尿液中纳米微晶组分与尿路结石类型的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用X射线衍射(XRD)、傅立叶变换红外光谱(FT-IR)、纳米粒度仪、扫描电子显微镜(SEM)和透射电子显微镜(TEM)研究了草酸钙、尿酸和磷酸铵镁结石患者尿液中纳米微晶的组分、形貌、粒径和Zeta电位,并与结石组分进行了比较。采用X射线衍射(XRD)和傅立叶变换红外光谱(FT-IR)对随机抽样的珠江三角洲地区30例结石样本进行联合分析;同时采用纳米粒度仪研究尿石症患者尿液中纳米微晶的平均粒径、粒度分布、多分散系数(PDI)和Zeta电位等性质,并与健康对照者进行比较。
     草酸钙结石中常常含有少量共生的尿酸和磷酸钙;而草酸钙结石患者的尿微晶组分主要为尿酸、磷酸盐和草酸钙等,晶体棱角尖锐,尺寸不一,从几十纳米到几十微米不等,并且有明显的团聚现象。20位草酸钙结石患者的尿纳米晶体的Zeta电位平均值为-5.92 mV,明显高于20位健康对照者尿纳米晶体的Zeta电位(平均值-12.9 mV);相比之下,结石患者尿液pH值(平均值6.03)则与健康对照者(平均值5.92)没有明显差异。
     尿酸结石患者的尿pH值较低,大都在4.8-5.7之间;尿微晶的主要成分为尿酸,其粒度分布很不均匀,从几纳米到几十微米不等,并有聚集现象。相比健康对照者尿纳米微晶的Zeta电位(-10.1 mV),尿酸结石患者的Zeta电位负值更小(-6.02 mV)。对这些患者进行药物治疗(服用柠檬酸钾)后,尿pH可上升到6.5左右,此时尿液中的尿酸大部分转变为溶解度显著增加的尿酸盐,因此,尿酸结石形成的危险性显著降低。
     磷酸铵镁结石病人的尿液pH值较高,通常在6.5以上;尿微晶的主要组分是含不同结晶水(如一水和六水)的磷酸铵镁晶体;磷酸铵镁晶体主要为花瓣形、十字花形,微晶的粒度分布不均匀,分布范围宽,并且发生明显聚集。磷酸铵镁结石患者的Zeta电位负值(平均值-9.83 mV)与健康对照者的(平均值-10.74 mV)没有明显差异。
     珠江三角洲地区泌尿系结石以草酸钙结石为主,占76.6%;其次为尿酸结石,占16.7%;磷酸钙结石约占6.7%。尿石症患者尿微晶的平均粒径、粒度分布、多分散系数(PDI)和Zeta电位与健康对照者的有着明显的差异。草酸钙、尿酸和磷酸钙构成了珠江三角洲地区泌尿系结石的主要成分;尿石症患者和健康对照者尿微晶在平均粒径、粒度分布、多分散系数(PDI)和Zeta电位等方面性质的差异使得正常人不容易得结石。
     本文研究结果表明,尿石组分、尿微晶组分及尿pH三者之间存在密切的联系。利用现代仪器分析方法分析尿液微晶与尿石组分的关系,可为临床上对症下药,制定预防与治疗措施提供重要的依据。
In this paper the composition, morphology and Zeta potential of crystallites of calcium oxalate, uric acid and magnesium ammonium phosphate stone formers were comparatively studied using X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, nanoparticle size analyzer, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Thirty random stone samples from lithogenic patients in Pearl River Delta area in recent years were investigated by XRD and FT-IR. The average diameter, size distribution, polydispersity index (PDI) and Zeta potential of urinary crystallites in lithogenic urines were investigated by nanoparticle size analyzer and were compared with those of healthy subjects.
     Calcium oxalate calculi usually coexisted with a little of uric acid and calcium phosphate. By contrast, the compositions of urine crystallites of the patients with calcium oxalate calculi were mainly uric acid, phosphate, calcium oxalate and so on. Most of them had sharp angularity with a particle size distribution ranging from tens of nanometers to tens of microns; and obvious aggregation was observed. The negative value of Zeta potential of urine crystallites in twenty stone formers (average value-5.92 mV) was less than that in twenty normal subjects (-12.9 mV). However, there was no obvious difference between the urine pH of stone formers (average pH=6.03) and that of normal subjects (average pH=5.92).
     The urine pH of uric acid stone formers was relatively low within the range of 4.8 to 5.7. The main constituent of urinary crystallites was uric acid. Their particle size distribution was highly uneven, ranging from several nanometers to several tens of micrometers, and obvious aggregation was observed. The Zeta potential of urinary crystallites in ten lithogenic patients was-6.02 mV, which being higher than that in ten normal subjects (-10.1 mV). After drug therapies (potassium citrate was taken), the urine pH value of the uric acid stone formers increased to 6.5 or so, and at this pH value most of the uric acid has changed to urate. Since the solubility of urate increased greatly than uric acid, the risk of the formation of uric acid stone reduced.
     A high pH value of 6.5 or more usually appeared in the urine of magnesium ammonium phosphate stone formers. The main component of urine microcrystalline was magnesium ammonium phosphate crystals with different crystal water such as monohydrate or hexahydrate. Magnesium ammonium phosphate crystals are mainly petal-shaped, crosswise shape. These microcrystalline have an uneven particle size distribution, a wider distribution range, and apparent aggregation. There is no significant difference of the zeta potential between the magnesium ammonium phosphate stone formers (mean-9.83 mV) and healthy control subjects (mean-10.74 mV).
     Calcium oxalate stone was the main composition of urinary stones in Pearl River Delta area, which accounting for 76.6%; and then were uric acid and calcium phosphate stones, which accounting for 16.7% and 6.7% respectively. There was obvious difference of urinary crystallites between stone formers and healthy subjects in average diameter, size distribution, polydispersity index (PDI) and Zeta potential. Calcium oxalate, uric acid, and calcium phosphate were the main constituents of urinary stones in Pearl River Delta area. The differences between stone formers and healthy subjects in average diameter, size distribution, PDI and Zeta potential of urinary crystallites made the healthy subjects difficult to form stone.
     The results in this paper showed that there was close relationship among stone components, urinary crystallites composition and urine pH. The study on the relationship between urine crystallites and urinary calculi components will be helpful for finding out the causes of urolithiasis and providing an important basis for the scientific prevention methods and reasonable treatments in clinic.
引文
[1]欧阳健明.生物矿化的基质调控及其仿生应用[M].北京:化学工业出版社,2006:1-34.
    [2]欧阳健明.基质调控碳酸钙生物矿化过程及其体外模拟的研究进展[J].功能材料,2005,36(2):173-176.
    [3]Bunker B C, Rieke P C, Tarasevich B J, Campbell A A, Fryxell G E, Graff G L, Song L, Liu J, Virden J W, McVay G L. Ceramic thin-film formation on functionalized interface through biomimetic processing[J]. Science,1994,264(1):48-55.
    [4]戴永定,沈继英.生物矿化作用机理[J].动物学杂志,1995,30(5):55-58.
    [5]Sandersius S, Rez P. Morphology of crystals in calcium oxalate monohydrate kidney stone[J]. Urol. Res., 2007,35(6):287-293.
    [6]Tsujihata M. Mechanism of calcium oxalate renal stone formation and renal tubular cell injury [J]. Int. J. Urol.,2008,15(2):115-120.
    [7]Fazil M Y M, Salim A. Clinical risk index in urolithiasis[J]. Urol. Res.,2009,37(5):283-287.
    [8]Ather M H, Memon W A. Stones:Impact of dose reduction on CT detection of urolithiasis[J]. Nat. Rev. Urol.,2009,6(10):562-567.
    [9]邓穗平,陈德志,欧阳健明.泌尿系结石组分分析方法及其研究进展[J].光谱学与光谱分析,2006,26(4):761-767.
    [10]欧阳健明.现代仪器在泌尿系结石元素分析中的运用及其研究进展[J].光谱学与光谱分析,2006,26(2):365-371.
    [11]Ouyang J-M. Identification of urinary stones by X-ray photoelectron spectroscopy[J]. Spectros. Lett, 2004,37(6):633-641.
    [12]Benytez I O, Talham D R. Calcium oxalate monohydrate precipitation at membrane lipid rafts[J]. J. Am. Chem. Soc.,2005,127(9):2814-2815.
    [13]欧阳健明.草酸钙结石研究中的化学基础[J].化学通报,2002,65(5):326-332.
    [14]Prywer J, Torzewska A. Bacterially induced struvite growth from synthetic urine:experimental and theoreticalcharacterization of crystal morphology [J]. Cryst. Growth Des.,2009,9(8):3538-3543.
    [15]欧阳健明,钟玖平,苏泽轩,邝荔,梁蔚波.有机大分子在草酸钙结石形成过程中的调控作用[J].中华泌尿外科杂志,2003,24(2):138-139.
    [16]姜学军,冯陶,常连胜,郭应禄.尿中骨桥蛋白的初步分离与鉴定[J].北京医科大学学报,1998,30(6):537.
    [17]姜学军,冯陶,窦长琪.尿草酸钙晶体基质蛋白的分离及理化特征[J].中国泌尿外科杂志,1998,19(8):454-456.
    [18]丛玉隆.现代尿液分析技术与临床[M].北京:人民军医出版社,2007:201.
    [19]张时民.实用尿液有形成分分析技术[M].北京:人民卫生出版社,2008:21-21,89-95.
    [20]张云虎.尿液沉渣实录彩色图谱[M].山东:山东科学技术出版社,2003:13-14.
    [21]Grases F, Costa-Bauza A, Garcia-Ferragut L. Biopathological crystallization:a general view about the mechanisms of renal stone formation[J]. Adv. Coll. Interf. Sci.,1998,74(1-3):169-194.
    [22]丛玉隆,马骏龙.当代尿液分析技术与临床[M].北京:中国科学技术出版社,1998:103.
    [23]Ouyang J-M, Duan L, Tieke B. Effects of carboxyl acids on the crystal growth of calcium oxalate nanoparticles in lecithin-water liposome systems[J]. Langmuir,2003,19(21):8980-8985.
    [24]戚其学,陈燕,李迎旭.实用尿沉渣图谱[M].辽宁:沈阳出版社,2001:26-27.
    [25]Dimech W, Roney K. Evalution of an automated urinalysis system for testing urine chemistry, microscopy and culture[J]. Pathology,2002,34(2):170-177.
    [26]Hannemann-Pohl K, Kampf S C. Automation of urine sediment examination:a comparison of the sysmex UF-100 automated flow cytometer with routine manual diagnosis microscopy, test strips, and bacterial culture[J]. Clin. Chem. Lab. Med.,1999,37(7):753-764.
    [27]安有芳,程安珍,唐仁满.尿沉渣镜检的临床价值[J].西藏医药杂志,1999,20(1):42-43.
    [28]Blair B, Fabrizio M. Pharmacology for renal calculi[J]. Expert Opin. Pharmacother,2000,1 (3):435-441.
    [29]刘粤惠,刘平安.X射线衍射分析原理与应用[M].北京:化学工业出版社,2003:216.
    [30]欧阳健明.混和型尿路结石的XPS和XRD联合分析[J].光谱学与光谱分析,2003,23(2):391-395.
    [31]Deide L, Batereiar, Samuet S. Predicting urinary stonecomposition using X-ray coherent scatter:a novel technique with potential clinical applications[J]. J. Urol.,2002,168(1):260-265.
    [32]Deng F, Ouyang J-M. Comparative investigations of ultrafine crystals in urine of healthy human and lithogenic patients[J]. Mater. Sci. Eng. C,2006,26(4):688-691.
    [33]Prinsloo L C. Rock hyraces:a cause of San rock art deterioration[J]? J. Raman Spectrosc.,2007,38(5): 496-503.
    [34]Bhatt P T, Paul P. Analysis of urinary stone constituents using powder X-ray diffraction and FT-IR[J]. J. Chem. Sci.,2008,120(2):267-273.
    [35]Yasushi T, Shinya M. Amine-terminated water-dispersible FePt nanoparticles[J]. J. Magn. Magn. Mater., 2008,320(19):121-124.
    [36]林晨光,袁冠森.纳米晶WC-Co硬质合金中WC晶粒度的定量测量[J].中国有色金属学报,2005,1 5(6):823-828.
    [37]张叔良,易大年,吴天明.红外吸收光谱分析与新技术[M].北京:中国医药科技出版社,1993:1-13.
    [38]曹履诚,章绍舜.尿石症基础与临床研究[M].济南:山东科技出版社,1990:239.
    [39]Matsuzaki S, Matsushita K, Tanikawa K. Sequential analysis of recurrent calcium calculi by infrared spectroscopy[J]. Int. J. Urol.,1995,2(4):235-237.
    [40]Moawad M M. Complexation and thermal studies of uric acid with some divalent and trivalent metal ions of biological interest in the solid state[J]. J. Coord. Chem.,2002,50(1):61-78.
    [41]谭燕华,欧阳健明,马洁,冯海华,黄峰.红外光谱法在草酸钙结石研究中的应用[J].光谱学与光谱分析,2003,23(4):700-704.
    [42]Bellanato J, Cifuentes Delatte L, Hidalgo A. Application of Infrared Spectroscopy to the Study of Renal Stones, in Urinary Calculi:Recent Advances in Aetiology, Stone Structure and Treatment[M], edited by Cifuentes Delatte L, Rapado A.1973:237.
    [43]Hesse A, Bach D. Harnsteine-Pathobiochemie und Klinik-Chemische Diagnostik[M], Stuttgart, Germany: Georg Thieme Verlag,1982:95-111.
    [44]Batchelar D L, Chun S S, Wollin T A, Tan J K, Beiko D T, Cunningham I A, Denstedt J D. Predicting Urinary Stone Composition Using X-Ray Coherent Scatter:A Novel Technique With Potential Clinical Applications[J]. J. Urol.,2002,168(1):260-265.
    [45]Zaraembski P M, Grieve J. Analysis of Urinary Stones using Infrared Spectroscopy and Scanning Electron Microscopy-Process Reports[M], Ed. Fleisch H, Robertson, W Gand Vahlensieck W, Urolithiasis Research, New York:Plenum Press,1979:371.
    [46]Rose G A. Urinary Stones:Clinical and Laboratory Aspects[M]. Baltimore:University Park Press,1982: 95-100.
    [47]Schubert G, Reck G, Jancke H, Kraus W, Patzelt C. Uric acid monohydrate—a new urinary calculus phase[J]. Urol. Res.,2005,33(3):231-238.
    [48]王书运.纳米颗粒的测量与表征[J].微纳电子技术,2005,42(1):37-41.
    [49]姜靓.马尔文激光粒度分析仪在油品研究中的应用[J].现代科学仪器,2004,6:48-50.
    [50]徐峰,蔡小舒,赵志军,沈嘉琪.光散射粒度测量中采用Fraunhofer衍射理论或Mie散射理论的讨论[J].中国粉体技术,2003,9(2):1-6.
    [51]徐贯东.Fraunhofer衍射理论与Mie散射理论的比较[J].东北大学学报(自然科学版),2001,21(7):103-106.
    [52]陈军,尤政,周兆英.激光散射理论及其在计算测试中的应用[J].激光技术,1996,20(6):359-365.
    [53]梁国标,李新衡,王燕民.激光粒度测量的应用与前景[J].材料导报,2006,20(4):90-93.
    [54]黄志萍.激光光散射仪及应用[J].现代仪器,2006,12(6):49-53.
    [55]鲁德平,管蓉.聚合物乳液中的静态和动态激光散射技术[J].胶体与聚合物,2000,18(2):41-43.
    [56]Hong R-Y, Zhang S-Z, Han Y-P, Li H-Z, Ding J, Zheng Y. Preparation, characterization and application of bilayer surfactant-stabilized ferrofluids[J]. Powder Technology,2006,170(1):1-11.
    [57]朱银燕,张高勇,洪昕林,董金凤,张晓光,曾晖.微乳中纳米胶囊的复凝聚法制备[J].化学学报,2005,63(16):1505-1509.
    [58]黄伟,崔光华,贺俊峰,周旭,张强.壳聚糖纳米粒用作基因递送载体的初步研究[J].药学学报,2002,37(12):981-985.
    [59]干蜀毅,陈长琦,朱武,王先路.环境扫描电子显微镜工作原理及实现[J].真空电子技术,2003,6:29-32.
    [60]Rai-Choudhury P. SPIE Handbook of Microlithography, Micromachining and Microfabrication, Microlithography Volume[M]. Bellingham(USA):SPIE Opt. Eng. Press,1997.
    [61]Chen L, Xie A-J, Jia R, Shen Y-H, Tang W-Z, Li C-H. Influence of Bacillus subtilis on the growth of calcium oxalate[J]. Cryst. Res. Technol.,2007,42(9):881-885.
    [62]Zhu W, Xu H, Wang W, Shi J. Controlled synthesis of trigonal selenium nanowires via a facile solution route[J]. App. Phys. A,2006,83(2):281-284.
    [63]宋伟娟,刘洪涛,王坤,曹进,徐春艳,张泽廷.胶晶/嵌段共聚物双重模板制备多级孔材料[J].无机材料学报,2010,25(2):163-167.
    [64]Demanaa P H, Davies N M, Vosgerau U, Rades T. Pseudo-ternary phase diagrams of aqueous mixtures of Quil A, cholesterol and phospholipid prepared by the lipid-film hydration method[J]. Int. J. Pharm.,2004, 270(1-2):229-239.
    [65]张建平,周浩然,许茂.透射电镜在不同分散条件下测定纳米铁粉的粒度和分布[J].化学与黏合,2005,27(4):251-252.
    [66]Khullar M, Sharma S K, Singh S K. Morphological and immunological characteristics of nanobacteria from human renal stones of a north Indian population[J]. Urol. Res.,2004,32(3):190-195.
    [67]Pouget E M, Bomans P H H, Goos J A C M, Frederik P M, de With G, Sommerdijk N A J M. The initial stages of template-controlled CaCO3 formation revealed by Cryo-TEM[J]. Science,2009,323(5920): 1455-1458.
    [68]陆光伟,杨琪,邓意达,胡文彬.水热法制备一维纳米y-AlOOH的形态结构[J].无机材料学报,2009, 24(3):463-468.
    [69]Anderson R A. A complementary approach to urolithiasis prevention[J]. World J. Urol.,2002,20(5): 294-301.
    [70]Robertson W G, Peacock M, Marshall R W, Marshall D H, Nordin B E. Saturation-inhibition index as a measure of the risk of calcium oxalate stone formation in the urinary tract[J]. New England J. Med.,1976, 294(5):249-252.
    [71]Daudon M, Hennequin C, Boujelben G, Lacour B, Jungers P. Serial crystalluria determination and the risk of recurrence in calcium stone formers[J]. Kidney Int.,2005,67(5):1934-1943.
    [72]Robert M, Boularan A M, Delbos O, Guiter J, Descomps B. Study of calcium oxalate crystalluria on renal and vesical urines in stone formers and normal subjects[J]. Urol. Int.,1998,60(1):41-46.
    [73]Rabinovich Y I, Esayanur M, Daosukho S, Byer K J, El-Shall H E, Khan S R. Adhesion force between calcium oxalate monohydrate crystal and kidney epithelial cells and possible relevance for kidney stone formation[J]. J. Coll. Interf. Sci.,2006,300(1):131-140.
    [74]Grover P K, Ryall R L. Inhibition of calcium oxalate crystal growth and aggregation by prothrombin and its fragments in vitro[J]. Eur. J. Biochem.,1999,263(1):50-56.
    [75]Wiessner J H, Hasegawa A T, Hung L Y, Mandel G S, Mandel N S. Mechanisms of calcium oxalate crystal attachment to injured renal collecting duct cells[J]. Kidney Int.,2001,59(2):637-644.
    [1]Ancharova A I, Potapovb S S, Moiseenkoc T N, Feofilov I V, Nizovskii A I. Model Experiment of in vivo Synchrotron X-ray Diffraction of Human Kidney Stones. Nucl. Instrum. Methods Phys. Res., Sect. A, 2007,575(1-2):221-224.
    [2]Rez S S P. Morphology of Crystals in Calcium Oxalate Monohydrate Kidney Stone. Urol. Res.,2007,35(6): 287-293.
    [3]Tsujihata M. Mechanism of Calcium Oxalate Renal Stone Formation and Renal Tubular Cell Injury. Int. J. Urol.,2008,15(2):115-120.
    [4]谭燕华,欧阳健明,马洁,冯海华,黄峰.红外光谱法在草酸钙结石研究中的应用[J].光谱学与光谱分析,2003,23(4):700-704.
    [5]Daudon M, Hennequin C, Boujelben G, Lacour B, Jungers P. Serial Crystalluria Determination and the Risk of Recurrence in Calcium Stone Formers. Kidney Int.,2005,67(5):1934-1943.
    [6]Robertson W G, Peacock M, Nordin B E C. Calcium Crystalluria in Recurrent Renal-stone Formers. Lancet, 1969,294(7610):21-24.
    [7]Hallson P C, Rose G A. A New Urinary Test for Stone "Activity". Brit. J. Urol.,1978,50(7):442-448.
    [8]King M, McClure W F, Andrews L C, Powder Diffraction File Alphabetic Index, Inorganic Phases/Organic Phases[M], International Center for Diffraction Data:Newtown Square, PA,1992.
    [9]谭燕华,欧阳健明,马洁,冯海华,黄峰.红外光谱法在草酸钙结石研究中的应用[J].光谱学与光谱分析,2003,23(4):700-704.
    [10]Moawad M M. Complexation and thermal studies of uric acid with some divalent and trivalent metal ions of biological interest in the solid state[J]. J. Coord. Chem.,2002,50(1):61-78.
    [11]Benramdane L, Bouatia M, Idrissi M O B, Draoui M. Infrared analysis of urinary stones, using a single reflection accessory and a KBr pellet transmission [J]. Spectros. Lett.,2008,41(2):72-80.
    [12]陈允魁.红外吸收光谱法及其应用[M].上海:上海交通大学出版社,1993:122-123.
    [13]Grases F, Sanchis P, Perello J, Costa-Bauza A. Role of uric acid in different types of calcium oxalate renal calculi[J]. Int. J. Urol.,2006,13(3):252-256.
    [14]Grases F, Sanchis P, Isern B, Perello J, Costa-Bauza A. Uric acid as inducer of calcium oxalate crystal development[J]. Scand. J. Urol. Nephrol.,2007,41(1):26-31.
    [15]Hojgaard I, Tiselius H G. Crystallization in the nephron[J]. Urol. Res.,1999,27(6):397-403.
    [16]Dean J A. Lange's Handbook of Chemistry[M]. Beijing:McGraw-Hill Book Co.,1999:3.22-3.23.
    [17]刘光启,马连湘,刘杰.化学化工物性数据手册[M].北京:化学工业出版社,2002:371-390.
    [18]周水根,孙西钊,叶章群.尿酸结石的成因与诊治[J].临床泌尿外科杂志,2001,16(4):147-149.
    [19]Basavaraj D R, Biyani C S, Browning A J, Cartledge J J. The role of urinary kidney stone inhibitors and promoters in the pathogenesis of calcium containing renal stones[J]. EAU-EBU Update Series,2007,5(3): 126-136.
    [20]Murayama T, Sakai N, Yamada T, Takano T. Role of the diurnal variation of urinary pH and urinary calcium in urolithiasis:A study in outpatients[J]. Int. J. Urol.,2001,8(10):525-532.
    [21]Shen Y-H, Li S-K, Xie A-J, Xu W-H, Qiu L-G, Yao H, Yu X-R, Chen Z-X. Controlled growth of calcium oxalate crystal in bicontinuous microemulsions containing amino acids[J]. Colloids Surf., B 2007,58(2): 298-304.
    [22]Chandra A K, Zeegers-Huyskens T. Theoretical study of the acidity and basicity of uric acid and its interaction with water[J]. J. Mol. Struc-Theochem.,2007,811(1-3):215-221.
    [23]Grases F, Villacampa A I, Costa-Bauza A, Sohnel O. Uric acid calculi:types, etiology and mechanisms of formation[J]. Clin. Chim. Acta.,2000,302(1-2):89-104.
    [24]Qiu S R, Wierzbicki A, Salter E A, Zepeda S, Orme C A, Hoyer J R, Nancollas G H, Cody A M, De Yoreo J J. Modulation of calcium oxalate monohydrate crystallization by citrate through selective binding to atomic steps[J]. J. Am. Chem. Soc.,2005,127(25):9036-9044.
    [1]Shekarriz B, Stoller M L. Uric acid nephrolithiasis:current concepts and controversies[J]. J. Urol.,2002, 168(4):1307-1314.
    [2]Ouyang J-M. Identification of urinary stones by X-ray photoelectron spectroscopy[J]. Spectros. Lett.,2004, 37(6):633-641.
    [3]邝荔,谭燕华,欧阳健明,钟红兴,梁蔚波,林雪莹,邱月琼.广东省东江流域泌尿系结石化学成分分析[J].广东医学,2002,23(10):1029-1031.
    [4]Siener R, Hesse A. The effect of a vegetarian and different omnivorous diets on urinary risk factors for uric acid stone formation[J]. Eur. J. Nutr.,2003,42(6):332-337.
    [5]Ekeruo W O, Tan Y H, Young M D, Dahm P, Malomey M E, Mathias B J, Albala D M, Preminger G M. Metabolic risk factors and the impact of medical therapy on the management of nephrolithiasis in obese patients[J]. J. Urol.,2004,172:159-163.
    [6]Daudon M, Hennequin C, Boujelben G, Lacour B, Jungers P. Serial crystalluria determination and the risk of recurrence in calcium stone formers[J]. Kidney Int.,2005,67(5):1934-1943.
    [7]King M, McClure W F, Andrews L C, and Holomery M A 1992 Powder Diffraction File Alphabetical Index, Inorganic Phases/Organic Phases[M]. International Center for Diffraction Data:1601 Park Lane, Pennsylvania,19081-2389, U.S.A.
    [8]Benramdane L, Bouatia M, Idrissi M O B, Draoui M. Infrared analysis of urinary stones, using a single reflection accessory and a KBr pellet transmission[J]. Spectros. Lett.,2008,41(2):72-80.
    [9]Rose G A. Urinary Stones:Clinical and Laboratory Aspects[M]. Baltimore:University Park Press,1982: 95-100.
    [10]孟茵,戴克胜,李玉云,李德发,郝艳梅,许惠云,沈继龙.皖北地区泌尿系统结石化学成份分析[J].上海医学检验杂志,2000,15(2):85-86.
    [11]Grases F, Sanchis P, Perello J, Costa-Bauza A. Role of uric acid in different types of calcium oxalate renal calculi[J]. Int. J. Urol.,2006,13(3):252-256.
    [12]Bouropoulos C, Vagenas N, Klepetsanis P, Stavropoulos N, Bouropoulos N. Growth of calcium oxalate monohydrate on uric acid crystals at sustained supersaturation[J]. Cryst. Res. Technol.,2004,39(8): 699-704.
    [13]Konigsberge E, Wang Z-H. Solubility of uric acid in salt solutions and artificial urine[J]. Monatsh. Chem., 1999,130(5):1067-1073.
    [14]Nicar M J, Hsu M C, Johnson T, Pak C Y. The preservative of urine samples for determination of renal stone risk factors[J]. Lab. Med.,1987,18(6):382-384.
    [15]Maalouf N M, Cameron M A, Moe O W, Sakhaee K. Novel insights into the pathogenesis of uric acid nephrolithiasis[J]. Curr. Opin. Nephrol. Hypertens.,2004,13(2):181-189.
    [16]Deng F, Ouyang J-M. Comparative investigations of ultrafine crystals in urine of healthy human and lithogenic patients[J]. Mater. Sci. Eng. C,2006,26(4):688-691.
    [17]Ismail S I, Tawashi R, Ismail Z. The effect of pH and urine dilution on the electrophoretic mobility of uric acid crystals[J]. Int. Urol. Nephrol.,1985,17(1):3-10.
    [1]Prywer J, Torzewska A. Bacterially induced struvite growth from synthetic urine:experimental and theoreticalcharacterization of crystal morphology [J]. Cryst. Growth Des.,2009,9(8):3538-3543.
    [2]Pak C Y. Kidney stones[J]. Lancet,1998,351(9188):1797-1801.
    [3]Bichler K H, Eipper E, Naber K, Braun V, Zimmermann R, Lahme S. Urinary infection stones[J]. Int. J. Antimicrob. Ag.,2002,19(6):488-498.
    [4]Coe F L, Evan A, Worcester E. Kidney stone disease[J]. J. Clin. Invest.,2005,115(10):2598-2608.
    [5]Griffith D P. Urease stones[J]. Urol. Res.,1979,7(3):215-221.
    [6]Jacobs D, Heimbach D, Hesse A. Chemolysis of struvite stones by acidification of artificial urine[J]. Scand. J. Urol. Nephrol.,2001,35(5):345-349.
    [7]Daudon M, Jungers P. Clinical value of crystalluria and quantitative morphoconstitutional analysis of urinary calculi[J]. Nephron Physiol.,2004,98(2):31-36.
    [8]King M, McClure W F, Andrews L C, and Holomery M A 1992 Powder Diffraction File Alphabetical Index, Inorganic Phases/Organic Phases[M]. International Center for Diffraction Data:1601 Park Lane, Pennsylvania,19081-2389, U.S.A.
    [9]Bhatt P T, Paul P. Analysis of urinary stone constituents using powder X-ray diffraction and FT-IR[J]. J. Chem. Sci.,2008,120(2):267-273.
    [10]Benramdane L, Bouatia M, Idrissi M O B, Draoui M. Infrared analysis of urinary stones, using a single reflection accessory and a KBr pellet transmission[J]. Spectros. Lett.,2008,41(2):72-80.
    [11]陈允魁.红外吸收光谱法及其应用[M].上海:上海交通大学出版社,1993:122-123.
    [12]谭燕华,欧阳健明,马洁,冯海华,黄峰.红外光谱法在草酸钙结石研究中的应用[J].光谱学与光谱分析,2003,23(4):700-704.
    [13]Schnablegger H, Glatter O. Optical sizing of small colloidal particles:an optimized regularization technique[J]. Appl. Opt.,1991,30(33):4889-4896.
    [13]朱永法.纳米材料的表征与测试技术[M].北京:化学工业出版社,2006:11-20.
    [14]岳成凤,杨冠玲,何振江.动态光散射光强自相关函数与颗粒分布关系及算法比较[J].光电子技术与信息,2004,17(1):10-14.
    [15]Deng F, Ouyang J-M. Comparative investigations of ultrafine crystals in urine of healthy human and lithogenic patients[J]. Mater. Sci. Eng. C,2006,26(4):688-691.
    [1]Sheng X-X, Ward M D, Wesson J A. Adesion between molecules and calcium oxalate crystals:critical interaction in kidney stone formation[J]. J. Am. Chem. Soc,2003,125(10):2854-2855.
    [2]Bhatt P T, Paul P. Analysis of urinary stone constituents using powder X-ray diffraction and FT-IR[J]. J. Chem. Sci.,2008,120(2):267-273.
    [3]Brikowski T H, Lotan Y, Pearle M S. Climate-related increase in the prevalence of urolithiasis in the United States[J]. Proc. Natl. Acad. Sci. USA,2008,105(28):9841-9846.
    [4]严春寅,王亮良.尿路结石的流行病学特点及其预防[J].临床外科杂志,2008,16(11):733-734.
    [5]Daudon M, Hennequin C, Boujelben G, et al. Serial crystalluria determination and the risk of recurrence in calcium stone formers[J]. Kidney Int.,2005,67(5):1934-1943.
    [6]Daudon M, Jungers P. Clinical value of crystalluria and quantitative morphoconstitutional analysis of urinary calculi[J]. Nephron Physiol.,2004,98(2):31-36.
    [7]邝荔,谭燕华,欧阳健明,等.广东省东江流域泌尿系结石化学成分分析[J].广东医学,2002,23(10):1029-1031.
    [8]King M, McClure W F, Andrews L C, and Holomery M A 1992 Powder Diffraction File Alphabetical Index, Inorganic Phases/Organic Phases[M]. International Center for Diffraction Data:1601 Park Lane, Pennsylvania,19081-2389, U.S.A.
    [9]谭燕华,欧阳健明,马洁,冯海华,黄峰.红外光谱法在草酸钙结石研究中的应用[J].光谱学与光谱分析,2003,23(4):700-704.
    [10]Moawad M M. Complexation and Thermal Studies of Uric Acid with Some Divalent and Trivalent Metal Ions of Biological Interest in the Solid State[J]. J. Coord Chem,2002,50(1):61-78.
    [11]Benramdane L, Bouatia M, Idrissi M O B, Draoui M. Infrared analysis of urinary stones, using a single reflection accessory and a KBr pellet transmission[J]. Spectros. Lett.,2008,41(2):72-80.
    [12]陈允魁.红外吸收光谱法及其应用[M].上海:上海交通大学出版社,1993.
    [13]Wesson A J, Worcester E M, Wiessner J H, Mandel N S, Kleinman J G. Control of calcium oxalate crystal structure and cell adherence by urinary macromolecules[J]. Kidney Int.,1998,53(4):952-957.
    [14]Laurence M E, Levillain P, Lacour B, Daudon M. Advantage of zero-crossing-point first-derivative spectrophotometry for the quantification of calcium oxalate crystalline phases by infrared spectrophotometry[J]. Clin. Chim. Acta,2000,298(1-2):1-11.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.