蔗渣和木薯渣的水解糖化与发酵生产富油小球藻的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物柴油一般是将动植物类油脂等与短链醇在一定条件下通过酯交换等方法生成的,是一种优质、安全、环保的可再生能源。利用小球藻作为原料生产生物柴油具有诸多优点。在制备生物柴油的过程中,对小球藻胞内活性物质进行综合开发,可以进一步降低其生产成本,具有良好的应用前景。木薯渣等生物质资源废弃物污染环境,产量高,对其进行综合利用显得非常必要。本文对生物质资源废弃物蔗渣和木薯渣进行预处理和酶解,并将制备的水解液用于异养小球藻的发酵,系统分析了不同处理方法对蔗渣和木薯渣的水解糖化得率以及不同水解液对小球藻细胞生长和脂肪酸积累的影响。主要实验结果如下所示:
     1.采用多种预处理和酶解方法对蔗渣和木薯渣进行水解糖化,并对其进行酶解放大,系统分析了不同方法对蔗渣和木薯渣水解糖化的影响。结果表明:采用NaClO2和HCl联合处理可以显著提高蔗渣的水解得率,葡萄糖含量达到25.4g/L,木糖含量为2.2g/L,蔗渣总损失率仅为19.3%。在7L生物反应器中对蔗渣酶解进行放大,葡萄糖浓度为15.1g/L,葡萄糖产率为0.63g/L/h,还原糖产率为1.13g/L/h。直接采用纤维素酶对木薯渣进行酶解,酶解效果最好,可以制得葡萄糖浓度高达34.9g/L的酶解液。在5L生物反应器中进行木薯渣酶解放大,制得酶解液中葡萄糖浓度为27.4g/L,还原糖浓度为34.8g/L,在酶解前进行酸解预处理后,还原糖浓度增加到43.9g/L,而在100L反应釜中制备得到的酶解液中还原糖浓度为31.0g/L。
     2.采用蔗渣酶解液为碳源对异养小球藻进行培养,系统分析了不同碳氮源浓度对异养小球藻生长和脂肪酸积累的影响。结果表明:碳源浓度对小球藻生物量有显著影响,氮源浓度对小球藻胞内脂肪酸积累有显著影响。当葡萄糖浓度为15g/L时,获得最大生物量(10.7g/L)和最高脂肪酸产量(0.55g/L),优于葡萄糖对照。当氮源浓度为0.1mmol/L时,脂肪酸产量最高为0.87g/L,略低于葡萄糖对照组中得到的1.2g/L。
     3.分别以木薯渣酸解-酶解液、木薯渣酶解液和葡萄糖为碳源在5L生物反应器中对异养小球藻进行培养,系统分析了不同碳源对小球藻生物量、中性脂和脂肪酸积累的影响。结果表明:当培养异养小球藻144h时,采用木薯渣酶解液为碳源分批培养异养小球藻,同酸解-酶解液相比可以显著增加小球藻生物量,达到7.2g/L。小球藻脂肪酸产量(2.5g/L)和中性脂含量(48.6%DW)同葡萄糖对照相比有显著降低,但是脂肪酸占中性脂的含量(70.6%)有显著增加。以木薯渣酶解液为碳源对异养小球藻进行补料分批培养360h后,异养小球藻生物量达到9.7g/L,脂肪含量为38.9%DW,脂肪酸产量为3.7g/L,小球藻生物量产率为26.9mg/L/h,生物量对葡萄糖等总糖的得率为0.37g/g总糖。此外对木薯渣水解液中副产物进行了定性和定量分析,结果表明水解液中乙酸、糠醛和苯甲酸的含量较高,其中木薯渣酶解液中乙酸和苯甲酸的含量分别为78.1mg/L和62.5mg/L。该研究结果对于改进木薯渣酶解液的制备以及异养小球藻的培养方法具有重要的意义。
Biodiesel is a high-quality, safe, environmental and renewable energy, produced from plant and animal oil reacted with short-chain alcohol under a certain condition by transesterification. Using Chlorella as one source of commercial biodiesel has a lot of advantages. During the production of biodiesel, the comprehensive development of high-value bioactives in Chlorella would reduce the cost and make the biodiesel industry have a good application prospect. Biological resources such as cassava rediues have a high yield and pollute the environment, it is necessary to deepen the application of these resources. In this paper, these biological residues such as sugarcane bagasse and cassava bagasse were hydrolyzated, meanwhile the oil-rich heterotrophic Chlorella was obtained using these hydrolysates as carbon sources, the systematic analysis of the enzymatic saccharification yields of these residues by diffenent methods and the effects of different hydrolysates on growth and fatty acids accumulation of Chlorella were investigated. The main results were as follows:
     1. Sugarcane bagasse and cassava bagasse were hydrolyzated for saccharification by different methods of preatment and hydrolysis, and the effects of different methods on enzymatic saccharification yield were analyzated. The results showed that the hydrolysis yield of sugarcane bagasse was improved significantly by NaClO2 and HCl preatment. The glucose and xylose concentration were 25.4 and 2.2g/L,however the total weight loss was only 19.3%. The glucose concentration and the productivity of glucose and reducing sugar were 15.1g/L, 0.63g/L/h and 1.13g/L/h respectively when the sugarcane bagasse was hydrolyzated in 7L bioreactor. The glucose concentration was achieved at 34.9g/L when the cassava bagasse was hydrolysated by cellulose directly. The hydrolysate containing 27.4g/L glucose and 34.8g/L reducing sugar was obtained in 5L bioreactor, meanwhile the reducing sugar concentration was increased to 43.9g/L after dilute acid preatment of cassava. The reducing sugar concentration was only 31.0g/L when the hydrolysate was achieved in 100L reactor.
     2. Effects of different carbon sources and nitrogen sources on cell growth and fatty acids accumulation was analyzated in batch cultivation of Chlorella using sugarcane bagasse hydrolysate as carbon source. The results showed that the carbon source concentration had a significant effect on cell growth, but the nitrogen source concentration had a significant effect on introcelluar fatty acids accumulation. The highest biomass(10.7g/L) and fatty acids yield(0.55g/L) were achieved when the glucose concentration in the medium was 15g/L, which were higher than that of the control. When the nitrogen was 0.1mmol/L,the highest fatty acids yield was 0.87g/L, which was a little lower compared to the control (1.2g/L).
     3. Cultivation of heterotrophic Chlorella was achieved in 5L bioreactor using cassava bagasse acid-hydrolysate, cassava bagasse hydrolysate and glucose as carbon source respectively and the systematic analysis of effects of different carbon sources on cell growth, neutral lipids and fatty acids accumulation was investigated. The results showed that the biomass was achieved at 7.2g/L after 144h in batch cultivation of Chlorella using cassava bagasse hydrolysate as carbon source. Compared with cassava bagasse acid-hydrolysate, the biomass was significantly increased. The fatty acids yield (2.5g/L) and neutral lipids content(48.6%DW) was significantly lower than that of control. However the ratio of fatty acids in neutral lipids (70.6%) was significantly higher than that of control. After 360h in fed-batch cultivation of heterotrophic Chlorella using cassava bagasse hydrolysate, the biomass, fatty acids content and yield were 9.7g/L, 38.9%DW and 3.7g/L respectively, meanwhile the biomass productivity and yield on total sugar were 26.9mg/L/h and 0.37g/g. Qualitative and quantitative analysis of the compounds in these hydrolysates were studied by GC-MS. It was found that acetic acid, furfural and benzenecarboxylic acid were the main compounds. The acetic acid and benzenecarboxylic acid concentration in cassava bagasse hydrolysate were 78.1mg/L and 62.5mg/L, respectively. The results above had a great significance in the preparation of cassava bagasse hydrolysate and the cultivation of heterotrophic Chlorella using these hydrolysates as carbon sources.
引文
[1] Ahmad A.L., Yasin N.H.M., Derek C.J.C., et al. Microalgae as a sustainable energy source for biodiesel production: A review[J]. Eenewable and Sustainable Energy Reviews, 2011, 15(1): 584-593
    [2]张传利,林良斌,刘雅婷,等.生物质柴油生产现状及其生产技术进展[J].云南农业大学学报, 2007, 22(5): 747-752
    [3] Gavrilescu M., Chisti Y.. Biotechnology-a sustainable alternative for chemical industry[J]. Biotechnology Advances, 2005, 23: 471-499
    [4] Xiong W., Li X., Xiang J., et al. High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production[J]. Appl Microbiol Biotechnol, 2008, 78: 29-36
    [5]薛志忠,吴新海.国内外生物柴油研究进展[J].现代农业科技, 2010, 16: 293-294, 297
    [6]黄剑锋,孙世林,黄建荣.生物柴油技术的研究进展[J].甘肃石油和化工, 2010,2: 11-17
    [7]朱明.生物柴油的现在与未来(上) [J],中国石油和化工经济分析, 2006, 16: 41-45
    [8]高庆,沈发治,秦建华.生物柴油及生产概述[J].当代化工, 2007, 36(4): 472-475
    [9]赵沟,骆念军,曹发海.生物柴油制备方法的研究进展[J].粮油食品科技, 2007, 23(3): 59-62
    [10] Meher L.C., Sagar D.V., Naik S.N.. Technical aspects of biodiesel production by transesterification-a review[J]. Renewable and Sustainable Energy Reviews, 2006, 10: 248-268
    [11] Leite M.B.N.L., Araujo M.M.S., Nascimento I.A., et al. Toxicity of water-soluble fractions of biodiesel fuels derived from castor oil, palm oil, and waste cooking oil[J]. Environment Toxicology and Chemistry, 2011, 30(4): 893-897
    [12]韩明汉,陈和,王金福,等.生物柴油制备技术的研究进展[J].石油化工, 2006, 35 (12): 1119-1124
    [13] Ma F., Hanna M.A.. Biodiesel production: a review[J]. Bioresource Technology, 1999, 70: 1-15
    [14]薛飞燕,张栩,谭天伟.微生物油脂的研究进展及展望[J].生物加工工程, 2005, 3(1): 23-27
    [15] Chisti Y.. Biodiesel from microalgae[J]. Biotechnology Advances, 2007, 25: 294-306
    [16] Demirbas A., Demirbas M.F.. Importance of algae oil as a source of biodiesel[J]. EnergyConversion and Management, 2011, 52: 163-170
    [17]孙俊楠,张建安,杨明德,等.利用微薄热解生产生物燃料的研究进展[J].科技导报, 2006, 24(6): 26-28
    [18] Peng W.M., Wu Q.Y., Tu P.G.. Pyrolytic characteristics of heterotrophic Chlorella protothecoides for renewable bio-fuel production[J]. Journal of Applied Phycology, 2001,13: 5-12
    [19]安文杰,许德平,王海京.生物柴油的化学制备方法[J].粮食与油脂, 2005, 7: 3-6
    [20] Wahlen B.D., Willis R.M., Seefeldt L.C.. Biodiesel production by simultaneous extraction and conversion of total lipids from microalgae, cyanobacteria, and wild mixed-cultures[J]. Bioresource Technology, 2011, 102: 2724-2730
    [21] Harun R., Davidson M., Doyle M., et al. Technoecomonic analysis of an integrated microalgae photobioreactor, biodiesel and biogas production facility[J]. Biomass & Bioenergy, 2011, 35(1): 741-747
    [22]夏金兰,万民熙,王润民,等.微藻生物柴油的现状与进展[J].中国生物工程杂志, 2009, 29(7): 118-126
    [23] Chisti Y.. Biodiesel from microalgae beats bioethanol[J]. Trends in Biotechnology, 2008, 26(3): 126-131
    [24]姜进举,苗凤萍,冯大伟,等.微藻生物柴油技术的研究现状及展望[J].中国生物工程杂志, 2010, 30(2): 134-140
    [25] Singh A., Nigam P.S., Murphy J.D.. Mechanism and challenges in commercialisation of algal biofuels[J]. Bioresource Technology, 2011, 102: 26-34
    [26] Eriksen N.T.. The technology of microalgal culturing[J]. Biotechnol Lett, 2008, 30: 1525-1536
    [27] Octavio P.G., Escalante F.M.E., Luz E.B., et al. Heterotrophic cultures of microalgae: Metabolism and potential products[J]. Water Research, 2011, 45: 11-36
    [28] Wen Z.Y., Chen F.. Heterotrophic production of eicosapentaenoic acid by microalgae[J]. Biotechnology Advances, 2003, 21: 273-294
    [29] Chen G.Q., Chen F.. Growing phototrophic cells without light[J]. Biotechnology Letters, 2006, 28: 607-616
    [30]孔维宝,华绍烽,宋昊,等.利用微藻生产生物柴油的研究进展[J].中国油脂, 2010, 35(8): 51-56
    [31] Xiong W., Gao C., Yan D., et al. Double CO2 fixation in photosynthesis-fermentation model enhances algal lipid synthesis for biodiesel production[J]. BioresourceTechnology, 2010, 101: 2287-2293
    [32]陈峰,姜悦.微藻生物技术[M].北京:中国轻工业出版社, 1999: 55
    [33]胡开辉,汪世华.小球藻的研究开发进展[J].武汉工业学院学报, 2005, 24(3): 27-30
    [34]杨鹭生,李国平,陈林水.蛋白核小球藻粉的蛋白质、氨基酸含量及营养价值评价[J].亚热带植物科学, 2003, 32(1): 36-38
    [35]胡月薇.异养蛋白核小球藻营养成分分析和免疫活性功能评价[D].武汉:华中农业大学, 2003
    [36]孔维宝,李龙囡,张维,等.小球藻的营养保健功能及其在食品工业中的应用[J].食品科学, 2010, 31(9):323-328
    [37] Chen F. High cell density culture of microalgae in heterotrophic growth[J]. Trends in Biotechnology, 1996,14:421-426
    [38] Marxen Kai, Vanselow K.H., Lippemeier Sebastian, et al. A photobioreactor system for computer controlled cultivation of microalgae[J]. Journal of Applied Phycology, 2005, 10: 204-208
    [39]张大兵,吴庆余.小球藻细胞的异养转化.植物生理学通讯, 1996, 32(2): 140-144
    [40]缪晓玲.藻类可再生能源的利用及藻细胞抗环境胁迫的研究[D].北京:清华大学,2004
    [41] Miao X.L., Wu Q.Y.. Biodiesel production from heterophic microalgal oil[J]. Bioresource Technology, 2006, 97: 841-846
    [42]黄冠华,陈峰.环境因子对异养小球藻脂肪酸组分含量和脂肪总酸产量的影响[J].可再生能源, 2009, 27(3): 65-69
    [43] Illman A M, Scragg A H, Shales S W. Increase in Chlorella strains calorific values when grown in low nitrogen medium [J]. Enzyme and Microbial Technology, 2000, 27 (8): 631-635
    [44]蒋霞敏,郑亦周. 14种微藻总脂含量和脂肪酸组成研究[J].水生生物学报, 2003, 27 (3) : 243-247
    [45] Miao X L,Wu Q Y. High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides [J]. Journal of Biotechnology, 2004,110 (1): 85-93
    [46] Xu H., Miao X.L., Wu Q.Y.. High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters[J]. Journal of Biotechnology, 2006, 126: 499-507
    [47] Wei A.L., Zhang X.W., Wei D., et al. Effects of cassava starch hydrolysate on cellgrowth and lipid accumulation of the heterotrophic microalgae Chlorella protothecoides[J]. J Ind Microbiol Biotechnol, 2009, 36: 1383-1389
    [48] Cheng Y., Zhou W.G., Gao C.F., et al. Biodiesel production from Jerusalem artichoke (Helianthus Tuberosus L.) tuber by heterotrophic microalgae Chlorella protothecoides[J]. Journal of Chemical Technology and Biotechnology, 2009, 84(5): 777-781
    [49] Gao C.F., Zhai Y., Ding Y., et al. Application of sweet sorghum for biodiesel production of heterotrophic microalgal Chlorella protothecoides[J]. Applied Energy, 2010, 87: 756-761
    [50] Cheng Y., Lu Y., Gao C.F., et al. Alga-based biodiesel production and optimization using sugar cane as the feedstock[J]. Energy & Fuels, 2009, 23: 4166-4173
    [51] Liang Y., Sarkany N., Cui Y.. Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions[J]. Biotechnol Lett, 2009, 31: 1043-1049
    [52]刘子宇,李平兰,郑海涛,等.微生物高密度培养的研究进展[J].中国乳业, 2005, 47-51
    [53]梁世中,朱明军,孟海华,等.发酵罐葡萄糖流加大规模异养培养小球藻[J].华南理工大学学报(自然科学版), 2000, 28:66-70
    [54] Shi X.M., Jiang Y., Chen F.. High-yield production of lutein by the green microalga Chlorella protothecoides in heterotrophic fed-batch culture[J]. Biotechnol.Prog., 2002, 18(4): 723-727
    [55] Wu Z.Y., Shi X.M.. Optimization for high-density cultivation of heterotrophic Chlorella based on a hybrid neural network model[J].Applied Microbiology, 2007, 44: 13-18
    [56] Xiong W., Li X.F., Xiang J.Y., et al. Large-scale Biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors[J]. Applied Microbiology and Biotechnology, 2008, 78(1): 29-36
    [57] Jorgensen H., Kristensen J.B., Felby C.. Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities[J]. Biofuels Bioproducts & Biorefining, 2007, 1(2): 119-134
    [58]黄祖新,陈由强,陈如凯.甘蔗渣的酶降解研究进展[J].甘蔗, 2004, 11(4): 52-56
    [59]孙美琴,彭超英.甘蔗制糖副产品蔗渣的综合利用[J].中国糖料, 2003, 2: 58-60
    [60] Sun Y., Cheng J.Y.. Hydrolysis of lignocellulosic materials for ethanol production: a review[J]. Bioresource Technology, 2002, 83: 1-11
    [61]周林,郭祀远,蔡妙颜.蔗渣的生物利用[J].中国糖料, 2004, 2: 40-42
    [62]张小梅,魏东.高效降解甘蔗渣的预处理技术新进展[J].纤维素科学与技术, 2008, 2: 59-65
    [63]陆登俊,郭祀远,肖凯军.利用甘蔗渣制取乙醇和低聚木糖[J].甘蔗糖业, 2005, 5: 33-36
    [64] Sanchez O.J., Cardona C.A.. Trends in biotechnological production of fuel ethanol from diffenent feedstocks[J]. Bioresource Technology, 2008, 99(13): 5270-5295
    [65] Cheng Y., Lu Y., Gao C.F., et al. Alga-based biodiesel production and optimization using sugar cane as the feedstock[J]. Energy & Fuels, 2009, 23: 4166-4173
    [66]胡忠泽,刘雪峰.木薯渣饲用价值研究[J].安徽技术师范学院学报, 2002, 16(4): 4-6
    [67] Pandey A., Soccol C.R., Nigam P., et al. Biotechnological potential of agro-industrial residues.Ⅱ: cassava bagasse[J]. Bioresource Technology, 2000, 74: 81-87
    [68] Sriroth K., Chollakup R., Chotineeranat S., et al. Processing of cassava waste for improved biomass utilization[J]. Bioresource Technology, 2000, 71(1): 63-69
    [69]李静,涂佳才,陈秀龙,等.木薯渣微生物降解及再利用研究进展[J].生态环境学报, 2010, 19(10): 2506-2510
    [70] Lu Y., Ding Y., Wu Q.Y.. Simultaneous saccharification of cassava starch and fermentation of algae for biodiesel production[J]. J Appl Phycol, 2011, 23: 115-121
    [71] Soccol C.R., Vandenberghe L.P.S.. Overview fo applied solid-state fermentation in Brazil[J]. Biochemical Engineering Journal, 2003, 13: 205-218
    [72] Carta F.S., Soccol C.R., Ramos L.P., et al. Production of fumaric acid by fermentation of enzymatic hydrolysates derived from cassava bagasse[J]. Bioresource Technology, 1999, 68(1): 23-28
    [73] Thongchul N., Navankasattusas S., Yang S.T.. Producion of lactic acid and ethanol by Rhizopus oryzae integrated with cassava pulp hydrolysis[J]. Bioprocess Biosyst Eng, 2010, 33: 407-416
    [74] Kosugi A., Kondo A., Ueda M., et al. Production of ethanol from cassava pulp via fermentation with a surface-engineered yeast strain displaying glucoamlase[J]. Renewable Energy, 2009, 34: 1354-1358
    [75] Rattanachomsri U., Tanapongpipat S., Eurwilaichitr L., et al. Simultaneous non-thermal saccharification of cassava pulp by multi-enzyme activity and ethanol fermentation by Candida tropicalis[J]. Journal of Bioscience and Bioengineering, 2009, 107(5): 488-493
    [76] Han M., Kim Y., Kim Y., et al. Bioethanol production from optimized pretreatment of cassava stem[J]. 2011, 28(1): 119-125
    [77] Shin E.J., Nimlos M.R., Evans R.J.. Kinetic analysis fo the gas-phase pyrolysis of carbohydrates[J]. Fuel, 2001, 80: 1697-1709
    [78] Palmqvist E., Hahn-Hagerdal B.. Fermentation of lignocellulosic hydrolysates.Ⅰ: inhibition and detoxification[J]. Bioresource Technology, 2000, 74(1): 17-24
    [79] Gupte A., Madamwar D.. Production of cellulolytic enzymes by coculturing of Aspergillus elliptius and Aspergillus fumigatus grown on bagasse under solid state fermentation[J]. Applied Biochemistry and Biotechnology, 1996, 26: 267-274
    [80] Adsul M.G., Ghule J.E., Singh R., et al. Polysaccharides from bagasse: applications in cellulose and xylanase production[J]. Carbohydrate Polymers, 2004, 57: 67-72
    [81] Miller G.L.. Use of dinitrosalicylic acid reagent for determination of reducing sugar[J]. Analytical Chemistry, 1959, 31: 426-429
    [82] Hamzeh Y., Mortha G., Lachenal D.. Comparative studies of chlorine dioxide reactions with muconic acid derivtives and lignin model compounds[J]. Journal of Wood Chemistry and Technology, 2006, 26: 153-164
    [83] Gupta R., Khasa Y.P., Kuhad R.C.. Evaluation of pretreatment methods in improving the enzymatic saccharification of cellulosic materials[J]. Carbohydrate Polymers, 2011, 84: 1103-1109
    [84]王超,章超桦.酶解纤维素类物质生产燃料酒精的研究进展[J].节能, 2003, 12: 6-9
    [85]田世杰,吴薇,顿宝庆,等.酶法降解甘蔗渣木质素的条件研究[J].食品科技, 2010, 35 (2): 10-13, 17
    [86]张小梅,魏东.酶解条件对蔗渣还原糖得率的影响及产物分析研究[J].现代食品科技, 2009, 25(8): 920-923
    [87] Yang B., Willies D.M., Wyman C.E.. Biotechnology and Bioengineering, 2006, 94(6):1122-1128
    [88] Xiong W., Li X.F., Xiang J.Y., et al. High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production[J]. Appl Microbiol Biotechnol, 2008, 78: 29-36
    [89] Shi X.M., Chen F, Yuan J.P., et al. Heterotrophic production of lutein by selected Chlorella strains[J]. Journal of Applied Phycology, 1997, 9: 445–450
    [90] [] Wei D., Liu L.J.. Optimization of culture medium for heterotrophic Chlorella protothecoides producing total fatty acids[J].化学与生物工程, 2008, 25(3): 35-40
    [91]张薇,吴虹,宗敏华.蛋白核小球藻发酵产油脂的研究[J].微生物通报, 2008, 35(6): 855-860
    [92] Huang G.H., Chen F., Dong Wei D., et al. Biodiesel production by microalgal biotechnology[J]. Applied Energy, 2010, 87(1): 38-46
    [93] Mata T.M., Antonio A. Martins A.A., Caetano N.S.. Microgalgae for biodiesel production and other applications: A review[J]. Renewable and Sustainable Energy Reviews, 2010, 14: 217-232
    [94]杨艳婧,王冰芳,廖晓霞,等.木薯淀粉水解液对小球藻生物量和油脂含量的影响[J].现代食品科技, 2009, 25(11): 1275-1278
    [95] Octavio P.G., Escalante F.M.E., de-Bashan L.E., et al. Heterotrophic cultures of microalgae: Metabolism and potential products[J]. Water Research, 2011, 45: 11-36
    [96]李玉芹,袁正求,冯岳,等.不同碳氮组合对小球藻异养培养油脂积累的影响[J].中国生物制品学杂志, 2010, 23(9): 1009-1013
    [97]苏敏光,于少明,吴克,等.生物柴油制备方法及其质量标准现状[J].包装与食品机械, 2008, 26(3): 20-24,39
    [98]孙多志,黄清发,王复,等.秸秆稀酸水解液中抑制物的研究[J].分析科学学报, 2008, 24(5): 553-556
    [99] Huang G.H., Chen G., Chen F.. Rapid screening method for lipid production in alga based on Nile red fluorescence[J]. Biomass and Bioenergy, 2009, 33: 1386-1392
    [100] Hawkins R.L.. Utilization of xylose for growth by the eukaryotic alga, Chlorella[J]. Current Microbiology, 1999, 38(6): 360-363
    [101]刘龙军.异养小球藻的高密度培养及积累叶黄素的研究[D].广州:华南理工大学, 2007
    [102]陈洪章,王岚.生物质能源转化技术与应用(Ⅷ)—生物质的生物转化技术原理与应用[J].生物质化学工程, 2008, 42(4): 67-72
    [103]庄新株.生物质超低酸水解制取燃料乙醇的研究[D].杭州:浙江大学, 2005
    [104] Palmqvist E., Hahn-Hagerdal B.. Fermentation of lignocellulosic hydrolysates.Ⅱ: inhibitors and mechanisms of inhibition[J]. Bioresource Technology, 2000, 74(1): 25-33
    [105] Alonso D.M., Bond J.Q., Dumesic J.A.. Catalytic conversion of biomass to biofuels[J]. Green Chemistry, 2010, 12: 1493-1513
    [106] Aguilar R., Ramirez J.A., Garrote G. et al. Kinetic study of the acid hydrolysis of sugar cane bagasse[J]. Journal of Food Engineering, 2002, 55: 309-318
    [107]曾凡洲,卫民,陈育如,等.生物质酸水解副产物对糖液酵母制备燃料乙醇的影响[J].林产化学与工业, 2011, 1: 115-118
    [108]宋晓川,储秋露,朱均均,等.碳水化合物降解产物对酿酒酵母乙醇发酵的影响[J].林产化学与工业, 2011, 31(1): 9-12
    [109] Chen X., Li Z.H., Zhang X.X., et al. Screening of oleaginous yeast strains tolerant to lignocellulose degradation compounds[J]. 2009, Applied Biochemistry and Biotechnology, 159(3): 591-604
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.