基于金属纳米结构的光波传输与远场超分辨成像
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
集成光学和光学成像是信息光学的两大重要领域,但是它们的发展都受到衍射极限的限制。表面等离激元(SPPs)是一种存在于金属与电介质表面的电磁波,它的强度随距离界面的增大而呈指数减小。SPPs之所以能够突破衍射极限是因为其波矢大于其光波在自由空间的波矢,被认为是下一代纳米集成光路的有效信息载体之一。本文的第一部分工作就是设计了各种基于SPPs的新型纳米光子集成器件,并利用数值模拟的方法验证了这些器件的光学性能。另一方面,金属特异介质是人造的周期性结构,其周期远小于响应波长。其表现出自然界现有材料不具备的令人激动人心的光波传输效应,比如说负折射。它已经在超分辨成像、光学隐身、慢光等方面取得了巨大的成功。本文的另外一项工作就是利用金属特异介质实现远场超分辨成像。本文的具体工作分为以下几个方面:
     1. SPPs纳米弯曲波导和聚焦
     对于相同宽度的狭缝,SPPs在两种金属狭缝中传播的等效折射率存在差异,设计了一种由两种金属构成的异质狭缝波导。由于SPPs倾向于向高等效折射率金属狭缝中传播,所以在波导中能量主要限制在高等效折射率的金属狭缝中。通过选择合适的结构参数,SPPs的光斑大小可限制在半波长以下。进一步用这种结构构建了金属异质结构纳米弯曲波导,数字模拟证实在弯曲半径等于0时,SPPs的透过率超过了90%,它是一种很好的SPPs波导连接器。由其构建的纳米T型分束器和M-Z干涉仪都取得了较好的传输效果。另一方面,基于同样的原理,设计了楔形金属异质结构用以实现了SPPs纳米聚焦,SPPs主要限制在具有较高等效折射率的金属表面传播,最后在其尖端实现聚焦,增强因子超过了1000倍。另外基于此结构还设计了阵列探针实现了同时对多个位置纳米聚焦。该结构可以在高密度存储、近场光学显微镜、光刻、生物化学传感等方面找到应用。
     2.可见光频段SPPs“彩虹”捕获和释放
     对于金属-电介质-空气模型,其支持的SPPs等效折射率随电介质高度的增大而逐渐增大,设计了在金属上覆盖渐变高度的电介质光栅结构。计算表明不同光栅高度对应的色散关系不同,随光栅高度的增加,色散曲线的上边带波长会红移。而对应在边带附近,会发生局域效应,光波的群速度会降低。对于特定波长(可见光)激发的SPPs,其群速度会沿着传播方向逐渐减小,最后SPPs局域在结构中特定的位置。因此对于可见光不同波长的SPPs最后会局域在金属表面的不同位置,也就是发生了所谓的“彩虹捕获”效应。在635nm波长,SPPs的光子寿命达到0.36ps。上述渐变高度的电介质光栅结构在实验上制备较为困难,另外还设计了一种在实验上较为容易制备的结构-在金属表面覆盖等高度渐变周期的电介质光栅结构。对不同的光栅周期,对应的色散曲线上边带波长随周期的增大而增大。类似地,该结构也可实现SPPs“彩虹捕获”。此外,通过在金属膜的下表面覆盖等周期的电介质光栅,动态调节光栅的折射率,可将捕获的SPPs逐一释放。该结构可在纳米光缓冲器、分光器、滤波器、数据处理和量子光子存储器等方面上找到应用。
     3.远场超分辨成像
     在光学波段,金属的介电常数往往是小于0的,而电介质的介电常数大于0,由金属电介质的组合可实现双曲线型色散曲线。那么金属电介质多层膜结构可支持消逝波的传播,并可将消逝波逐渐转化为传播波。本文设计了一种V型金属-电介质多层膜结构实现分辨两个距离小于半波长的线光源,通过结构放大以后,结构外表面两光源像的距离大于半波长,然后通过传统的光学成像系统直接处理可得到放大的像。在V型夹角为900时,分辨极限可达21nm。另外还设计了一种金字塔型金属-电介质多层膜结构,分辨空间八个距离小于半波长的物点(八个点构成一个梯棱台的八个顶点)。通过放大,在结构外表面八个像点两两之间的距离都大于半波长。合理地选择结构的几何参数,可实现分辨其它各种三维结构的八个点光源。
Integrated optics and optical imaging are two important realms in information optics, however, their developments are hampered by the diffraction limit. Surface plasmon polaritons (SPPs) are surface electromagnetic waves propagating along the interface between metals and dielectrics, and their intensity decreases exponentially with the distance away from metal surface. SPP can overcome the diffraction limit because its wave vector is much larger than that of light in air, thus it has been regarded as one of the most effective carriers in next-generation nanophotonic integrated circuits. The first part of this work in this dissertation is to design various SPP based novel nanophotonic integrated devices, such as metal heterostructured bending waveguide, ridged metal heterostructure for nanofocusing, broadband slow SPP systems etc, the optical properties of which have been confirmed by numerical simulation methods. On the other hand, metamaterials are artifical periodical structures with "lattice constants" that are much smaller than the response wavelength. They exhibit many dramtic effects on the light propagation that don't exsit in natural materials, such as negative refraction, and they have been tremendously successful in achieving subdiffraction imaging, optical invisibility, and slow light etc. The second part of this work in this dissertation is to adopt metamaterials to achieve far-field subdiffraction imaging. The work of this dissertation is divided in to the following parts:
     1. SPPs bending waveguide and nanofousing
     With regard to metal gap waveguides (MGWs) of same width, the effective refractive index for different metal films is different, we design a hetrowaveguide consisting of two kinds of MGWs to guide SPPs. As SPPs tends to propagate with higher effective refractive index, thus the most light energy in the waveguide is confined in the MGW with higher effective refractive index. By properly choosing the geometric parameters, SPPs spot can be confined to very small size below half of the wavelength. We further employ this metal heterowaveguide to construct a SPP bending waveguide, and numerically demonstrate that SPPs transmission exceeds 90% as the bending radius is equal to zero, implying it may serve as an excellent SPP waveguide connector. The metal heterowaveguide based T-shaped spliter and M-Z interferometer are demonstrated to have good transmission in a nanoscale domain. Based on the same principle, we propose a ridged metal heterostructure for nanofocusing. SPPs mainly propagate in the metal surface with higher effective refractive index, and finally are focused at its tip. The enhancement factor exceeds 1000. In addition, based on this structure we further design array probes to achieve multiple nanofocusing for different spatial positions simultaneously. The proposed structure may find potential applications in high-density optical data storage, near-field optical microscopy, optical nanolithography, and bio-and chemosensing etc.
     2. SPPs rainbow trapping and releasingn at visible frequencies
     Considering metal-dielectric-air model, the effective refractive index of SPPs increases with dielectric thickness, we design a metal film covered by dielectric gratings of graded thickness. Calculated result shows that the dispersion relation is different for different grating thickness, and the wavelength near the upper bandegde of the dispersive curve red shifts with the grating thickness. At the bandedge of dispersive curve, localization effect occurs and light group velocity reduces. For SPPs of a certain visible wavelength, the group velocity is gradually reduced along the propagation direction and finally SPPs are localized at a specific postion in the structure. Thus SPPs of different excitation wavelengths in the visible domain will be localized at different spatial positions along the metal surface, or in other words, trapped rainbow appears. SPP lifetime reaches about 0.36 ps at 635 nm wavelength. Because of the difficulty in fabricating such dielectric gratings of graded thickness in acutual experiment, we propose a more realizable metals film covered by chirped dielectric gratings with same thickness but graded lattice constant. For different lattice constant, the corresponding wavelength near the upper bandegde of dispersive curve is increased with the lattice constant. Similarily, such a structure can aslo achieve SPPs rainbow trapping. In addition, by using another uniform dielectric grating attached to the bottom of the metal film and real-time tuning the refractive index of the grating, the trapped SPPs can be released in sequence. Such a structure may find potential applications in nanoscale buffers, spectrometers, filters, data processors, and quantum optical memories etc.
     3. Far-field subdiffraction imaging
     Since metal tends to have negative electric permittivity and dielectric have positive one in the optical frequency range, the combination of which may result in hyperbolic dispersive dispersion. Therefore, metal-dielectric multilayers can support the propagation of evanescent waves, and gradually convert evanescent waves into propagation waves. We propose a kind of V-shaped metal-dielectric multilayers to resolve two linear sources below half of the wavelength. Through the structure's magnification, the imaing distance on the output surfaces can be much larger than half of the wavelength, thus the magnified images can be directly processed by conventional optical imaging systems. In the case of 90~0 wedge angle, the resolution limit of the system is down to 21 nm. Besides, we design a kind of pyramid-shaped metal-dielectric multilayers for resolving eight point sources (eight points construct a trapezoidal bevel) with subdiffraction separations in three-dimensional domain. Through magnification, the imaging distances between the nearest-neighbor point sources on the output surfaces of the structure are all larger than half of the wavelength. By properly changing the geometrical parameters, we are able to resolve eight point sources with different hexahedron structures.
引文
1.方俊鑫,曹庄琪,杨傅子,光波导技术物基础,上海:上海交通大学出版社,1987.
    2. A. Sommerfeld, "Uber die Ausbreitung der Wellen in der Drahtlosen Telegraphic," Ann. d. Physik 1909; 28:665-736.
    3. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 2006; 440:508-511.
    4. H. Shin and S. H. Fan, "All-Angle Negative Refraction for Surface Plasmon Waves Using a Metal-Dielectric-Metal Structure," Phys. Rev. Lett.2006; 96:73907.
    5. X. B. Fan, G P. Wang, J. C. W. Lee, and C. T. Chan, "All-Angle Broadband Negative Refraction of Metal Waveguide Arrays in the Visible Range:Theoretical Analysis and Numerical Demonstration," Phys. Rev. Lett.2006; 97:73901.
    6. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS)," Phys. Rev. Lett.1997; 78:1667-1670.
    7. S. Nie and S. R. Emory, "Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering," Science 1997; 275:1102-1106.
    8. J. Homola, S. S. Yee, and G Gauglitz, "Surface plasmon resonance sensors:review," Sens. Actuators B 1999; 54:3-15.
    9. V. G Veselago, "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov Phys Usp,1968; 10:509-514.
    10. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J, Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech.1999; 47: 2075-2084.
    11. J. B. Pendry, "Negative Refraction Makes a Perfect Lens," Phys. Rev. Lett.2000; 85: 3966-3969.
    12. N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 2005; 308:534-537.
    13. Z. Jacob, L. V. Alekseyev, and E. Narimanov, "Optical Hyperlens:Far-field imaging beyond the diffraction limit," Opt. Express 2006; 14:8247-8256.
    14. A. Salandrino and N. Engheta, "Far-field subdiffraction optical microscopy using metamaterial crystals:Theory and simulations," Phys. Rev. B 2006; 74:075103.
    15. Z. W. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects," Science 2007; 315:1686.
    16. Z. Jacob, L. V. Alekseyev, and E. Narimanov, "Semiclassical theory of the hyperlens," J. Opt. Soc. Am 2007; 24:A52-A59.
    17. J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling Electromagnetic Fields," Science 2006; 312:1780-1782.
    18. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave," Science 2006; 314: 977-980.
    19. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, "Broadband Ground-Plane Cloak," Science 2009; 323:366-369.
    20. Y. Lai, H. Y. Chen, Z.-Q. Zhang, and C. T. Chan, "Complementary Media Invisibility Cloak that Cloaks Objects at a Distance Outside the Cloaking Shell," Phys. Rev. Lett. 2009; 102:093901.
    21. Y. Lai, J. Ng, H.Y. Chen, D. Han, J. Xiao, Z.-Q. Zhang, and C. T. Chan,"Illusion Optics: The Optical Transformation of an Object into Another Object," Phys. Rev. Lett.2009; 102:253902.
    22. K. L. Tsakmakidis, A. D. Boardman, and O. Hess,"'Trapped rainbow' storage of light in metamaterials," Nature 2007; 450:397-401.
    23. T. Jiang, J. Zhao, and Y. Feng, "Stopping light by an air waveguide with anisotropic metamaterial cladding," Opt. Express 2009; 17:171-177.
    24. R. H. Ritchie, "Plasma Losses by Fast Electrons in Thin Films," Phys. Rev.1957; 106: 874-881.
    25. E. Burstein, "in Polaritons," Pergamon, New York,1974.
    26. A. Lesuffleur, L. Kiran Swaroop Kumar, and R. Gordon, "Enhanced second harmonic generation from nanoscale double-hole arrays in a gold film," Appl. Phys. Lett.2006; 88: 261104.
    27. T. Onuta, M. Waegele, C. C. DuFort, W. L. Schaich, and B. Dragnea, "Optical Field Enhancement at Cusps between Adjacent Nanoapertures," Nano Lett.2007; 7:557-564.
    28.赵晓军,陈焕文,宋大千,牟颖,张寒琦,金钦汉,”表面等离子体子共振传感器Ⅲ:应用和进展,”分析仪器2001;2:3-10.
    29. J. Homola, "Present and future of surface plasmon resonance biosensors," Anal. Bioanal. Chem.2003; 377:528-539.
    30. W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, "Plasmonic nano-lithography," Nano Lett.2004; 4:1085-1088.
    31. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, "Plasmon lasers at deep subwavelength scale," Nature 2009; 461:629-632.
    32. S. Jette-Charbonneau, R. Charbonneau, and N. Lahoud, "Demonstration of Bragg gratings based on long-ranging surface plasmon polariton waveguides," Opt. Express 2005; 13:4674-4682.
    33. J. Seidel, S. Grafstrom, and L. Eng, "Stimulated Emission of Surface Plasmons at the Interface between a Silver Film and an Optically Pumped Dye Solution," Phys. Rev. Lett. 2005;94:177401.
    34. M. A. Noginov, V. A. Podolskiy, G Zhu, M. Mayy, M. Bahoura, J. A. Adegoke, B. A. Ritzo, K. Reynolds, "Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium," Opt. Express 2008; 16:1385-1392.
    35. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, "Guiding of a one-dimensional optical beam with nanometer diameter," Opt. Lett.1997; 22:475-477.
    36. S. A. Maier, P. G Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nature Mater.2003; 2:229-232.
    37. I. V. Novikov and A. A. Maradudin, "Channel polaritons," Phys. Rev. B 2002; 66: 035403.
    38. D. F. P. Pile and D. K. Gramotnev, "Channel plasmon-polariton in a triangular groove on a metal surface," Opt. Lett.2004; 29:1069-1071 (2004).
    39. D. K. Gramotnev and D. F. P. Pile, "Single-mode subwavelength waveguide with channel
    plasmon-polaritons in triangular grooves on a metal surface,"Appl. Phys. Lett.2004; 85: 6323-6325.
    40. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel Plasmon-Polariton Guiding by Subwavelength Metal Grooves," Phys. Rev. Lett.2005; 95: 046802.
    41. T. Holmgaarda, S. I. Bozhevolnyi, L. Markey, and A. Dereux, "Dielectric-loaded surface plasmon-polariton waveguides at telecommunication wavelengths:Excitation and characterization," Appl. Phys. Lett.2008; 92:011124.
    42. B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, "Dielectric stripes on gold as surface plasmon waveguides," Appl. Phys. Lett.2006; 88:094104.
    43. A. V. Krasavina and A. V. Zayats, "Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides," Appl. Phys. Lett.2007; 90:211101.
    44. T. Holmgaard and S. I. Bozhevolnyi, "Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides," Phys. Rev. B 2007; 75:245405.
    45. T. Holmgaard, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, P. Bolger, and A. V. Zayats, "Efficient excitation of dielectric-loaded surface plasmon-polariton waveguide modes at telecommunication wavelengths," Phys. Rev. B 2008; 78:165431.
    46. B. Wang and G. P. Wang, "Surface plasmon polariton propagation in nanoscale metal gap waveguides," Opt. Lett.2004; 29:1992-1994.
    47. J. Takahara and T. Kobayashi, "Propagation properties of guided waves in index-guided two-dimensional optical waveguides," Appl. Phys. Lett.2005; 86:211101.
    48. D. F. P. Pile and T. Ogawa, "Two-dimensionally localized modes of a nanoscale gap plasmon waveguide," Appl. Phys. Lett.2005; 87:261114.
    49. G Veronis and S. Fan, "Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides," Appl. Phys. Lett.2005; 87:131102.
    50. B. Wang and G P. Wang, "Metal heterowaveguides for nanometric focusing of light," Appl. Phys. Lett.2004; 85:3599.
    51. B. Wang and G P. Wang, "Plasmon Bragg reflectors and nanocavities on flat metallic surfaces," Appl. Phys. Lett.2005; 87:013107.
    52. B. Wang and G. P. Wang, "Simulations of nanoscale interferometer and array focusing by metal heterowaveguides," Opt. Express 2005; 13:10558-10563.
    53. B. Wang and G. P. Wang, "Directional beaming of light from a nanoslit surrounded by metallic heterostructures," Appl. Phys. Lett.2006; 88:013114.
    54. B. Wang and G. P. Wang, "Planar metal heterostructures for nanoplasmonic waveguides," Appl. Phys. Lett.2007; 90:013114.
    55. W. H. Lin and G. P. Wang, "Metal heterowaveguide superlattices for a plasmonic analog to electronic Bloch oscillations," Appl. Phys. Lett.2007; 91:143121.
    56. B. Knoll, F. Keilmann, "Near-field probing of vibrational absorption for chemical microscopy," Nature 1999; 399:134-137.
    57. A. Hartschuh, E. J. Sanchez, X. S. Xie, L. Novotny, "High-Resolution Near-Field Raman Microscopy of Single-Walled Carbon Nanotubes," Phys. Rev. Lett.2003; 90:095503.
    58. L. Novotny, R. X. Bian, X. S. Xie, "Theory of Nanometric Optical Tweezers," Phys. Rev. Lett.1997; 79:645.
    59. H. Xu, M. Ka'll, "Surface-Plasmon-Enhanced Optical Forces in Silver Nanoaggregates," Phys. Rev. Lett.2002; 89:246802.
    60. J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, "Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles," Phys. Rev. Lett.1999; 82:2590-2593.
    61. S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, "Waveguiding in Surface Plasmon Polariton Band Gap Structures," Phys. Rev. Lett.2001; 86:3008-3011.
    62. E. J. Sanchez, L. Novotny, and X. S. Xie, "Near-Field Fluorescence Microscopy Based on Two-Photon Excitation with Metal Tips," Phys. Rev. Lett.1999; 82:4014-4017.
    63. A. Hartschuh, H. N. Pedrosa, L. Novotny, and T. D. Krauss, "Simultaneous Fluorescence and Raman Scattering from Single Carbon Nanotubes," Science 2003; 301:1354-1356.
    64. R. D. Grober, R. J. Schoelkopf, and D. E. Prober,"Optical antenna:Towards a unity efficiency near-field optical probe," Appl. Phys. Lett.1997; 70:1354.
    65. K. S. Martirosyanl, J. R. Claycomb, J. H. Miller, and D. Luss, "Generation of the
    transient electrical and spontaneous magnetic fields by solid state combustion," J. Appl. Phys.2004; 94:4632.
    66. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the Mismatch between Light and Nanoscale Objects with Gold Bowtie Nanoantennas," Phys. Rev. Lett.2005; 94:017402.
    67. P. Muhlschlege, H.-J. Eisler,O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant Optical Antennas," Science 2005; 308:1607-1069.
    68. M. I. Stockman, "Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides," Phys. Rev. Lett.2004; 93:137404.
    69. D. F. P. Pile and D. K. Gramotnev, "Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides," Appl. Phys. Lett.2006; 89:041111.
    70. V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, and T. W. Ebbesen, "Nanofocusing with Channel Plasmon Polaritons," Nano Lett.2009; 9:1278-1282.
    71. T. S(?)ndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, "Resonant Plasmon Nanofocusing by Closed Tapered Gaps," Nano Lett.2010; 10:291-295.
    72. R. Merlin, "Radiationless Electromagnetic Interference:Evanescent-Field Lenses and Perfect Focusing," Science 2007; 317:927-929.
    73. G.V. Eleftheriades and A. M. H. Wong, "Metallic transmission screen for sub-wavelength focusing," IEEE Electron. Lett.2007; 43:1402-1403.
    74. A. Grbic, L. Jiang, and R. Merlin, "Near-Field Plates:Subdiffraction Focusing with Patterned Surfaces," Science 2008; 320:511-513.
    75. G. V. Eleftheriades and A. M. H. Wong, "Holography-Inspired Screens for Sub-Wavelength Focusing in the Near Field," IEEE Microw. Wirel. Compon. Lett.2008; 18:236-238.
    76. L. Markley, A. M. H. Wong, Y. Wang, and G. V. Eleftheriades, "Spatially Shifted Beam Approach to Subwavelength Focusing," Phys. Rev. Lett.2008; 101:113901.
    77. R. Gordon, "Proposal for Superfocusing at Visible Wavelengths Using Radiationless Interference of a Plasmonic Array," Phys. Rev. Lett.2009; 102:207402.
    78. F. Xia, L. Sekaric, and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nat. Photon 2007; 1:65-71.
    79. J. K. S. Poon, L. Zhu, G. DeRose, and A. Yariv, "Transmission and group delay of microring coupled-resonator optical waveguides," Opt. Lett.2006; 31:456-458.
    80. M. Soljacic and J. D. Joannopoulos, "Enhancement of nonlinear effects using photonic crystals," Nat. Mater 2004; 3:211-219.
    81. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature 1999; 397:594-598.
    82. A.V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Mussera, B. S. Ham, and P. R. Hemmer, "Observation of Ultraslow and Stored Light Pulses in a Solid," Phys. Rev. Lett. 2001; 88:023602.
    83. Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 2005; 438:65-69.
    84. H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. vanHulst, T. F. Krauss, and L. Kuipers, "Real-Space Observation of Ultraslow Light in Photonic Crystal Waveguides," Phys. Rev. Lett.2005; 94:073903.
    85. Y. Yamamoto and R. E. Slusher, "Optical processes in microcavities," Phys.Today 1993; 46:66-73.
    86. T. Tanabe, M. Notomi, E. Kuramochi, and H. Taniyama, "Large pulse delay and small group velocity achieved using ultrahigh-Q photonic crystal nanocavities," Opt. Express 2007; 15:7826-7639.
    87. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber," Phys. Rev. Lett.2005; 94:153902.
    88. Z. Zhu, D. J. Gauthier, and R. W. Boyd, "Stored Light in an Optical Fiber via Stimulated Brillouin Scattering," Science 2007; 318:1748-1750.
    89. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, "Observation of coherent optical information storage in an atomic medium using halted light pulses," Nature 2001; 409: 490-493.
    90. D. Mori and T. Baba, "Dispersion-controlled optical group delay device by chirped
    photonic crystal waveguides,"Appl. Phys. Lett.2004; 85:1101.
    91. R. S. Tucker, P.-C. Ku, and C. J. Chang-Hasnain, "Slow-light optical buffers-capabilities and fundamental limitations," J. Lightwave Technol.2005; 23:4046-4066.
    92. J. B. Khurgin, "Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures:Comparative analysis," J. Opt. Soc. Am. B.2005; 22:1062-1074.
    93. D. A. B. Miller, "Fundamental limit to linear one-dimensional slow light structures," Phys. Rev. Lett.2007; 99:203903.
    94. D. Mori and T. Baba, "Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide," Opt. Express 2005; 13:9398-9408.
    95. M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, "Slow-light, band-edge waveguides for tunable time delays," Opt. Express 2005; 13:7145-7159.
    96. S. C. Huang, M. Kato, E. Kuramochi, C. P. Lee, and M. Notomi, "Time-domain and spectral-domain investigation of inflection-point slow-light modes in photonic crystal coupled waveguides," Opt. Express 2007; 15:3543-3549.
    97. A. Y. Petrov, and M. Eich, "Zero dispersion at small group velocities in photonic crystal waveguides," Appl. Phys. Lett.2004; 85:4866-4868.
    98. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, "Photonic crystal waveguides with semislow light and tailored dispersion properties," Opt. Lett.2006; 14: 9444-9446.
    99. S. Kubo, D. Mori, and T. Baba, "Low-group-velocity and low-dispersion slow light in photonic crystal waveguides," Opt. Lett.2007; 32:2981-2983.
    100.J. Li, T. P. White, L. O'Faolain, A. Gomez-Iglesias, and T. F. Krauss, "Systematic design of flat band slow light in photonic crystal waveguides," Opt. Express 2008; 16: 6227-6232.
    101.A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, "Coupled-resonator optical waveguide-A proposal and analysis," Opt. Lett.1999; 24:711-713.
    102.K. Hosomi and T. Katsuyama, "A dispersion compensator using coupled defects in a photonic crystal," IEEE J. Quant. Electron.2002; 38:825-829.
    103.J. B. Khurgin, "Expanding the bandwidth of slow-light photonic devices based on coupled resonators," Opt. Lett.2005; 30:513-515.
    104.A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacic, "Surface-Plasmon-Assisted Guiding of Broadband Slow and Subwavelength Light in Air," Phys. Rev. Lett.2005; 95:063901.
    105.Z. Ruan and M. Qiu, "Slow electromagnetic wave guided in subwavelength region along one-dimensional periodically structured metal surface," Appl. Phys. Lett.2008; 90: 201906.
    106.M. Sandtke and L. Kuipers, "Slow guided surface plasmons at telecom frequencies," Nat. Photon 2007; 1:573-576.
    107.G. W. Wood and P. G. Kik, "Simultaneous excitation of fast and slow surface plasmon polaritons in a high dielectric contrast system," Appl. Phys. Lett.2008; 92:133101.
    108.Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, "Ultrawide-Bandwidth Slow-Light System Based on THz Plasmonic Graded Metallic Grating Structures," Phys. Rev. Lett.2008; 100:256803.
    109.Q. Gan, Y. J. Ding, and F. J. Bartoli, " "Rainbow" Trapping and Releasing at Telecommunication Wavelengths," Phys. Rev. Lett.2009; 102:056801.
    110.J. C. Weeber, A. Bouhelier, G. Colas des Francs, L. Markey, and A. Dereux, " Submicrometer In-Plane Integrated Surface Plasmon Cavities," Nano Lett.2007; 7: 1352-1359.
    111.A. Kocabas, S. S. Senlik, and A. Aydinli, "Slowing Down Surface Plasmons on a Moire Surface," Phys. Rev. Lett.2009; 102:063901.
    112.Z. W. Kang, W. H. Lin, and G. P. Wang, "Dual-channel broadband slow surface plasmon polaritons in metal gap waveguide superlattices," J. Opt. Soc. Am. B 2009; 26: 1944-1948.
    113.Y. Shen and G. P. Wang, "Gain-assisted time delay of plasmons in coupled metal ring resonator waveguides," Opt. Express 2009; 17:12807-12812.
    114.J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett.1996; 76:4773-4776.
    115.R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 2001; 292:77-79.
    116.J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, "Three-dimensional optical metamaterial with a negative refractive index," Nature 2007; 455:376-379;
    117.S. Xiao, U. K. Chettiar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, "Yellow-light negative-index metamaterials," Opt. Lett.2009; 34:3478-3480.
    118.C. Helgert, C. Menzel, C. Rockstuhl, E. Pshenay-Severin, E.-B. Kley, A. Chipouline, A. Tunnermann, F. Lederer, and T. Pertschl, "Polarization-independent negative-index metamaterial in the near infrared," Opt. Lett.2009; 34:704-706.
    119.A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, "Deep Subwavelength Terahertz Waveguides Using Gap Magnetic Plasmon," Phys. Rev. Lett.2009; 102: 043904.
    120.R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D.R.Smith, "Broadband Ground-Plane Cloak," Science 2009; 323:366-369.
    121.S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, "Plasmon-Induced Transparency in Metamaterials," Phys. Rev. Lett.2008; 101:047401.
    122.N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessenl, " Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit," Nat. Mater.2009; 8:758-762.
    123.A. Grbic and G. V. Eleftheriades, "Overcoming the Diffraction Limit with a Planar Left-Handed Transmission-Line Lens," Phys. Rev. Lett.2004; 92:117403.
    124.A. A. Houck, J. B. Brock, and I. L. Chuang1, "Experimental Observations of a Left-Handed Material That Obeys Snell's Law," Phys. Rev. Lett.2003; 90:137401.
    125.A. N. Lagarkov and V. N. Kissel, "Near-Perfect Imaging in a Focusing System Based on a Left-Handed-Material Plate," Phys. Rev. Lett.2004; 92:077401.
    126.N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-Diffraction-Limited Optical Imaging with a Silver Superlens," Science 2005; 308:534-537.
    127.D. O. S. Melville and R. J. Blaikie, "Super-resolution imaging through a planar silver layer," Opt. Express 2005; 13:2127-2134.
    128.C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Subwavelength imaging in photonic crystal," Phys. Rev. B 2003; 68:045115.
    129.S. Durant, Z. Liu, J. M. Steele, and X. Zhang, "Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit," J. Opt. Soc. Am. B 2006; 23:2383-2392.
    130.Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical superlens," Nano Lett.2007; 7:403-408.
    131.Z. Liu, S. Durant, H. Lee, Y. Pikus, Y. Xiong, C. Sun, and X. Zhang, "Experimental studies of far-field superlens for sub-diffractional optical imaging," Opt. Express 2007; 15:6947-6954.
    132.Y. Xiong, Z. Liu, S. Durant, H. Lee, C. Sun, and X. Zhang, "Tuning the far-field superlens:from UV to visible," Opt. Express 2007; 15:7095-7102.
    133.Y. Xiong, Z. Liu, C. Sun, and X. Zhang, "Two-Dimensional Imaging by Far-Field Superlens at Visible Wavelengths," Nano Lett.2007; 7:3360-3365.
    134.M. Born and E. Wolf, Principals of optics,2nd edition, Cambridge:Cambridge University Press,2006.
    135.H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, Berlin: Springer-Verlag,1988.
    136.J. R. Krenn and J. C. Weeber, "Surface plasmon polaritons in metal stripes and wires," Philos. T. Roy. Soc. A 2004; 362 (1817):739-756.
    137.P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures," Phys. Rev. B 2000; 61 (15):10484-10503.
    138.D. F. P. Pile and D. K. Gramotnev, "Plasmonic subwavelength waveguides:next to zero losses at sharp bends," Opt. Lett.2005; 30:1186-1188.
    139.K. Tanaka and M. Tanaka, "simulations of nanometric optical circuits based on surface plasmon gap waveguide," Appl. Phys. Lett.2003; 82:1158-1160.
    140.E. D. Palik, Handbook of Optical Constants of Solids, New York:Academic,1985.
    141.G P. Wang and B. Wang, "Metal heterostructure-based nanophotonic devices: finite-difference time-domain numerical simulations," J. Opt. Soc. Am. B 2006; 23 (8): 1660-1665.
    142.Z. Y. Li and K. M. Ho, "Anomalous Propagation Loss in Photonic Crystal Waveguides," Phys. Rev. Lett.2004; 92:063904.
    143.R. C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, J. G. Zheng. "Photoinduced Conversion of Silver Nanospheres to Nanoprisms," Science 2001; 294: 1901-1903.
    144.R. C. Jin, Y. C. Cao, E. Hao, G. S. M. traux, G. C. Schatz, and C. A. Mirkin. "Controlling anisotropic nanoparticle growth through plasmon excitation," Nature 2003; 425:487-490.
    145.E. Hao, R. C. Bailey, G. C. Schatz, J. T. Hupp, and S. Li. "Synthesis and Optical Properties of "Branched" Gold Nanocrystals," Nano Lett.2004; 4:327-330.
    146.K. Tazuko, M. Shintaro, M. Yoshiteru, K. Kunio, and T. Akira,"SNOM Observations of Surface Plasmon Polaritons on Metal Heterostructures," Chin. Phys. Lett.2007; 24: 2827-2829.
    147.T. Baba,"Slow light in photonic crystals," Nat. Photon 2008; 465:465-473.
    148.M. I. Stockman, "Slow Propagation, Anomalous Absorption, and Total External Reflection of Surface Plasmon Polaritons in Nanolayer Systems," Nano Lett.2006; 6: 2604-2608.
    149.M. Galli, D. Bajoni, F. Marabelli, L. C. Andreani, L. Pavesi, and G. Pucher, "Photonic bands and group-velocity dispersion in SiO/SiO2 photonic crystals from white-light interferometry," Phys. Rev. B 2004; 69:115107.
    150.X. Wang and K. Kempa,"Negative refraction and subwavelength lensing in a polaritonic crystal," Phys. Rev. B 2005; 71:233101.
    151.R. J. P. Engelen, D. Mori, T. Baba, and L. Kuipers, "Two Regimes of Slow-Light Losses Revealed by Adiabatic Reduction of Group Velocity," Phys. Rev. Lett.2008; 101: 103901.
    152.C. Ropers, D. J. Park, G Stibenz, G Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, "Femtosecond Light Transmission and Subradiant Damping in Plasmonic Crystals," Phys. Rev. Lett.2005; 94:113901.
    153.P. Berini, "Figures of merit for surface plasmon waveguides," Opt. Express 2006; 14: 13030-13042.
    154.E. Laux, C. Genet, T. Skauli, T. W. Ebbesen, "Plasmonic photon sorters for spectral and polarimetric imaging," Nat. Photon 2008; 2:161-164.
    155.R. Rao, J. E. Bradby, and J. S. Williams,"Patterning of silicon by indentation and chemical etching," Appl. Phys. Lett.2007; 91:123113.
    156.S. Y. Chou, P. R. Krauss, and P. J. Renstrom, "Nanoimprint lithography," J. Vac. Sci. Technol. B 1996; 14:4129-4133.
    157.Q. Xu, P. Dong, and M. Lipson, "Breaking the delay-bandwidth limit in a photonic structure," Nat. Phys 2007; 3:406-410.
    158.E. A. Ash and G. Nicholls, "Super-resolution Aperture Scanning Microscope," Nature (London) 1972; 237:510-512.
    159.J. Koglin, U. C. Fischer, and H. Fuchs, "Material contrast in scanning near-field optical microscopy at 1-10 nm resolution," Phys. Rev. B 1997; 55:7977-7984.
    160.S. Feng and J. Elson, "Diffraction-suppressed high-resolution imaging through metallodielectric nanofilms," Opt. Express 2006; 14:216-221.
    161.D. Schurig and D. R. Smith, "Sub-diffraction imaging with compensating bilayers," New J. Phys 2005; 7:162.
    162.P. A. Belov and Y. Hao, "Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime," Phys. Rev. B 2006; 73:113110.
    163.J. P. Berenger, J. Comput. Phys. "A perfectly matched layer for the absorption of electromagnetic waves," 1994; 114:185-200.
    164.P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 1972; 6:4370-4379.
    165.H.E. Daldrup-Link, M. Rudelius, G. Piontek, S. Metz, R. Brauer, G. Debus, C. Corot, J. Schlegel, T.M. Link, C. Peschel, E.J. Rummeny, and R.A.J. Oostendorp, "Molecular Imaging," Radiology 2005; 234:197-205.
    166.J.R. Meyer-Arendt, Introduction to Classical and Modern Optics,2nd edn, (Prentice-Hall, Englewood Cliffs, NJ,1984).
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.