2-(α-羟基戊基)苯甲酸钾盐对痴呆动物模型的治疗作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2-(α-羟基戊基)苯甲酸钾盐(Potassium 2-(1-hydroxypentyl)-benzoate,d1-PHPB)是本所设计合成的新化合物,它是丁基苯酞(3-n-butylphthalide,d1-NBP)的前药。d1-NBP是一类抗缺血性脑卒中新药,对缺血脑组织具有多种神经保护作用。推测,d1-NBP可能通过神经保护作用对老年痴呆有治疗作用。但是,d1-NBP在开发过程中存在一些缺点。d1-PHPB是针对它的缺点设计合成的丁基苯酞内酯环开环的产物,具有多方面的优点和创新点。本研究中,我们采用三种公认的老年痴呆模型观察了d1-PHPB对痴呆动物认知缺陷的改善作用,并探讨了其可能的作用机制。
     1.d1-PHPB对脑低灌注大鼠学习记忆障碍的影响及其机制
     采用永久性结扎双侧颈总动脉的方法制备大鼠脑低灌注模型(2-VO大鼠),用Morris水迷宫检测d1-PHPB给药3周对动物近记忆和空间辨别力的影响。结果显示:d1-PHPB 39、129mg/kg、d1-NBP 100mg/kg和吡拉西坦600mg/kg可不同程度地缩短痴呆大鼠的潜伏期。d1-PHPB 39mg/kg组采取直线式、趋向式策略的次数明显多于溶剂对照组,其它各药各剂量组也有改善搜索策略的趋势。平台探索实验中,除d1-PHPB 129mg/kg和d1-NBP100mg/kg外,各给药组大鼠在目标象限的活动时间明显长于溶剂对照组,尤其d1-PHPB39mg/kg组。同时,d1-PHPB 39mg/kg组的第一次穿越目标时间显著短于溶剂对照组。表明,d1-PHPB可明显改善大鼠的学习记忆和探索行为,尤其中、大剂量。
     生化测定结果显示:2-VO大鼠1个月后,海马ChAT活力下降趋势明显。d1-PHPB129mg/kg能显著提高海马ChAT活力,d1-PHPB 39mg/kg、吡拉西坦600mg/kg也有升高的趋势。
     生化法测定抗氧化作用证明:d1-PHPB 13、39mg/kg、d1-NBP 100mg/kg和吡拉西坦600mg/kg可明显降低皮层SOD活力。除吡拉西坦外,各给药组有降低皮层CAT活力的趋势。GSH-Px活力在各组脑组织间没有明显差异。d1-PHPB三个剂量和d1-NBP 100mg/kg显著降低皮层MDA含量。各组间海马SOD活力和MDA含量没有明显差异。另外,生化测定还显示,各组之间脑组织ATP酶活力、LD和NO含量没有显著性差异。
     用HE染色进行脑组织形态研究,结果显示,d1-PHPB三个剂量可不同程度地改善皮层和海马CA1、CA3区神经元形态异常,尤以39mg/kg作用显著。K-B染色发现,该药三个剂量对胼胝体和视束的病理改变也有不同程度的改善作用,其中39mg/kg作用最强。
     用免疫组化方法对脑组织进行染色。在皮层,溶剂对照组GFAP阳性细胞数有增多的趋势,而各给药组该指标明显小于溶剂对照组,尤其d1-PHPB 39mg/kg组。在海马,各给药组的GFAP阳性细胞数明显小于溶剂对照组。在胼胝体,d1-PHPB 39mg/kg组该指标小于溶剂对照组。在视束,d1-PHPB 39、129mg/kg、d1-NBP 100mg/kg以及吡拉西坦600mg/kg组的GFAP阳性细胞数明显少于溶剂对照组。说明,d1-PHPB可明显减少2-VO大鼠脑组织活化的星形胶质细胞,尤其在海马和视束。
     采用免疫组化法在皮层和海马CA1区证实,d1-PHPB 39mg/kg可明显增高K4P2的分布面积,该药13、129mg/kg及d1-NBP 100mg/kg则仅有增高的趋势。各药对皮层和海马MAP2的密度没有明显影响。
     大鼠脑低灌注后BDNF免疫组化染色显示,在皮层和海马,各组间染色面积无明显差异。但从染色密度看,在皮层,d1-PHPB可增加BDNF的表达,其中39mg/kg作用最强;在海马,该药39mg/kg可增加其表达。
     2.d1-PHPB对Aβ_((25-35))致大鼠痴呆后学习记忆的改善作用及其机制
     侧脑室注射Aβ_((25-35))后第1天开始给药,连续两周,第9-13天进行水迷宫实验。结果显示:d1-PHPB 129mg/kg组的潜伏期明显短于溶剂对照组,39mg/kg组也有短于溶剂对照组的趋势。平台探索实验中,d1-PHPB 129mg/kg组目标象限活动时间百分比明显长于溶剂对照组,39mg/kg组也有长于溶剂对照组的趋势。另外,d1-PHPB有缩短动物第一次穿越平台时间的趋势。表明,大剂量d1-PHPB可明显改善大鼠的学习记忆能力。
     抗氧化检测证明,d1-PHPB 39和129mg/kg可降低痴呆大鼠皮层SOD活力(大剂量有统计学意义)以及MDA含量,且有剂量依赖性。在海马,各组之间SOD活力和MDA含量无明显差异。
     与乙酰胆碱合成、代谢相关的酶活力测定发现,溶剂对照组皮层ChAT活力未见明显改变,但与溶剂对照组比较,d1-PHPB 39mg/kg可显著增加ChAT活力,129mg/kg也有增加趋势。海马ChAT和AChE活力在各组之间无显著差异。
     采用Western blotting方法检测磷酸化tau蛋白。结果显示:d1-PHPB可剂量依赖性地降低皮层396位点磷酸化tau蛋白的表达。在海马,模型组该蛋白表达增高趋势明显,但药物对其无明显影响。
     3.d1-PHPB对快速老化小鼠学习记忆的改善作用及其机制
     跳台实验发现,五月龄SAMP8的被动回避反应能力略有弱于SAMR1的趋势。而十和十五月龄SAMP8的被动回避反应能力均明显弱于同龄SAMR1。但十五月龄的减弱程度比十月龄未进一步增加。
     水迷路实验观察错误次数和潜伏期两项指标,结果显示,五月龄SAMP8对台阶位置的记忆略弱于同龄SAMR1,十和十五月龄SAMP8的记忆能力明显弱于同龄SAMR1。随着月龄增加,两种小鼠的学习记忆能力逐步下降,十月龄后维持在低水平,十五月龄不再进一步降低。
     以荧光强度降低值表示线粒体对Rhodamine123的摄取程度,间接反映线粒体膜电位。三个月龄实验中,SAMP8的荧光强度降低值均明显低于SAMR1,其中十五月龄差异最大。从五到十月龄,两种小鼠的荧光强度降低值明显下降,十五月龄与十月龄相当。同时,皮层线粒体ATP酶活力,SAMP8和SAMR1从五到十月龄降低明显,而十五同十月龄比较则变化较小。各月龄SAMP8均显著低于同龄SAMR1。
     生化研究显示:五和十月龄时,两种小鼠脑组织ChAT活力均维持在较高水平,而十五月龄时均显著下降。十月龄时SAMP8海马的ChAT活力低于同龄SAMR1。说明ChAT活力在不同月龄两种动物脑组织间差异较小。皮层AChE活力在各月龄两种小鼠间无显著差异。但在海马,五、十月龄SAMP8的AChE活力显著高于同龄SAMR1,十五月龄时,SAMP8却显著低于同龄SAMR1。
     血清SOD随着月龄增加,无论在SAMP8还是SAMR1均逐渐减少。但十月龄SAMP8的SOD活力略微高于SAMR1。十五月龄SAMP8的SOD活力则显著低于SAMR1。血清MDA含量,随着月龄增加,在两种小鼠基本呈增加趋势,但十和十五月龄之间无明显差异。各月龄两种小鼠之间也无显著差异。
     d1-PHPB对SAMP8小鼠作用的研究显示:10月龄SAMP8小鼠,连续给药35天。在跳台实验中,d1-PHPB 50和160mg/kg可剂量依赖性地减少SAMP8的电击次数,并延长电击潜伏期。水迷路实验发现,d1-PHPB可减少SAMP8进入盲端的错误次数,并缩短动物找到台阶的潜伏期。
     同时,两个给药组海马SOD活力均明显下降。MDA含量降低趋势明显。在皮层,药物没有引起这两项指标的明显变化。d1-PHPB还可增高SAMP8海马ChAT活力,并有降低AChE活力的趋势。在皮层,该药没有影响二者的活力。另外,d1-PHPB 160mg/kg组皮层线粒体ATP酶活力高于对照组。
     与对照组比较,d1-PHPB对海马396位点磷酸化tau蛋白的表达有显著的降低作用,并有一定的剂量依赖性。而对皮层该蛋白的表达没有明显影响。
     以上结果表明,d1-PHPB对慢性脑低灌注和Aβ诱导的痴呆以及快速老化小鼠的认知缺陷均有确切的改善作用。除了改善大鼠脑组织的病理改变、减少活化的星形胶质细胞、增加微管相关蛋白2的分布和脑源性神经生长因子的含量外,在本研究中所涉及的三种痴呆动物模型,该药抗痴呆的主要机理为:增加ChAT活力而增加乙酰胆碱的合成、减轻氧化损伤以及减少脑组织中tau蛋白的过度磷酸化。总之,d1-PHPB可作用于慢性脑缺血和认知障碍的多个病理环节,是一个具有良好开发前景的抗痴呆药物。
Potassium 2-(1-hydroxypentyl)-benzoate(dl-PHPB) was a new compound synthesized by our institute,which is the prodrug of 3-n-butylphthalide(dl-NBP).dl-NBP is a first-class anti-ischemic stroke drug which had many nervous protective effects for ischemic brain tissue We deduced that it might have therapeutic action for senile dementia.But dl-PHPB has many advantages compared with dl-NBP.In this study,we adopted three dementia models to investigate the improvement of dl-PHPB on the cognitive deficits of dementia animals and observe its possible mechanisms.
     PARTⅠEffects and mechanisms of dl-PHPB on the learning and memory deficits of cerebral hypoperfusion rats
     In the present study,we administered drugs on day 10 to 30 after permanent occlusion of common carotid arteries(BCCAO) of rats.On the last six days,the behavioural test was performed,and then we determined some biochemical and immunohistochemical indexes in brains of dementia rats.The results are as follows:
     dl-PHPB 39 and 129mg/kg,dl-NBP 100mg/kg and piracetam 600mg/kg reduced the latencies of dementia rats with different extent.Meanwhile,dl-PHPB 39mg/kg group used more linear and tendency modes than vehicle group.In the probe trial,except for dl-PHPB 129mg/kg and dl-NBP 100mg/kg,other groups spent more time in the target-quandrant than the vehicle,especially dl-PHPB 39mg/kg.In addition,the first crossing-platform time of dl-PHPB 39mg/kg group was significantly shorter than that of vehicle group.The above showed that dl-PHPB could significantly improve rats' cognition,especially large and middle doses.
     We found that the ChAT activity in hippocampus had significant decreasing trend after BCCAO with biochemistry method,dl-PHPB 129mg/kg significantly increased the hippocampus ChAT activities of ischemic rats.
     In cortex,the SOD activities of dl-PHPB 13 and 39mg/kg,dl-NBP 100mg/kg,and piracetam 600mg/kg were lower than that of vehicle group.Besides piracetam,other groups showed decrease trend on cortex CAT activity.The GSH-Px activity didn't show obvious differences among all groups,dl-PHPB and dl-NBP significantly decreased cortex MDA content.In hippocampus,cerebral ischemia and the drugs didn't affect SOD and MDA.In addition,there were no significant differences on ATPase activity,and LD and NO content among all groups.
     HE-staining showed that three doses of dl-PHPB improved the abnormalities in cortex and hippocampus CA1 and CA3 with different extent,especially 39mg/kg.We also found that they had improvement on the pathological changes in corpus callosum and optic tract with K-B staining,especially 39mg/kg.
     GFAP-positive astrocytes were investigated with immunohistochemistry method.In cortex, there was only a tendancy that GFAP-positive astrocytes in vehicle rats exceeded that of sham-operated rats,but all drugs could reduce astrocytes,especially dl-PHPB 39mg/kg.In hippocampus,all drugs also decreased the astrocytes,especially dl-PHPB 39 and 129mg/kg. In corpus callosum,GFAP-positive astrocytes in dl-PHPB 39mg/kg group were less than that of vehicle group.In optic tract,there were such results similar to that in hippocampus.
     dl-PHPB 39mg/kg increased the MAP2 area in cortex and hippocampus CA1 region significantly.But the drugs didn't affect the MAP2 density.The BDNF areas in rats' brains of all groups had no significant differences.But dl-PHPB obviously increased the BDNF density in cortex,especially 39mg/kg,but in hippocampus,only dl-PHPB 39mg/kg increased it significantly.
     PARTⅡImprovement and mechanisms of dl-PHPB on the cognitive deficits of dementia rats induced by Aβ_((25-35))
     In this study,we adopted dementia rats induced by Aβ_((25-35)) through intracerebroventricular injection(i.c.v.).After administering for two weeks,rats' learning and memory was detected with Morris water maze.The related biochemical indexes and phospho-tau protein were examined to elucidate the action mechanisms of dl-PHPB.The results are as follows:
     On day 9-13 after administration,water maze test was performed,dl-PHPB 39 and 129mg/kg dose-dependently reduced latency compared with the vehicle group.In the probe trial,dl-PHPB 129mg/kg group spent more time in the target-quandrant.In addition,the drug had a tendancy of reducing first crossing-platform time.These showed that large dose of dl-PHPB could significantly improve rats' learning and memory abilities.
     dl-PHPB decreased the cortex SOD activity and MDA content dose-dependently.But in hippocampus,SOD activity and MDA content had no obvious differences among four groups.
     dl-PHPB 39mg/kg increased the cortex ChAT activity compared with vehicle group. Meanwhile,dl-PHPB did not affect the cortex AChE activity and there were also no significant differences on hippocampus ChAT and AChE activity among all groups.
     Meanwhile,we determined the phosphorylated tau protein of Ser396 site with Western blotting,dl-PHPB reduced dose-dependently tau protein expression in cortex.However,it did not significantly affect it in hippocampus.
     PARTⅢImprovement and mechanisms of dl-PHPB on the cognitive deficits of senescence-accelerated mouse(SAM)
     1.Comparative study on the learning and memory of different month-age SAM,and brain tissue biochemistry and morpholoy
     We investigated the cognition,and brain biochemistry and morphology of five,ten,and fifteen-month-old SAMP8.In step-down test,there was a tendancy that the passive avoidance response ability of five-month-old SAMP8 was lower than that of same-age SAMR1.The abilities of ten and fifteen-month-old SAMP8 were significantly lower than that of same-age SAMR1.The difference on this between SAMP8 and SAMR1 increased gradually from five to ten-month age,but it did not increase from ten to fifteen-month age.
     In water maze test,the spatial cognitive ability of five-month-old SAMP8 was slightly lower than that of same-age SAMR1,but the abilities of ten and fifteen-month-old SAMP8 were significantly lower than that of same-age SAMR1.We also found that their cognitive abilities decreased gradually from five to ten-month age and did not change obviously from ten to fifteen-month age.The difference on cognitive ability between them increased from five to ten-month age,but did not increase further from ten to fifteen-month age.
     Decreasing value of fluorescence intensity was used to show mitochondria membrane potential indirectly.The values of three month-age SAMP8 were significantly less than that of same-age SAMR1.We also found that the mitochondria membrain potentials of SAMP8 and SAMR1 decreased gradually and their difference increased slightly with month-age increase.
     Meanwhile,with the increase of month age,the mitochondria ATPase activity decreased gradually,but it did not decrease further after ten-month age.Moreover,the values of all month-age SAMP8 were significantly smaller than those of same-age SAMR1.
     The brain ChAT activities of five and ten-month-old SAM were in high level,but it decreased obviously in fifteen-month-old.In addition,the hippocampus ChAT activity of ten-month-old SAMP8 was significantly lower than that of same-age SAMR1.In cortex,there were no differences on AChE activity between them.In hippocampus,the AChE activities of five and ten-month-old SAMP8 were significantly higher than that of same-age SAMR1.But the AChE activity of fifteen-month-old SAMP8 was lower than that of SAMR1.
     With the increase of month age,the serum SOD activity of SAM decreased gradually.The SOD activity of ten-month-old SAMP8 was slightly higher than that of same-age SAMR1. However,in fifteen-month-old SAMP8,it was significantly lower than that of SAMR1.From five to ten-month age,the MDA level increased gradually,but there was no obvious difference between ten and fifteen-month age.Meanwhile,there was no significant difference between SAMP8 and SAMR1.
     2.Improvement of dl-PHPB on the cognitive deficits of SAMP8
     We administered two doses of dl-PHPB to ten-month-old SAMP8 for five weeks.On the last five days,we performed behavioral test to detect animals' cognitive abilities,and determined related biochemical indexes and phospho-tau protein of brain.
     We found that dl-PHPB improved dose-dependently the passive avoidance response ability of SAMP8 in step-down test.Meanwhile,dl-PHPB reduced the number of entering non-exit and the latency of finding safe steps of SAMP8 in water maze trial.
     Meanwhile,dl-PHPB reduced the hippocampus SOD activity of SAMP8 and had a strong tendency of decreasing the hippocampus MDA content.On the other hand,dl-PHPB increased dose-dependently the hippocampus ChAT activity and had a tendency of decreasing the hippocampus AChE activity.In addition,large dose of dl-PHPB had weak effect increasing the cortex mitochondria ATPase activity.
     We determined the tau protein of one phosphorylation site(Ser396) with Western blotting. Compared with control,dl-PHPB decreased dose-dependently the expression of phospho-tau protein in the hippocampus of SAMP8,but it didn't affect it in cortex.
     Taken together,we confirmed the therapeutic effects of dl-PHPB on VD,Aβ-induced dementia and the cognitive deficits in SAMP8.Meanwhile,these results indicated that such effects were mainly mediated by improving the pathologic changes,reducing active astrocytes, and increasing MAP2 and BDNF of VD rats' brains,alleviating the oxidative stress damage and enhangcing the cholinergic nerve function in brains of three animal models,and reducing the hyperphosphorylation tau protein in brain tissues of the later two animal models.In a word,dl-PHPB affected many pathologic courses of dementia and was a potentially beneficial and promising drug for the treatment of dementia.
引文
1. Rowe JW.The new gerontology[J]. Science. 1997,278:367.
    
    2. Youdim KA, Joseph JA. A possible emerging role of phytochemicals in improving age-related neurological dysfunctions:a multiplicity of effects[J]. Free Radic Biol Med. 2001,30:583-94.
    
    3. 盛树力.老年痴呆发病机理与药物研究[M].北京:科学技术文献出版社, 2003.
    
    4. Lewczuk P, Esselmann H, Bibl M, et al. Tau protein phosphorylated at threonine 181 in CSF as a neurochemical biomarker in Alzheimer's disease: original data and review of the literature[J]. Mol Neurosci. 2004, 23:115-22.
    
    5. Roger N, Rosenberg MD. Translational research on the way to effective therapy for Alzheimer disease[J]. Arch Gen Psychiatry. 2005, 62:1186-92.
    
    6. Dodart JC, Marr RA. Gene delivery of human apolipoprotein E alters brain Aβ burden in a mouse model of Alzheimer s disease[J]. Proc Natl Acad Sci USA. 2005, 102:1211-6.
    
    7. Assunta I, Maria G, Orlando G. In vivo probing of the brain cholinergic system in the aged rat[J]. Ann NY Acad Sci. 1991, 621:90-7.
    
    8. Maelicke A, Samochocki M, Jostock R, et al. Allosteric sensitization of nicotinic receptors by galantamine, a new treatment strategy for Alzheimer's disease[J]. Biol Psychiatry.2001,49:279-88.
    
    9. Wood MD, Murkitt KL. Functional comparison of muscarinic partial agonists at muscarinic receptor subtypes hM1, hM2, hM3, hM4 and hM5 using microphysiometry[J]. Br J Pharmacol Exp Ther. 1999,290:901-7.
    
    10.Tariot PN, Farlow MR, GrossbergGT, et al. Memantine treatment in patients with moderate to severe Alzheimer disease already receiving donepezil: a randomized controlled trial[J]. JAMA. 2004, 291:317-24.
    
    11.Roberds SL, Anderson J, Basi G. et al. BACE knockout mice are healthy despite lacking the primary β -secretase activity in brain: implications for Alzheimer's disease therapeutics[J]. Hum Mol Genet. 2001,10:1317-24.
    
    12. Zandi PP, Anthony JC. Cache County Study Group. Reduced risk of Alzheimer disease in users of antioxidant vitamin supplements[J]. Arch Neurol. 2004, 61:82-8.
    
    13. Palmer AM. Pharmacotherapy for Alzheimer's disease: progress and prospects[J]. Trends Pharmacol Sci. 2002, 23:426-33.
    
    14. Ji YX, Yuan RF. The progress of vascular dementia[J]. Medical Recapitulate. 2006, 12:298-300.
    
    15. Chen ZY, Li YC, Liu WK. Review on the risk factors of vascular dementia[J]. Prac J Med & Pharm. 2006, 23: 490-2.
    
    16. Erkinjuntti T, Roman G. Emerging therapies for vascular dementia and vascular cognitive impairment[J]. Stroke. 2004, 35:1010-7.
    
    17. Zhang B, Wu HQ, Zhang HX. Neurobiochemical mechanisms of vascular dementia[J]. Cerebro-vasc Dis Foreign Med Sci.2005, 13: 672-5.
    
    18. Jones CR, Hiley CR, Pelton. JT, et al. Autoradiographic visualization of the binding sites for [125I] endothelin in rat and human brain[J]. Neurosci Lett.1989, 97: 276~9.
    
    19. Barone FC, Arvin B, White RF, et al. Tumor necrosis factor-alpha. A mediator of focal ischemic brain injury[J]. Stroke. 1997, 28:1233-44.
    
    20. Isoe K, Urakami K, Sato K, et al. Apolipoprotein E in patients with dementia of the Alzheimer type and vascular dementia[J]. Acta Neurol Scand. 1996, 93:133-7.
    
    21. Cummings JL. Alzheimer'S disease[J]. N Engl J Med. 2004, 351:56-67.
    
    22. Doody RS, Stevens JC, Beck C, et al. Practice parameter: management of dementia (all evidence-based review). Report of the quality standards subcommittee of the American Academy of Neurology[J]. Neurology.2001, 56:1154-66.
    
    23. Mendez MF, Yonesi FL, Perryman KM. Use of donepezil for varseular dementia: Preliminary clinical experience[J]. J Neuropsychiatr Clin Neurosci. 1999, 11:268-70.
    
    24. Jay ME. Cholinesterase inhibitors in the treatment of dementia[J]. JAOA. 2005, 1050:145.
    
    25.Mesulam M, , GuillozetA, ShawP, et al. Widely spread butyrylcholinesterase can hydrolyze acetylcholine in the normal and Alzheimer brain[J]. Neurobiol Dis.2002, 9:88-93.
    
    26. Jack CR, Slomkowski M, Gracon S, et al. MRI as a bio-marker of disease progression in a therapeutic trial of milameline for AD[J]. Neurology. 2004, 60:253.
    
    27. Wolff C, Gillard M, Fuks B, et al. Linopirdine binding to rat brain membranes is not relevant for M-channel interaction[J]. Eur J Pharmacol. 2005, 518:10.
    
    28. Peuche B, Krieglstein J. Neuroblastoma cells of testing neuroprotective drug effects[J]. J Pharmacol Meths. 1991, 26:139-48.
    
    29. Cristina PM, Paola M, Sarah A, et al. Plasma antioxidant status, immunoglobulin G oxidation and plasma antioxidant status, immunoglobulin G oxidation and lipid peroxidation in demented patients relevance to Alzheimer disease and vascular dementia[J]. Dementia &Geriatric Cognitive Disorders. 2004,18:265-70.
    
    30. Ging-Yuek R, Hsiung A, Sadovnick D, et al. Apolipoprotein E ε 4 genotype as a risk factor for cognitive decline and dementia: data from the Canadian study of health and aging[J]. CMAJ.2004,171:863-7.
    
    31. Malaguarnera M, Ferri R. Homocysteine vitamin B12 and folate in vascular dementia and in Alzheimer disease[JlClin Chera Lab Med. 2004, 42:1032-5.
    
    32. Whitmer RA, Gunderson EP, Quesenberry CP et al. Body mass index in midlife and risk of Alzheimer Disease and vascular dementia[J]. Current Alzheimer Research. 2007; 4(2): 103-109
    
    33. Feng YP. Pathophysiology of ischemic stroke and status of drug intervention[J]. Acta Pharm Sin. 1999,34:72-8.
    
    34. Feng YP, Hu D, Zhang LY. Effect of d1-butylphthalide (NBP) on mouse brain energy metabolism in complete brain ischemia induced by decapitation[J]. Acta Pharmaceutica Sinica. 1995, 30:741-4.
    
    35. Liu XG, Feng YP. Effect of d1-3-n-butylphthalide on ischemic neurological damage and abnormal behavior in rats subjected to focal ischemia[J]. Acta Pharmaceutica Sinica. 1995, 30:896-903.
    
    36. Deng WB, Feng YP. Effect of d1-3-butylphthalide on brain edema in rats subjected to focal cerebral ischemia[J]. Chin Med Sci J. 1997,12:102-6.
    
    37. Xu HL, Feng YP. Effects of 3-n-butylphthalide on pial arterioles in focal cerebral ischemia rats[J]. Acta Pharmaceutica Sinica. 1999, 34:172-5.
    
    38. Xu HL, Feng YP. Effects of 3-n-butylphthalide on neutrophil-endothelial cell adhesion and endothelial cell injury induced by anoxia/reoxygenation, interleukin-1 and tumor necrosis factor-α [J]. Chinese Journal of Pharmacology and Toxicology. 1999,13:281-4.
    
    39. Dong GX, Feng YP. Effects of 3-n-butylphthalide on cortical calcineurin and calpain activities in focal cerebral ischemia rats[J]. Acta Pharmaceutica Sinica. 2000,35:790-2.
    
    40. Hu D, Zhang LY, Feng YP. Effect of d1-3-n-butylphthalide on memory disturbance induced by focal cerebral ischemia in rats[J]. Chinese Journal of Pharmacology and Toxicology.1997,11:14-6.
    
    41. Lin JF, Feng YP. Effect of d1-3-n-butylphthalide on delayed neuronal damage after focal cerebral ischemia and intrasynaptosomes calcium in rats[J]. Acta Pharmaceutica Sinica.1996, 31:166-70.
    
    42. Peng Y, Xu SF, Chen GQ, et al. 1-3-n-Butylphthalide improves cognitive impairment induced by chronic cerebral hypoperfusion in rats[J]. J Pharmacol Exp Ther. 2007, 321:902-10.
    
    43. Peng Y, Xing C, Lemere CA, et al. 1-3-n-Butylphthalide ameliorates beta-amyloid-induced neuronal toxicity in cultured neuronal cells[J]. Neurosci Lett. 2008, 434:224-9.
    
    44. Zhang Y, Wang L, Li J, et al. Potassium 2-(1-hydroxypentyl)-benzoate increases cerebral blood flow and reduces infarct volume in rats model of transient focal cerebral ischemia[J]. J Pharmacol Exp Ther. 2006, 317:973-9.
    45. Farkas E, Luiten PG, Bari F. Permanent, bilateral common carotid artery occlusion in the rat:A model for chronic cerebral hypoperfusion-related neurodegenerative diseases[J].Brain Res Rev. 2007, 54:162-80.
    
    46.Whitehead SN, Hachinski VC, Cechetto DF. Interaction between a rat model of cerebral ischemia and beta-amyloid toxicity: inflammatory responses[J]. Stroke. 2005, 36:107-12.
    
    47. Masilamoni JG, Jesudason EP, Jesudoss KS, et al. Role of fibrillar A β_(25-35) in the inflammation induced rat model with respect to oxidative vulnerability[J]. Free Radical Research. 2005, 39:603-12.
    
    48. Nomura Y, Okuma Y. Age-related defects in lifespan and learning ability in SAMP8 mice[J].Neurobiol Aging. 1999, 20:111-5.
    
    49. Farkas E, de Wilde MC, Kiliaan AJ, et al. Chronic cerebral hypoperfusion-related neuropathologic changes and compromised cognitive status: window of treatment[J]. Drugs Today (Barc). 2002, 38:365-576.
    
    50.Scheel P, Puls I, Becker G, Schoning M. Volume reduction in cerebral blood flow in patients with vascular dementia[J]. Lancet. 1999,354:2137-40.
    51.de la Torre JC. Critical threshold cerebral hypoperfusion causes Alzheimer's disease?[J]. Acta Neuropathol (Berl). 1999, 98:1-8.
    
    52. Tomimoto H, Akiguchi I, Wakita H, et al. White mater lesions after occlusion of the bilateral carotid arteries in the rat-temporal profile of cerebral blood flow (CBF),oligodendroglia and myelin[J]. No To Shinkei. 1997, 49:639-44.
    
    53. Ueno M, Tomimoto H, Akiguchi I, et al. Blood-brain barrier disruption in white mater lesions in a rat model of chronic cerebral hypoperfusion[J].J Cereb Blood Flow Metab.2002,22:97-104.
    
    54. Wakita H, Tomimoto H, Akiguchi I, et al. Ibudilast, a phosphodiesterase inhibitor,protects against white mater damage under chronic cerebral hypoperfusion in the rat[J].Brain Res. 2003, 992:53-9.
    
    55. Ni J, Ohta H, Matsumoto K, et al. Progressive cognitive impairment following chronic cerebral hypoperfusion induced by permanent occlusion of bilateral carotid arteries in rats[J]. Brain Res. 1994, 653:231-6.
    
    56. Chen YP, Zhang MY, Yu SC, et al. Clinical, CT and short-latency somatosensory evoked potentials of patients with multi-infarct dementia[J]. Stroke and Nervous Disease. 1999,6:1-3.
    
    57. Roman GC, Tatemichi TK, Erkinjuntti T, et al. Vascular dementia: diagnostic criteria for research studies. Report of the NINDS-AIREN International Workshop[J]. Neurology. 1993,43: 250-60.
    58. Toore JC de la. Alzheimer's disease as a vascular disorder. Nosological evidence[J].Stroke. 2002,33:1152-62.
    
    59. Tsuchiya M, Sako K, Yura S, et al. Local cerebral glucose utilization following acute and chronic bilateral carotid artery ligation in Wister rats: relation to changes in local cerebral blood flow[J]. Exp Brain. 1993, 95:1-7.
    
    60. de Wilde MC, Farkas E, GerritsM, et al. The effect of n-3-polyunsaturated fatty acid-rich diets on cognitive and cerebrovascular parameters in chronic cerebral hypoperfusion[J].Brain Res.2002, 947:166-73.
    
    61. Wakita H, Tomimoto H, Akiguchi I, et al. Dose-dependent, protective effect of FK506 against white mater changes in the rat brain after chronic cerebral ischemia[J].Brain Res.1998,792:105-13.
    
    62. Guastadisegni C, Minghetti L, Nicolini A, et al. Prostaglandin E2 synthesis is differentially affected by reactive nitrogen intermediates in cultured rat microglia and RAW 264.7 cells[J]. FEBS Lett. 1997,413:314-8.
    
    63. Makesbery WR. Oxidative stress hypothesis in Alzheimer's disease[J]. Free Radical Biol Med.1997,23:134-47.
    
    64. Wang LM, Han YF, Tang XC. Huperzine A improves cognitive deficits caused by chronic cerebral hypoperfusion in rats[J]. Eur J Pharmacol. 2000, 398:65-72.
    
    65. Zhang LH and Zhang SS. Relationship between facilitatory effect of piracetam on memory and glutamate receptors[J]. Acta Pharmacol Sin. 1991, 12:145-7.
    
    66. Klimenko VN, Belenichev IF, Bashkin IN, et al. Pharmacologic protection of brain in surgery of the brachiocephalic arteries[J]. Klin Khir. 1993, (7-8):14-7.
    
    67. Dong GX, Feng YP. Effects of NBP on ATPase and anti-oxidant enzymes activities and lipid peroxidation in transient focal cerebral ischemic rats[J]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao.2002, 24:93-7.
    
    68. Grantham C,Geerts H. The rationale behind cholinergic drug treatment for dementia related to cerebrovascular disease[J].J Neurol Sci. 2002, 203-204:131-6.
    
    69. Tohgi H, Abe T, KimuraM, et al. Cerebrospinal fluid acetylcholine and choline in vascular dementia of Binswanger and multiple small infarct types as compared with Alzheimer-type dementia[J]. J Neural Transm. 1996, 103:1211-20.
    
    70. Shang Y, Cheng J, Oi J, et al. Scutellaria flavonoid reduced memory dysfunction and neuronal injury caused by permanent global ischemia in rats[J]. Phamracol Biochem Behav.2005,82:67-73.
    
    71. Zarow C, Vinters HV, Ellis WG, et al. Correlates of hippocampal neuron number in Alzheimer's disease and ischemic vascular dementia[J]. Ann Neurol. 2005, 57:896-903.
    72. Tohg H, Abe T, Yamazaki K, et al. The cerebrospinal fluid oxidized NO metabolites nitric and nitrate in Alzheimer's disease and vascular dementia of Binswanger type and multiple small infarct type[J].J Neural Transm. 1998,105:1283-91.
    
    73. Miyamoto E, Tomimoto H, Nakao Si S, et al. Caudoputamen is damaged by hypocapnia during mechanical ventilation in a rat model of chronic cerebral hypoperfusion[J]. Stroke. 2001,32:2920-5.
    
    74. Nanri M, Watanabe H. Availability of 2V0 rats as a model for chronic cerebrovascular disease[J].Nippon Yakurigaku Zasshi. 1999,113:85-95.
    
    75. Schaaf MJ, Workel JO, Lesscher HM, et al. Correlation between hippocampal BDNF mRNA expression and memory performance in senescent rats[J]. Brain Res. 2001,915:227-33.
    
    76. Yamada K, Mizuno M, Nabeshima T. Role for brain-derived neurotrophic factor in learning and memory[J]. Life Sci.2002, 70:735-44.
    
    77. Kiprianova I, Freiman TM, Desiderato S, et al. Brain-derived neurotrophic factor prevents neuronal death and glial activation after global ischemia in the rat[J].J Neurosci Res.1999,56:21-7.
    
    78. Kiprianova I, Sandkuhler J, Schwab S, et al. Brain-derived neurotrophic factor improves long-term potentiation and cognitive functions after transient forebrain ischemia in the rat[J].Exp Neurol. 1999, 159:511-9.
    
    79. Sakakibara Y, Mitha AP, Ogilvy CS, et al. Post-treatment with nicotinamide (vitamin B3) reduces the infarct volume following permanent focal cerebral ischemia in female Sprague-Dawley and Wistar rats[J]. Neurosci Lett. 2000, 281:111-4.
    1.Palmer AM.Pharmacotherapy for Alzheimer's disease:progress and prospects[J].Trend Phar macol Sci.2002,23:426-33.
    2.Rapoport M,Dawson HN,Binder LI,et al.Tau is essential to beta-amyloid-induced neurotoxicity [J].Proc Natl Acad Sci USA.2002,99:6364-9.
    3.王晓良.应用分子药理学(第一版)[M].北京:中国协和医科大学出版社,2005:167-87.
    4.Behl C,Holsboer F.Oxidative stress in the pathogenesis of Alzheimer' s disease and antioxidant neuroprotection[J].Fortschr Neurol Psychiatr.1998,66:113-21.
    5.Markesbery WR.Oxidative stress hypothesis in Alzheimer' s disease[J].Free Radic Biol Med.1997,23:134-47.
    6.Varadarajan S,Kanski J,Aksenova M,et al.Different mechanisms of oxidative stress and neurotoxicity for Alzheimer' s Aβ_(1-42) and Aβ_(25-35)[J].J Am Chem Soc.2001,123:5625-31.
    7.Yamaguchi Y,Matsuno T,Kawashima S.Antiamnesic effects of azaindolizinone derivative ZSET845 on impaired learning and decreased ChAT activity induced by amyloid-beta 25-35in the rat[J].Brain Res.2002,945:259-65.
    8.O' Mahony S,Harkany T,RensinkAA,et al.Beta-amyloid-induced cholinergic denervation correlates with enhanced nitric oxide synthase activity-in rat cerebral cortex:reversal by NMDA receptor blockade[J].Brain Res.1998,45:405-11.
    9.Wevers A,Monteggia L,Nowacki S,et al.Expression of nicotinic acetylcholine receptor subunits in the cerebral cortex in Alzheimer' s disease:histotopographical correlation with amyloid plaques and hyperphosphorylated-tau protein[J].J Eur Neurosci.1999,11:2551-65.
    10.Pan YP,Xu XH,Wang XL.mRNA expression alteration of two-pore potassium channels in the brain of beta-amyloid peptide25-35-induced memory impaired rats[J].Yao Xue Xue Bao.2003,38:721-4.
    11.Yamaguchi Y,Matsuno T,Kawashima S.Antiamnesic effects of azaindolizinone derivative ZSET845 on impaired learning and decreased ChAT activity induced by amyloid-beta 25-35in the rat[J].Brain Res.2002,945:259-65.
    12.Yu SR,Gao NN,Li LL,et al.Facilitated performance of learning and memory in rats by 3-n-butylphthalide[J].Acta Pharmacol Sin.1988,9:385-8.
    13.Whitehead SN,Hachinski VC,Cechetto DF.Interaction between a rat model of cerebral ischemia and beta-amyloid toxicity:inflammatory responses[J].Stroke.2005,36:107-12.
    14.Masilamoni JG,Jesudason EP,Jesudoss KS,et al.Role of fibrillar Aβ_(25-35) in the inflamination induced rat model with respect to oxidative vulnerability[J]. Free Radical Research. 2005,39:603-12.
    
    15. Ouyang S, Sun LS, Guo SL, et al. Effects of timosaponins on learning and memory abilities of rats with dementia by lateral cerebral ventricular injection of amyloid β-peptide [J]. J First Mil Med Univ. 2005, 25:121-6.
    
    16. Itoh A, Nitta A, Nadai M, et al. Dysfunction of cholinergic and dopaminergic neuronal systems in beta-amyloid protein-infused rats[J].J Neurochem. 1996, 66:1113-7.
    
    17. Yatin S, Aksenov M, Butterfield DA. The antioxidant vitamin E modulates amyloid beta-peptide-induced creatine kinase activity inhibition and increased protein oxidation: implications for the free radical hypothesis of Alzheimer's disease[J].Neurochem Res. 1999,24:427-35.
    
    18. Gilgun-Sherki Y, Melamed E, Offen D. Antioxidant treament in Alzheimer's disease[J].J Molecular Neurosci. 2003,21:1-11.
    
    19. Liu YH, Li J. Protective effects of salviol on aphrenia in mice induced by amyloid beta-protein and its mechanisms[J]. J Apoplexy and Nervous Diseases.2007,24:64-6.
    
    20. Lee CL, Kuo TF, Wang JJ, et al. Red mold rice ameliorates impairment of memory and learning ability in intracerebroventricular amyloid β -infused rat by repressing amyloid P accumulation[J]. J Neurosci Res. 2007, 85:3171-82.
    
    21. Ayasolla K, Khan M, Singh AK, et al. Inflammatory mediator and P -amyloid_(25-35)-induced ceramide generation and iNOS expression are inhibited by vitamin E[J]. Free Radic Biol Med. 2004,37:325-38.
    
    22. Nitta A, Itoh A, Hasegawa T, et al. beta-Amyloid protein-induced Alzheimer's disease animal model[J]. Neurosci Lett. 1994,170:63-6.
    
    23. Yamada K, Tanaka T, Mamiya T, et al. Improvement by nefiracetam of beta-amyloid-(1-42) -induced learning and memory impairments in rats[J]. Br J Pharmacol. 1999,126:235-44.
    
    24. Hoshi M, Takashima A, Noguchi K, et al. Regulation of mitochondrial pyruvate dehydro-genase activity by tau protein kinase I/glycogen synthase kinase 3β in brain[J]. Proc Natl Acad Sci.1996,93:2719-23.
    
    25. Jin QH, Zhang XJ. The relationship between acetylcholinesterase (AChE) and β amyloid-peptide(Aβ) [J].Chinese Bulletin of Life Sciences. 2004, 16:11-15.
    
    26. Busciglio J, Lorenzo A, Yeh J, et al. L-Amyloid fibrils induce tau phosphorylation and loss of microtubule binding[J]. Neuron. 1995, 14:879-88.
    
    27. Calhoun M, Wiederhold K, Abramowski D, et al. Neuron loss in APP transgenic mice[J].Nature. 1998,395:755-6.
    
    28. Masliah E, Sisk A, Mallory M, et al. Neurofibrillary pathology in transgenic mice overexpressing V717F beta-amyloid precursor protein[J]. J Neuropathol Exp Neurol. 2001,60:357-68.
    
    29. Stamer K, Vogel R, Thies E, et al. Tau blocks traffic of organelles, neurofilaments,and APP vesicles in neurons and enhances oxidative stress[J]. J Cell Biol. 2002,156:1051-63.
    
    30. Lee VM, Trojanowski JQ. Neurodegenerative tauopathies: human disease and transgenic mouse models[J]. Neuron. 1999, 24:507-10.
    
    31. Garcia ML, Cleveland, DW. Going new places using an old MAP: tau, microtubules and human neurodegenerative disease[J]. Curr Opin Cell Biol. 2001, 13:41-8.
    
    32. de la Monte SM, Wands JR. Alzheimer-associated neuronal threads protein-induced apoptosis and impaired mitochondrial function in human central nervous system-derived neuronal cell[J]. J Neuropathol Exp Neurol. 2001, 60:195-207.
    
    33. Kobayashi K, Nakano H, Hayashi M, et al. Association of phosphorylation site of tau with neuronal apoptosis in Alzheimer's disease[J]. J Neurol Sci. 2003, 208:17-24.
    
    34. Canudas AM, Gutierrez-Cuesta J, Rodriguez MI, et al. Hyperphosphorylation of microtubule-associated protein tau in senescence-accelerated mouse (SAM) [J]. Mech Ageing Dev.2005,126:1300-4.
    
    35. Song JQ, Chen XC, Zhang J, et al. JNK/p38 MAPK involves in ginsenoside Rb1 attenuating beta-amyloid peptide (25-35) -induced tau protein hyperphosphorylation in embryo rat cortical neurons[J]. Acta Pharmaceutica Sinica. 2008, 43:29-34.
    
    36. Xie YH, Chen XC, Zhang J, et al. Ginsenoside Rbl attenuates β-amyloid peptide 25-35-induced hyperphosphorylation of tau protein through CDK5 signal pathway[J]. Aeta Pharmaceutica Sinica. 2007, 42:828-32.
    
    37. Muntane G, Dalfo E, Martinez A, et al. Phosphorylation of tau and alpha-synuclein in synaptic-enriched fractions of the frontal cortex in Alzheimer's disease, and in Parkinson's disease and related alpha-synucleinopathies[J]. Neuroscience. 2008,152:913-23.
    
    38. Shi HR, Zhu LQ, Wang SH, et al. 17beta-estradiol attenuates glycogen synthase kinase-3beta activation and tau hyperphosphorylation in Akt-independent manner[J]. J Neural Transm. 2008, Jan 24 [Epub ahead of print]
    
    39. Takashima A, Honda T, Yasutake K, et al. Activation of tau protein kinase I/glycogen synthase kinase-3beta by amyloid beta peptide (25-35) enhances phosphorylation of tau in hippocampal neurons[J]. Neurosci Res.1998,31:317-23.
    
    40. Mandelkow EM, Drewes G, Biernat J, et al. Glycogen synthase kinase-3 and the Alzheimer-like state of microtubule-associated protein tau[J]. FEBS Lett. 1992, 314:315-21.
    41. Yamaguchi H, Ishiguro K, Uchida T, et al. Preferential labeling of Alzheimer neurofibrillary tangles with antisera for tau protein kinase (TPK) I/glycogen synthase kinase-3 beta and cyclin-dependent kinase 5, a component of TPK II[J]. Acta Neuropathol (Berl).1996,92:232-41.
    
    42. Pei JJ, Braak E, Braak H, et al. Distribution of active glycogen synthase kinase 3beta (GSK-3beta) in brains staged for Alzheimer disease neurofibrillary changes[J]. J Neuropathol Exp Neurol. 1999, 58:1010-9.
    
    43. Peng Y, Xing C, Lemere CA, et al. 1-3-n-Butylphthalide ameliorates beta-amyloid-induced neuronal toxicity in cultured neuronal cells[J]. Neurosci Lett. 2008, 434:224-9.
    1.Takeda.Senescence-accelerated mouse(SAM):with special reference to age-associated pathologies and their modulation[J].Nippon Eiseigaku Zasshi.1996,51:569-78.
    2.Takeda T,Hosokawa M,Takeshita S,et al.A new murine model of accelerated senescence[J].Mech Ageing Dev.1981,17:183-94.
    3.Liao JW,Hsu CK,Wang MF,et al.Beneficial effect of Toona sinensis Roemor on improving cognitive performance and brain degeneration in senescence-accelerated mice[J].Br J Nutr.2006,96:400-7.
    4.Petursdottir AL,Farr SA,Morley JE,et al.Lipid peroxidation in brain during aging in the senescence-acce lerated mouse(SAM)[J].Neurobiol Aging.2007,28:1170-8.
    5.Flood JF,Farr SA,Uezu K,et al.Age-related changes in septal serotonergic,GABAergic and glutamatergic facilitation of retetion in SAMP8 mice[J].Mech Aging Dev.1998,105:173-88.
    6.Liu YF,Shi XM,Han JX,et al.Effect of acupuncture on activity of antioxydase in the brain of senescence accelerated encephalatrophy model mouse[J].Chinese Acupuncture &Moxibustion.2002,22:327-30.
    7.Xu J,Shi C,Li Q,et al.Mitochondrial dysfunction in platelets and hippocampi of senescence-accelerated mice[J].J Bioenerg Biomembr.2007,39:195-202.
    8.Canudas AM,Gutierrez-Cuesta J,Rodriguez MI,et al.Hyperphosphorylation of microtubuleassociated protein tau in senescence-accelerated mouse(SAM)[J].Mech Ageing Dev.2005,126:1300-4.
    9.Caballero B,Yega-Naredo I,Sierra V,et al.Favorable effects of a prolonged treatment with melatonin on the level of oxidative damage and neurodegeneration in senescenceaccelerated mice[J].J Pineal Res.2008,Apr 11[Epub ahead of print].
    10.Gutierrez-Cuesta J,Sureda FX,Romeu M,et al.Chronic administration of melatonin reduces cerebral injury biomarkers in SAMPS[J].J Pineal Res.2007,42:394-402.
    11.Sureda FX,Gutierrez-Cuesta J,Romeu M,et al.Changes in oxidative stress parameters and neurodegeneration markers in the brain of the senescence-accelerated mice SAMP-8[J].Exp Gerontol.2006,41:360-7.
    12.Alvarez-Garcla O,Vega-Naredo I,Sierra V,et al.Elevated oxidative stress in the brain of senescence-accelerated mice at 5 months of age[J].Biogerontology.2006,7:43-52.
    13.Liu BS.The pathophysiology in aging process[J].Practical Geriatrics.2002,16:64-8.
    14.印大中,刘希彬.自由基伤害衰老理论的严重缺陷[J].中国老年学杂志.2003,3:123-6.
    15.Yang T,Zhang C,Chen QX.Progress in studies of aging mechanism[J].China Biotechnolgy. 2005, 25:6-11.
    
    16. Miyamoto M. Characteristics of age-related behavioral changes in senescence-accelerated mouse SAMP8 and SAMP10[J]. Exp Gerontol. 1997, 32:139-48.
    
    17. Nomura Y, Okuma Y. Age-related defects in lifespan and learning ability in SAMP8 mice[J].Neurobiol Aging. 1999, 20:111-5.
    
    18. Nie W, Zhang YX. Senescence accelerated mouse(SAM)-a novel murine model of senescence and senescence-related disease[J]. Chinese Pharmacological Bulletin. 2000,16:132-7.
    
    19. Chen GH, Wang YJ, Qin S, et al. Age-related spatial cognitive impairment is correlated with increase of synaptotagmin 1 in dorsal hippocampus in SAMP8 mice[J]. Neurobiol Aging.2007,28:611-8.
    
    20. Flood JF, Morley JE. Age-related impairment of aversive and appetitive learning in the SAMP/8 mouse strain. A model of dementia of early onset[J]. J Gerontol Biol Sci. 1992, 47:52-59.
    
    21. Flood JF, Morley JE, La ReginnaM. Age-related changes in the pharmacological improvement of retention in senescence accelerated mouse (SAM) [J]. Neurobiol Aging. 1993, 14:159-66.
    
    22. van Rensburg SJ, Daniels WM, Potocnik FC, et al. A new model for the pathophysiology of Alzheimer's disease: Aluminium toxicity is exacerbated by hydrogen peroxide and attenuated by an amyloid protein fragment and melatonin[J].S Afr Med. 1997,87:1111-5.
    
    23.Mosconi L. Brain glucose metabolism in the early and specific diagnosis of Alzheimer's disease. FDG-PET studies in MCI and AD[J]. Eur J Nucl Med Mol Imaging. 2005, 32:486-510.
    
    24. Gorman AM, Ceccatelli S, Orrenius S. Role of mitochondria in neuronal apoptosis[J]. Dev Neurosci.2000, 22:348-58.
    
    25. Nishikawa T, Takahashi JA, Fujibayashi Y, et al.An early stage mechanism of the ageassociated mitochondrial dysfunction in the brain of SAMP8 mice:an age-associated neurodegeneration animal model[J]. Neurosci Lett. 1998, 254:69-72.
    
    26. Talesa VN. Acetylcholinesterase in Alzheimer's disease[J]. Mechanisms of Ageing and Development. 2001,122:1961-9.
    
    27. Zhao XH, Nomura Y. Age-related changes in uptake and release on L-[3H] noradrenaline in brain slices of senescence accelerated mouse[J]. Int J Dev Neurosci. 1992, 8:267-72.
    
    28. Strong R, Reddy V, Morley JE. Cholinergic deficits in the septal-hippocampal pathway of the SAMP/8 senescence accelerated mouse[J]. Brain Res. 2003,966:150-6.
    
    29. Zhu Y, Lee CC, Lam WP, et al. Cell death in the Purkinje cells of the cerebellum of senescence accelerated mouse (SAMP(8))[J]. Biogerontology. 2007, 8:537-44.
    
    30. Yatin S, Aksenov M, Butterfield DA. The antioxidant vitamin E modulates amyloid beta-peptide-induced creatine kinase activity inhibition and increased protein oxidation: implications for the free radical hypothesis of Alzheimer's disease[J].Neurochem Res.1999,24:427-35.
    31.Shi Q,Gibson GE.Oxidative stress and transcriptional regulation in Alzheimer disease [J].Alzheimer Dis Assoc Disord.2007,21:276-91.
    32.Matsugo S,Kitagawa T,Minami S,et al.Age-dependent changes in lipid peromide levels in peripheral organs,but not in brain,in senescence-accelerated mice[J].Neurosci Lett.2000,278:105-8.
    33.Sato E,Oda N,Ozaki N,et al.Early and transient increase in oxidative stress in the cerebral cortex of senescence-accelerated mouse[J].Mech Ageing Dev.1996,86:105-14.
    34.Nakahara H,Kanno T,Inai Y,et al.Mitochondrial dysfunction in the senescenceaccelerated mouse(SAM)[J].Free Radic Biol.1998,24:85-92.
    35.韩景献.快速老化模型小白鼠(SAM)的老化诸特征[J].实验动物科学与管理.1995,12:21-9.
    36.Morley JE.The SAMP8 mouse:a model of Alzheimer disease?[J].Biogerontology.2002,3:57-60.
    37.Zhang YF,Yu JC,Li D,et al.The influence of qi-replenshing,blood-regulating,kidneyreinforcing ang constitution-strengthening acupuncture on the number and morphology of hippocampus and temporal cortex neurons in P8 senile mice(SAMPS)[J].Shanghai J Acumox.mox.2005,24:40-43.
    38.Meguro K,Yamaguchi S,Arai H,et al.Nicotine improves cognitive disturbance in senescence-accelerated mice[J].Pharmacol Biochem Behav.1994,49:769-72.
    39.王晓良.应用分子药理学(第一版)[M].北京:中国协和医科大学出版社,2005:167-87.
    40.Wei X,Zhang Y,Zhou J.Alzheimer' s disease-related gene expression in the brain of senescence accelerated mouse[J].Neurosci Lett.1999,268:139-42.
    1.杨宝峰.药理学(第六版)[M].北京:人民卫生出版社,2003,151-152.
    2.王晓良.应用分子药理学-老年性痴呆和血管性痴呆的机制和药物干预[M].北京:中国协和医科大学出版社,2005:151-184.
    3.Johnson SA,McNeill T,Cordell B,et al.Relation of neuronal APP-751/APP-695 mRNA ratio and neuritic plaque density in Alzheimer's disease[J].Science,1990,248:854-857.
    4.Takahashi M,Pore S,Ferris CD,et al.Amyloid precursor proteins inhibit heme oxygenase activity and augment neurotoxicity in Alzheimer's disease[J].Neuron,2000,28:461-473.
    5.Barger SW,Harmon AD.Microglial activation by Alzheimer amyloid precursor protein and modulation by apolipoprotein E[J].Nature,1997,388:878-881.
    6.Sondag CM,Combs CK.Amyloid precursor protein mediates proinflammatory activation of monocytic lineage cells[J].J Biol Chem,2004,279:14456- 14463.
    7.Koistinaho M,Ort M,Cimadevilla JM,et al.Specific spatial learning deficits become severe with age in beta-amyloid precursor protein transgenic mice that harbor diffuse beta-amyloid deposits but do not form plaques[J].Proc Natl Acad Sci U.S.A.,2001,98:14675-14680.
    8.Zheng H,Jiang M,Trumbauer ME,et al.β-Amyloid precursor protein-deficient mice show reactive gliosis and decreased locomotor activity[J].Cell,1995,81:525-531.
    9.Panegyres PK.The functions of the amyloid precursor protein gene[J].Neuroscience,2001,12:1-39.
    10.Sponne I,Fifre A,Kriem B,et al.Membrane cholesterol interferes with neuronal apoptosis induced by soluble oligomers but not fibrils of the amyloid-beta peptide[J].FASEB J,2004,18:836-838.
    11.Pitschke M,Prior R,Haupt M,et al.Detection of single amyloid beta-protein aggregates in the cerebrospinal fluid of Alzheimer's patients by fluorescence correlation spectroscopy[J].Nat Med,1998,4:832-834.
    12.McLean CA,ChernyRA,Fraser FW,et al.Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer's disease[J].Ann Neurol,1999,46:860-866.
    13.Zerbinatti CV,Wozniak DF,Cirrito J,et al.Increased soluble amyloid-beta peptide and memory deficits in amyloid model mice overexpressing the low-density lipoprotein receptor-related protein[J].Proc Natl Acad Sci U.S.A.,2004,101:1075-1080.
    14.Siesj(o丨¨) BK.A new perspective on ischemic brain damage?[J].Prog Brain Res,1993,96:1-9.
    15. Kristian T, Siesjo BK. Calcium in ischemic cell death[J]. Stroke, 1998, 29: 705-718.
    
    16. Barone FC, Feuerstein GZ. Inflammatory mediators and stroke: new opportunities for novel therapeutics[J]. J Cereb Blood Flow Metab, 1999, 19:819-834.
    
    17. Skoog I, Lernfelt B, Landahl S, et al. 15-year longitudinal study of blood pressure and dementia[J]. Lancet, 1996, 347: 1141-1145.
    
    18.Hofman A, Ott A, Breteler MM, et al. Atherosclerosis, apolipoprotein E, and prevalence of dementia and Alzheimer's disease in the Rotterdam Study[J]. Lancet, 1997, 349:151 - 154.
    
    19. Kamada H, Sato K, Zhang WR, et al. Spatiotemporal changes of apolipoprotein E immunoreactivity and apolipoprotein E mRNA expression after transient middle cerebral artery occlusion in rat brain[J]. J Neurosci Res, 2003, 73: 545-556.
    
    20.Schmechel DE, Saunders AM, Strittmatter WJ, et al. Increased amyloid beta-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease[J]. Proc Natl Acad Sci U. S. A., 1993, 90: 9649-9653.
    
    21.Thaker U, McDonagh AM, Iwatsubo T, et al. Tau load is associated with apolipoprotein E genotype and the amount of amyloid beta protein, A beta40, in sporadic and familial Alzheimer's disease[J]. Neuropathol Appl Neurobiol, 2003, 29: 35-44.
    
    22. Premkumar DR, Cohen DL, Hedera P, et al. Apolipoprotein E-epsilon4 alleles in cerebral amyloid angiopathy and cerebrovascular pathology associated with Alzheimer's disease[J].Am J Pathol, 1996, 148: 2083-2095.
    
    23. Kalaria RN. The role of cerebral ischemia in Alzheimer's disease[J]. Neurobiol Aging,2000, 21:321-330.
    
    24. Koistinaho M, Koistinaho J. Interactions between Alzheimer's disease and cerebral ischemia-focus on inflammation[J]. Brain Research Reviews, 2005, 2: 240-250
    
    25. Gale CR, Martyn CN, Cooper C. Cognitive impairment and mortality in a cohort of elderly people[J]. Br Med J, 1996, 312: 608-611.
    
    26. Zhang F, Eckman C, Younkin S, et al. Iadecola, Increased susceptibility to ischemic brain damage in transgenic mice overexpressing the amyloid precursor protein[J]. J Neurosci,1997, 17: 7655-7661.
    
    27. NiwaK, KazamaK, Younkin L, et al. Cerebrovascular autoregulation is profoundly impaired in mice overexpressing amyloid precursor protein[J]. Am J Physiol: Heart Circ Physiol,2002, 283: 315-323.
    
    28. Paris D, Humphrey J, Quadros A, et al. Vasoactive effects of A beta in isolated human cerebrovessels and in a transgenic mouse model of Alzheimer's disease: role of inflammation[J]. Neuro Res, 2003, 25: 642-651
    29. Koistinaho M, Kettunen MI, Goldsteins G, et al. Koistinaho, Beta-amyloid precursor protein transgenic mice that harbor diffuse A beta deposits but do not form plaques show increased ischemic vulnerability: role of inflammation[J]. Proc Natl Acad Sci U. S. A.,2002, 99: 1610-1615.
    
    30. Sairanen T, Carpen 0, Karjalainen-Lindsberg ML, et al. Evolution of cerebral tumor necrosis factor-alpha production during human ischemic stroke[J]. Stroke, 2001, 32:1750 - 1758.
    
    31. Bard F, Cannon C, Barbour R, et al. Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease[J]. Nat Med, 2000, 6: 916-919.
    
    32. Wyss-Coray T, Loike JD, Brionne TC, et al. Adult mouse astrocytes degrade amyloid-beta in vitro and in situ[J]. Nat Med, 2003, 9: 453-457.
    
    33. Giulian D. Microglia and the immune pathology of Alzheimer disease[J]. Am J Hum Genet,1999, 65: 13-18.
    
    34. Koistinaho M, Kettunen MI, Holtzman DM, et al. Expression of human apolipoprotein E downregulates amyloid precursor protein-induced ischemic susceptibility[J]. Stroke,2002, 33: 1905-1910.
    
    35. Laskowitz DT, Thekdi AD, Thekdi SD, et al. Downregulation of microglial activation by apolipoprotein E and apoE-mimetic peptides[J]. Exp Neurol, 2001, 167: 74-85.
    
    36. Sharkey J, Kelly JS, Butcher SP. Inflammatory responses to cerebral ischemia[J]. In:G. J. Horst and J. Korf, Editors, Clinical Pharmacology of Cerebral Ischemia. Totowa,NJ: Humana Press, 1997, 235-265.
    
    37. Lee JC, Badger AM, Griswold DE, et al. Bicyclic imidazoles as a novel class of cytokine biosynthesis inhibitors[J]. Ann N Y Acad Sci, 1993, 696: 149-170.
    
    38. Sugino T, Nozaki K, Takagi Y, et al. Activation of mitogen-activated protein kinases after transient forebrain ischemia in gerbil hippocampus[J]. J Neurosci, 2000, 20:4506-4514.
    
    39.Barone FC, Irving EA, Ray AM, et al. SB239063, a second-generation p38 mitogen-activated protein kinase inhibitor, reduces brain injury and neurological deficits in cerebral focal ischemia[J]. Pharmacol Exp Ther, 2001, 296: 312-321.
    
    40. Chong ZZ, Feng YP. Effects of dl-3-n-butylphthalide on arachidonic acid release and PLA-mRNA expression in cerebral cortex after middle cerebral artery occlusion in rats[J].Acta Pharmaceutica Sinica, 2000, 8: 561-565
    
    41. Chong ZZ, Feng YP. Effects of dl-3-n-butylphthalide on production of TXB_2 and 6-keto-PGF_(1(?)) in rat brain during focal cerebral ischemia and repefusion[J]. Acta Pharmacologica Sinica,1997,6:506-508
    42.阎超华,冯亦璞.丁基苯酞对原代培养的大鼠皮层神经细胞外液6-keto-PGF_(1α)和TXB_2及其比值的影响[J].药学学报,1998,12:881-885
    43.McDonald DR,Bamberger ME,Combs CK,et al.Beta-amyloid fibrils activate parallel mitogen-activated protein kinase pathways in microglia and THP1 monocytes[J].J Neurosci,1998,18:4451-4460.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.