅱ) chemilmuienscence sensor [J]. Anal. Chim. Acta, 1993, 281: 475-481
    [75] Qi B., Yin X. B., Du Y., Unique electrochemiluminescence behavior of Ru(bpy)32+ in a gold/Nafion/Ru(bpy)32+ composite[J], Materials Letters, 2008, 62: 458-461
    [76] Blodgett K. B., Langmuir I., Built-Up Films of Barium Stearate and Their Optical Properties[J], Phys. Rev, 1937, 51: 964-968
    [77] Moses P. R., Wier L., Murray R. W., Chemically modified tin oxide electrode[J], Anal. Chem., 1975, 47: 1882-1886
    [78] Sagiv J., Formation and structure of oleophobic mixed monolayers on solid-surfaces [J]. J. Am. Chem. Soc., 1980, 102: 92-98
    [79]任恕,膜受体与传感器[M].北京科学出版社, 1996, 66-67
    [80] Obeng Y. S., Bard A. J., Electrochemistry and emission from adsorbed monolayers of tris(bipyirdyl)ruthenimu(Ⅱ) based surfactant on gold and thin oxide electrodes [J]. Langmuir, 1991, 7: 195-201
    [81] Denany L., Forster R. J., Rusling J. F., Simultaneous direct electrochemiluminescence and catalytic voltammetry detection of DNA in ultrathin films [J]. J. Am. Chem. Soc, 2003, 125: 5213-5218
    [82] Wang H. Y., Xu G. B., Dong S. J., Electrochemistry and electrochemiluminescence of stable tris(2, 2’-bipyirdyl)ruthenium (Ⅱ) monolayer assembled on benzene sulfonic acid modified glassy carbon electrode [J],. Talanta, 2001, 55: 61-67
    [83] Bi L. H., Wang H. Y., Shen Y., et. al, Multifunctional ograinc-inogranic multilayer films of tris(2, 2’-bipyrldine)ruthenium and decatungstate [J]. Electorchem. Comm, 2003, 5: 913-918
    [84] Guo Z.H., Shen Y., Wang M. K., et. al,, Electrochemistry and electrogenerated chemiluminescence of SiO2 nanoparticles/tris(2, 2’-bipyridyl)ruthenimu(Ⅱ) multilayer films on indium tin oxide electrodes [J]. Anal. Chem, 2004, 76: 184-191
    [1] Ohmori, S., Kawase, T., Higashiura, M., et. al, High-performance liquid chromatographic method to analyze picomole levels of glutathione, cysteine and cysteinylglycine and its application to pre-cancerous rat livers[J], J. Chromatogr. B, 2001, 762: 25-32
    [2]苏燕波,还原型谷胱甘肽治疗48例抗结核药物所致肝伤害[J],广东医学,2006,12:11-12
    [3] Goodman M. T., Mcduffie K., Hernandez B., et .al, Case-control study of plasma folate, homocysteine, vitamin B12, and cysteine as markers of cervical dysplasia[J], Cancer, 2000, 89: 376-382
    [4] Lang C. A., Mills B., Mastropaolo W., et. al, Blood glutathione decreases in chronic diseases[J], J. Lab. Clin. Med., 2000, 135: 402-405
    [5] Kleinman W. A., Ritchie J. P., Status of glutathione and other thiols and disulfides in human plasma[J], Biochem. Pharm., 2000, 60: 19-29
    [6] Chinta S. J., Andersen J. K., Reversible inhibition of mitochondrial complex I activity following chronic dopaminergic glutathione depletion in vitro: implications for Parkinson's disease[J], Free Radical Biol. Med., 2006, 41: 1442-1448
    [7] Baker M. A., Cerniglia G. J., Zaman A., Microtiter plate assay for the measurement of glutathione and glutathione disulfide in large numbers of biological samples[J], Anal. Biochem., 1990, 190: 360-365
    [8] White P., Lawrence N., Davis J., Electrochemical determination of thiols: a perspective review article[J], Electroanalysis, 2002, 14: 89-98
    [9] Lawrence N., Deo R., Wang J., Detection of homocysteine at carbon nanotube paste electrodes[J], Talanta, 2004, 63: 443-449
    [10] Katrusiak A. E., Paterson P. G., Kamencic H., et. al, Pre-column derivatization high- performance liquid chromatographic method for determination of cysteine, cysteinyl-glycine, homocysteine and glutathione in plasma and cell extracts[J], J. Chromatogr. B, 2001, 758: 207-12
    [11] Tsikas D., Raida M., Sandmann J., et. al, Electrospray ionisation mass spectrometry of low-molecular-mass S-nitroso compounds and their thiols[J], J. Chromatogr. B, 2000, 742: 99-108
    [12] Jin W. R., Zhan X., Xian L., Mechanism of the electrochemical reaction of glutathione at a mercury electrode[J], Electroanalysis, 2000, 12: 858-862
    [13] Inoue T., Kirchhoff J. R., Determination of Thiols by Capillary Electrophoresis with Amperometric Detection at a Coenzyme Pyrroloquinoline Quinone Modified Electrode[J],Anal. Chem., 2002, 74: 1349-1354
    [14] Luz R., Damos F. S., Gandra P. G., et. al, Electrocatalytic determination of reduced glutathione in human erythrocytes[J], Anal. Bioanal. Chem., 2007, 387: 1891-1897
    [15] Cao G. M., Liu Q., Huang Y., et. al, Generation of gold nanostructures at the surface of platinum electrode by electrodeposition for ECL detection for CE[J]. 2010, 31: 1055-1062
    [16] Chen X. M., Cai Z. M., Lin Z. J., et. al, A novel non-enzymatic ECL sensor for glucose using palladium nanoparticles supported on functional carbon nanotubes,[J]. Biosensors and Bioelectronics, 2009, 24: 3475-3480
    [17] Hun X. , Zhang Z. J., A Novel Electrogenerated Chemiluminescence (ECL) Sensor Based on Ru(bpy)32+-Doped Titania Nanoparticles Dispersed in Nafion on Glassy Carbon Electrode[J]. Electroanalysis, 2008, 20: 874-880
    [18] Yin, H. L., Qian, Z. F., Morphologic study of mast cell and lung fibroblasts in co-culture[J], Acta Anatomica Sinica, 1998, 29: 81-85
    [19]马忠明,赵凯,钱伟钰,郑筱祥,组胺敏感离子选择性微电极及其应用[J],分析化学,1997,25:750-754
    [1]程介克,刘锦春,江祖成,痕量分析[M].化学工业出版社,北京,1993:486-451
    [2]程介克,单细胞分析[M].科学出版社[M],北京,2005:27-30
    [3] Dong Q.,Wang X., Zhu L., et. al, Method of intracellular naphthalene-2, 3-dicarboxal-dehyde derivatization for analysis of amino acids in a single erythrocyte by capillary zone electrophoresis with electrochemical detection[J], J. Chromatogr. A, 2002, 959: 269-279
    [4] Tong W., Yeung E. S., Determination of insulin in single pancreatic cells by capillary electrophoresis and laser-induced native fluorescence[J], J. Chromatogr. B, 1996, 685: 35-40
    [5] Tong W., Yermg E. S., Monitoring single-cell pharmacokinetics by capillary electrophoresis and laser-induced native fluorescence[J], J. Chromatogr.B, 1997, 689: 321-325
    [6] Cruz L., Moroz L. L., Gillette R., et. al, Nitrite and nitrate levels in individual molluscan neurons: Single cell capillary electrophoresis analysis[J], J. Neurochem., 1997, 69: 110-115
    [7] Jankowski J. A., Tracht S., Sweedler J. V., Assaying single cells with capillary electrophoresis[J], Tr. Anal. Chem., 1995, 14: 170-176
    [8] Hofstadler S. A., Severs J. C., Smith R. D., et. al, Analysis of single cells with capillary electrophoresis electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry[J], Rapid Commun. Mass Spectrom., 1996, 10: 919-922
    [9] Zorzi M., Pastor P., Magno F., A single calibration graph for the direct determination of ascorbic and dehydroascorbic acids by electrogenerated luminescence based on Ru(bpy)32+ in aqueous solution [J]. Anal.Chem., 2000, 72: 4934-4939
    [10] Xu Y. H., Fang L. Y., Wang E. K., Successful establishment of MEKC with electrochemiluminescence detection based on one functionalized ionic liquid[J]. Electrophoresis, 2009, 30: 365-371
    [11] Yuan J. P., Li T., Yin X. B., et.al, Characterization of prolidase activity using capillary electrophoresis with tris(2,2'-bipyridyl)ruthenium(II) electrochemiluminescence Detection and application to evaluate collagen degradation in diabetes mellitus[J], Anal. Chem., 2006, 78: 2934-2938
    [12] Xu Y. H., Gao Y., Wei H., et.al, Field-amplified sample stacking capillary electrophoresis with electrochemiluminescence applied to the determination of illicit drugs on banknotes[J], J. Chromatogr. A, 2006, 1115: 260-266
    [13] Hendrickson H. P., Anderson P., Wang X., et. al, Compositional analysis of small peptides using capillary electrophoresis and Ru(bpy)33+-based chemiluminescence detection[J], Microchem. J., 2000, 65:189-195
    [14] Bobbitt D. R., Jackson W. A., Hendrickson H. P., Chemiluminescent detection of amines and amino-acids using in situ generated Ru(bpy)33+ following separation by capillary electrophoresis[J], Talanta, 1998, 46: 565-572
    [15] Wang X., Bobbitt D. R., Electrochemically generated Ru(bpy)33+-based chemiluminescence detection in micellar electrokinetic chromatography[J], Talanta, 2000, 53: 337-345
    [16]曾惠,刘勇,朱明学等,硫芥对大鼠淋巴细胞谷胱甘肽含量的影响[J],第三军医大学学报, 2004, 26: 940-942
    [17] Brodie A.., Potter J., Reed D. J., Unique Characteristics of Rat Spleen Lymphocyte, L1210 Lymphoma and HeLa Cells in Glutathione Biosynthesis from Sulfur-Containing Amino Acids[J], Eur. J. Biochem, 1982, 123: 159-164
    [18]周厚清,王鲁明,董敏等,谷胱甘肽在沙纳唑对人宫颈癌细胞放射增敏效应中的作用[J],军事医学科学院院刊,2001,25: 280-284
    [1] Cao W. D., Yang X.R., Wang E.K.,Determination of reserpine in urine by capillary electrophoresis with electrochemiluminescence detection[J], Electroanalysis, 2004, 16: 169-174
    [2] Yin X. B., Qiu H. B., Sun X. H., et. al, Capillary electrophoresis coupled with electrochemiluminescence detection using porous etched joint[J], Anal. Chem., 2004, 76: 3846-3850
    [3] Ding S. N., Xu J. J., Chen H. Y., Tris(2,2’-bipyridyl)ruthenium(II)-zirconia-Nafion composite films applied as solid-state electrochemiluminescence detector for capillary electrophoresis[J], Electrophoresis, 2005, 26: 1737-1744
    [4] Li T., Yuan J. P., Yin J. Y., et. al, Capillary electrophoresis with electrochemiluminescence detection for measurement of aspartate aminotransferase and alanine amino transferaseactivities in biofluids[J], J. Chromatogr. A, 2006, 1134: 311-316
    [5] Xu Y. H., Gao Y., Wei H., et. al, Field-amplified sample stacking capillary electrophoresis with electrochemiluminescence applied to the determination of illicit drugs on banknotes[J], J. Chromatogr. A, 2006, 1115: 260-266
    [6] Yuan J. P., Li T., Yin X. B., et. al, Characterization of prolidase activity using capillary electrophoresis with tris(2,2'-bipyridyl)ruthenium(II) electrochemiluminescence Detection and application to evaluate collagen degradation in diabetes mellitus[J], Anal. Chem., 2006, 78: 2934-2938
    [7] Dvorak O., de Armond K.M., Electrode modificationby the sol-gel method[J], J .Phys.Chem., 1993, 97: 2646-2648
    [8] Zhang X, Bard A J., Electrogenerated chemiluminescent emission from an organized(L-B) monolayer of a tris(2, 2’- bipyridyl)ruthenium(2+)-based surfactant on semiconductor and metal electrodes[J], J. Phys. Chem., 1988, 20: 5566-5569
    [9] Miller C. J., McCord P., Bard A. J., Study of Langmuir monolayers of ruthenium complexes and their aggregation by electrogenerated chemiluminescence[J], Langmuir, 1991, 7: 2781-2787
    [10] Obeng Y. S., Bard A. J., Electrochemistry and emission from adsorbed monolayers of tris(bipyirdyl)ruthenimu(Ⅱ) based surfactant on gold and thin oxide electrodes[J], Langmuir, 1991, 7: 195-201
    [11] Guo Z. H., Dong S. J., Electrogenerated chemiluminescence from Ru(bpy)32+ ion-exchanged in carbon nanotube/perfluorosulfonated ionomer composite films[J], Anal. Chem., 2004, 76 (10): 2693-2688
    [12] Guo Z. H., Dong S. J.. Electrogenerated chemiluminescence determination of dopamine andepinephrine in the presence of ascorbic acid at carbon nanotube/Nafion- Ru(bpy)32+ composite film modified glassy carbon electrode[J], Electroanalysis, 2005, 17: 607-612
    [13]董绍俊,车广礼,谢远武,化学修饰电极[M],北京科学出版社,1995:310-316
    [14] Zhuang Y. F., Ju H. X.. Detemination of reduced nicotinamide denine dinucleotide based on immobilization of tris(2, 2’-bipyridine) ruthenium(Ⅱ) in multiwall carbon nanotubes/Nafion composite membrane[J], Anal. Lett., 2005, 38 : 2077-2088
    [15] Khramov A. N., Collinson M. M., Electrogenerated chenmiluminescence of tris(2, 2’- bipyridyl)ruthenium (Ⅱ) ion-ecchanged in Nafion-Silica composite films[J], Anal.chem., 2000, 72 (13): 2943-2948
    [1]杨孝军,李均,电穿孔技术的研究及应用进展.[J]中国康复医学杂志, 2005,20: 239-240
    [2] James C, Weaver, Electroporation of Cells and Tissues[J]. IEEE Trans on plasma science, 2000, 28: 24-28
    [3]王保义,张弘,王子淑等.电磁脉冲使细胞膜电穿孔结合药物治疗肿瘤及电磁参量的初步优化.[J]微波学报,. 2006, 22: 207-211
    [4]邓桦,王德文,彭瑞云等.,高功率脉冲微波和电磁脉冲辐照对心肌细胞膜电穿孔效应及机理的研究.[J]生物医学工程学杂志., 2005, 22: 672-676
    [5]杨艳芹,谢菊芳,夏利霞等,.脉冲电场致细胞膜电穿孔的机理分析.[J]湖北大学学报(自然科学版),.2006, 28: 165-167
    [6]肖华娟,严萍,牟群.,强脉冲电场致细胞膜电穿孔的实验研究.[J]中国科学院研究生院学报,. 2005,. 22: 462-466
    [7]余岱青.硕士学位论文[D].山东大学. 1998
    [8]董谦.毛细管电泳/安培检测生物物质及单细胞分析.[D].博士学位论文.山东大学,2000
    [9] Wanda K, Petar D. Filev, Modeling Electroporation in a Single Cell, Biophysical Journal[J]. 2007, 92: 404–417
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.