菌根真菌及其促生细菌提高油松降解柴油的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究在纯培养条件下,对9种外生菌根真菌(Ectomycorrhizal fungi, ECM真菌)灰鹅膏菌Amanita vaginata、乳黄粘盖牛肝菌Suillus lactifluus、绒粘盖牛肝菌Suillus tomentosus、亚黄粘盖牛肝菌Suillus subaureus、灰环粘盖牛肝菌Suillus laricinus、美丽褶孔牛肝菌Phylloporus bellus、褐黄牛肝菌Boletus luridus、黄地勺菌Spathularia flavida和粘盖牛肝菌Suillus bovinus在柴油胁迫下的耐受性进行了筛选;并从石油烃污染地采样分离可降解柴油的菌根真菌促生细菌,对菌根真菌-菌根促生细菌互作关系作了研究,得出以下结论:
     1外生菌根真菌柴油降解能力的筛选
     对9种外生菌根真菌的柴油降解能力进行了筛选,在9种ECM真菌中柴油对Suillus tomentosus(ST)的抑菌率均显著低于其余各菌;无论是在液体含油培养基还是葡萄糖含油培养基中,ST均表现出很高的菌丝生物量和柴油降解率;采用GC/MS对ST柴油降解后的产物分析可得,碳数为18-29的正链烷烃被降解的较多,降解产物多为碳数较少的正链烷烃、含多个侧链及侧链较长的烷烃。在含油培养基中添加少量葡萄糖可促进菌丝生物量在柴油胁迫下的积累,显著降低柴油对各菌的抑菌率,提高柴油降解率。
     2可降解柴油的菌根促生细菌的筛选
     在石油烃污染地的油松菌根上分离出可在以柴油为唯一碳源的无机盐培养基上生长的细菌18株。将18株细菌与菌根真菌ST在纯培养条件下对峙培养,筛选出对菌根真菌生长具有促进作用的细菌2株及抑制作用较低的细菌3株;通过ST与上述5株细菌在Kottke液体培养基中的共培养,筛选出菌株S826及H2对ST生物量的积累有显著的促进作用。
     3纯培养条件下单、双接种对柴油降解效率的影响
     在10 g/L柴油含量的液体培养基中研究了单接种ST、S826、H2及ST-S826与ST-H2双接种的柴油降解率,其降解率分别为36.6%、22.7%、41.4%、63.9%及55.3%,双接种ST-H2柴油降解效率显著高于单接种ST及单接种H2;双接种ST-S826柴油降解效率显著高于单接种ST与单接种S826之和。S826可显著促进菌根真菌ST对柴油的降解效率。
     4促生细菌S826及H2的菌种鉴定
     S826在KB培养基上为优势菌株,菌落边缘光滑,呈黄色,有凸起,粘稠而有光泽,表面湿润,KB培养基变成绿色,有恶臭。革兰氏反应阴性,椭圆状。硫化氢试验、甲基红试验、硝酸还原试验、吐温水解试验和明胶液化试验为阴性;吲哚试验,运动性试验、柠檬酸盐试验为阳性。16S rDNA PCR产物长度均为1.5 kb,系统进化树显示,菌株S826与GU186116.1(Pseudomonas putida strain IHBB1369)菌株构成一个分支,16S rRNA序列的同源性达到99%以上。基于生物学特性和16S rDNA序列分析,将S826初步定为恶臭假单胞菌属中的已知种。
     H2在锰营养琼脂培养基上为优势菌株,菌落呈浅黄色,微微隆起,有光泽,易挑起,边缘齿状。革兰氏反应阳性,菌体杆状,有芽孢。硫化氢试验、吐温水解试验、柠檬酸盐试验为阴性;吲哚试验,运动性试验、甲基红试验、硝酸还原试验和明胶液化试验为阳性。系统进化树显示,菌株H2与EU931557.1( Brevibacillus brevis strain ZFJ-2)菌株构成一个分支,16S rRNA序列的同源性达到99%以上。基于生物学特性和16S rDNA序列分析,将H2初步定为短短芽孢杆菌属中的已知种。
     5菌根真菌及其促生细菌提高油松降解柴油的作用
     实验设油松单接种ST(S)、S826(B)及双接种ST与S826(S+B)3个处理,研究不同处理的油松幼苗在0、2、5、10 g/kg干土柴油浓度下的生理反应。结果表明接种处理的油松幼苗(B、S与S+B)生长状况(株高、地径、油松幼苗生物量、根冠比)优于未接种对照;单、双接种处理通过提高油松体内酶活性(SOD)、脯氨酸、叶绿素、可溶性蛋白含量、根系活力及降低植物体内MDA含量减缓了柴油胁迫对植物的毒害作用,有效提高了柴油的降解效率。在柴油初始浓度为2 g/kg干土时,接种处理B、S与S+B的柴油降解效率分别为79.8%、81.5%与82.9%,分别为对照(74.5%)的107.1%、109.4%和111.3%;在柴油浓度为5 g/kg干土时,接种处理的柴油降解效率分别为71.7%、77.1%与81.1%,显著高于对照(69.9%);柴油浓度为10 g/kg干土时,接种处理柴油降解效率为61.7%、66.1%与71.2%,分别比对照(54.2%)高13.8%、22.0%、31.4%。同一柴油浓度下,双接种处理柴油降解效率显著高于单接种,单接种处理S柴油降解效率显著高于单接种处理B。表明双接种处理柴油降解效率优于单接种,单接种菌根真菌处理S优于单接种细菌处理B。
This paper was conducted for investigating the capability of ectomycorrhizal (ECM) fungi Amanita vaginata、Suillus lactifluus、Suillus tomentosus、Suillus subaureus、Suillus laricinus、Phylloporus bellus、Boletus luridus、Spathularia flavida and Suillus bovinus to degradate diesel in vitro. The mycorrhizal helper bacteria (MHB) able to degradate the diesel oil were isolated and purified from ectomycorrhizal of Pinus tabulaeformis, Study on the interaction between ectomycorrhizal and MHB was carried out. Conclusions as follows:
     1. Screening of the ECM fungi to degrade diesel
     9 species of ECM fungi were exposed to culture contained diesel, the inhibition of diesel on Suillus tomentosus ( ST) was significantly lower than the rest. ST have shown a high mycelial biomass and diesel oil degradation efficiency in Kottke medium with diesel oil as sole carbon source whether or not added glucose; analysis of production of diesel after 14 days biodegradation by ST using GC / MS, most 18-19 Cs normal paraffin hydrocarbons were degraded to paraffin hydrocarbons with much less Cs、multi-branched and long-branched hydrocarbonSThe mycelial biomass and the rate of diesel degradation were effecicenty promoted when some glucose (1 g/L) was added in the diesel-only Kottke medium.
     2. Isolating and screening MHB able to degrade diesel
     18 strains of bacteria were isolated from the ectomycorrhizal of Pinus tabulaeformis grown in petroleum contamined soils using inorganic salt medium with diesel as sole carbon source. Under face-to-face culture with ST, Screening out 2 strains which can promote ST growth and 3 have less inhibition. These five strains co-culture with ST in Kottke liquid medium, only strains S826 and H2 can promote ST biomass accumulation apparently.
     3. Effect on diesel degradation efficiency of single and double inoculation under pure culture
     Single inoculation with ST, S826, H2, and double inoculation with ST-S826 and ST-H2 in Kottke medium with diesel oil as sole carbon source (10 g/L) , the efficiency of diesel degradation were 36.6%, 22.7%, 41.4%, 63.9% and 55.3%. The degradation efficiency of double inoculation ST-H2 was much higher than single inoculation ST and H2, and ST-S826 was higher than the sum of single inoculation ST and S826 significantly. S826 can promote the diesel degradation efficiency of ST apparently.
     4 Identification of Strains S826 and H2
     S826 was the dominant strain in KB medium, colony is yellow, viscous and shiny, with central uplift, surface moist and edges smooth, KB medium was turned into green and fetid. Gram-reaction: negative. Hydrogen sulfide, methyl red test, nitrate reduction test, Tween hydrolysis and gelatin liquefaction test were negative; Indole test, exercise test and the citrate test was positive. The phylogenetic tree showed that strains S826 and GU186116.1 (Pseudomonas putida strain IHBB1369) formed a branch, 16S rRNA sequence homogeneity among this two strains was more than 99%. Based on biological characteristics and 16S rDNA sequence analysis, S826 was identified as P. putida.
     H2 is the dominant strain in manganese nutrient agar medium, colony is pale and yellow, bright, with central slightly elevated, easy to provoke, edge dentate. Gram-positive, spore-forming and rod-shaped bacteria. H2 Hydrogen sulfide test, Tween hydrolysis test and citrate test were negative; indole test, exercise test, methyl red test, nitrate reduction test and gelatin liquefaction teste were positive. Phylogenetic tree showed that strains H2 and EU931557.1 (Brevibacillus brevis strain ZFJ-2) constitute the same branch, 16S rRNA sequence homogeneity among this two strains was more than 99%. Based on biological characteristics and 16S rDNA sequence analysis, H2 was identified as B. brevis
     5 The effect of ST associated with its MHB on improvement pinus’s ability to degrade diesel
     This experiment was set pinus single inoculated with bacterial S826 (B)、ST (S) and dual inoculated with ST-S826 (S+B), the control group only pinus Studying on pinus’s Growth and physiological responses under these four treatmenrs in soils containing 0、2、5、10 g diesel per kilogram dry soil. The pot trial result in the treatments B、S and S+B’s pinus growth status (height, ground diameter, biomass and root to shoot ratio of pinus seedlings) superior to treatment CK The single and dual inoculation treatments could improve enzyme activity (SOD), proline, chlorophyll and soluble protein content, root activity and lower MDA content in plants to inhibit diesel toxcity on pinus and promote the efficicency of diesel degradation. The diesel degradation efficicency of B、S and S+B was 79.8%, 81.5% and 82.9% separately when 2 g diesel in per kilogram dry soil, is 107.1%、109.4% and111.3% of CK (74.5%);69.9%, 71.7%, 77.1% and 81.1% while 5 g diesel in per kilogram dry soil and 10 g diesel in per kilogram dry soil was 61.7%, 66.1% and 71.2% separately, and 13.8%、22.0%、31.4% higher than CK (54.2%). At the same diesel concentration, the degradation efficiency on diesel of S+B was higher than S and B, and S is higher than B.
引文
陈莉,缪卫国,刘海洋,努尔孜亚. 2008.短短芽孢杆菌A57对棉花主要病原真菌的拮抗机理.西北农业学报, 17(4): 149~155
    陈天寿. 1995.微生物培养基的制造与应用.北京:中国农业出版社
    程国玲,李培军,王凤友,韩桂云. 2003.几种纯培养外生菌根真菌对矿物油的降解效果.中国环境科学, 23(1): 74~76
    程国玲,孙晖,杜葳. 2007.菌根真菌对有机污染物的降解研究.土壤通报, 38(4): 799~803
    程丽娟,薛泉宏. 2000.微生物学实验技术.西安:世界图书出版社
    丁克强,孙铁珩,李培军. 2000.石油污染土壤的生物修复技术.生态学杂志, 19(2): 50~55
    耿春女,李培军,陈素华,程云,张海荣,李雪华,许华夏,张春桂,韩桂云,刘微娜. 2002.菌根生物修复技术在沈抚污水灌溉区的应用前景.环境污染治理技术与设备, 3(7): 51~55
    弓明钦,陈应龙,仲崇禄. 1997.菌根研究及应用.北京:中国林业出版社: 51~55
    韩秀丽,贾桂霞,牛颖. 2006.外生菌根真菌提高树木抗旱性机理研究进展.水土保持研究, 13(5): 42~44
    郝再彬,苍晶,徐仲. 2004.植物生理实验.哈尔滨:哈尔滨工业大学出版社
    贺忠群,贺超兴,任志雨,李焕秀. 2008.不同丛枝菌根真菌对番茄酶活性及光合作用的影响.北方园艺, (6): 21~24
    黄继川,唐明,牛振川,张茹琴. 2007.四川遂宁地区石油污染土壤中丛枝菌根真菌.生态学杂志, 26(9): 1389~1392
    黄艺,彭博,李婷,梁振春. 2007.外生菌根真菌对重金属铜镉污染土壤中油松生长和元素积累分布的影响.植物生态学报, 31(5): 923~929
    黄艺,赵曦,敖晓兰. 2006. 4种外生菌根真菌对滴滴涕的耐受性及生理响应.环境科学研究, 19: 36~41
    礼晓,黄艺,魏志成. 2008.两种纯培养外生菌根真菌对柴油的降解效率.应用生态学报, 19(7): 1579~1584
    李合生. 2000.植物生理生化试验原理和技术.北京:高等教育出版社: 194~201
    李敏,王维华,刘润进. 2003. AM真菌和镰刀菌对西瓜根系膜脂过氧化作用和膜透性的影响.植物病理学报, 33(3): 229~232
    李守萍,程玉娥,唐明,陈桂梅,高瑞霞,徐辉. 2009.油松菌根促生细菌-荧光假单胞菌的分离与鉴定.西北植物学报, 29(10): 2103~2108
    廖继佩,林先贵,曹志洪. 2003.内外生菌根真菌对重金属的耐受性及机理.土壤, 35: 370~377
    刘世亮,骆永明,丁克强,李华,吴龙华,邢维芹,宋静,曹志洪,陶澍. 2004.苯并[a]芘污染土壤的丛枝菌根真菌强化植物修复作用研究.土壤学报, 41: 336~342
    刘晓艳,纪学雁,李兴伟,戴春雷,楚伟华. 2005.石油类污染物在土壤中迁移的实验研究进展.土壤, 37(5): 482~48
    罗明,韩剑,蒋平安,武红旗. 2009.新疆罗布泊地区可培养嗜盐细菌多样性.生物多样性, 3: 288~295
    孙群,胡景江. 2006.植物生理学研究技术.杨凌:西北农林科技大学出版社
    唐明,薛,任嘉红,胡景江,刘建朝. 2003. AMF提高沙棘抗旱性的研究.西北林学院学报, 18(4): 29~31
    王丽萍,郭光霞,华素兰,张玮玮. 2009.丛枝菌根真菌-植物对石油污染土壤修复实验研究.中国矿业大学学报, 38: 91~95
    于富强,刘培贵. 2002.外生菌根研究及应用的回顾与展望.生态学报, 22(12): 2217~2226
    岳占林,蒋平安. 2006.石油类污染物的特性及环境行为.石化技术与应用, 24(4): 307~309
    张海涵,唐明,陈辉,杜小刚,郑华. 2007.不同生态条件下油松(Pinus tabulaeformis)菌根根际土壤微生物群落.生态学报, 27(12): 5463~5470
    赵平娟,安锋,唐明. 2007.丛枝菌根真菌对连翘幼苗抗旱性的影响.西北植物学报, 27(2): 0396~0399
    朱先灿,宋凤斌,徐洪文. 2010.低温胁迫下丛枝菌根真菌对玉米光合特性的影响.应用生态学报, 21(2): 470-475
    Allen M F. 1991. The ecology of mycorrhizae. Cambridge (USA): Cambridge University Press Arnold C W, Parfitt D G and Kaltreider M. 2007. Phytovolatilization of Oxygenated Gasoline-Impacted Groundwater at an Underground Storage Tank Site Via Conifers. International Journal of Phytoremediation, 9(1): 53~69
    Ashford A E, Peterson C A, Carpenter J L, Cairney J W G, Allaway W G. 1988. Structure and permeability of the fungal sheath in the Pisonia mycorrhiza. Protoplasma, 147: 149~161
    Atlas R M. 1981. Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiological Reviews, 45(1): 180~209
    Atlas R M. 1984. Petroleum Microbiology. New York: MacMillan publish company: 683 Azcón-Aguilar C and Barea J M. 1996. Arbuscular mycorrhizas and biological control of soil-borne plant pathogens-an overview of the mechanisms involved. Mycorrhiza, 6(6): 457~464
    Barahona L M, Vázquez R R, Velasco M H, Jarquín C V, Pérez O Z, CantúA M, Albores A. 2004. Diesel removal from contaminated soils by biostimulation and supplementation with crop residues. Applied Soil Ecology, 27(2): 165~175
    BarcelóJ and Poschenrieder C. 2003. Phytoremediation: principles and perspectives. Contributions to Science, 2(3): 333~344
    Berge O, Fages J, Mulard D and Balandreau J. 1990. Effects of inoculation with Bacillus circulans and Azospirillum lipoferum on crop-yield in field grown maize. Symbiosis, 9(3): 259–266
    Bethlenfalvay G J, Barea J-M. 1994. Mycorrhizae in sustainable agriculture. I. Effects on seed yield and soil aggregation. American Journal of Alternative Agriculture, 9(4): 157~161
    Bonello P, Bruns T D, Gardes M. 1998. Genetic structure of a natural population of the ectomycorrhizal fungus Suillus pungens. New Phytologist Trust, 138: 533~542
    Bowen G D and Rovira, A D. 1999. The rhizosphere and its management to improve plant growth. Advances in Agronomy, 66: 1~102
    Braun-Lüllemann A, Hüttermann A and Majcherczyk A. 1999. Screening of ectomycorrhizal fungi for degradation of polycyclic aromatic hydrocarbons. Applied Microbiology and Biotechnology, 53: 127~132
    Bright D A, Healey N. 2003. Contaminant risks from biosolids land application: Contemporary organic contaminant levels in digested sewage sludge from five treatment plants in Greater Vancouver BritishColumbia. Environmental Pollution, 126(1): 39~49
    Bull C T, Weller D M, Thomashow L S. 1991. Relationship between root colonization and supression of Gaeumannomyces graminis var tritici by Pseudomonas fluorescens strain 2-79. Phytopathology, 81: 954~959
    Burken J G and Schnoor J L. 1999. Distribution and Volatilization of Organic Compounds Following Uptake by Hybrid Poplar Trees. International Journal of Phytoremediation, 1(2): 139~151
    Carruthers F I, Shum-Thomas T, Conner M, Mahanty H K. 1995. The significance of antibiotic production by Pseudomonas aureofaciens PA 147-2 for biological control of Phytophora megasperma root of asparagus. Plant and Soil, 170: 339~344
    Cerniglia C E. 1984. Microbial metabolism of polycyclic aromatic hydrocarbons. Advance Appllied Microbiology, 30: 31~71
    Chaudhry Q, Blom-Zandstra M, Gupta S, Joner E J. 2005. Utilizing the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment. Environmental Science Pollution Research, 12: 34~48
    Chen Y X, Mei R H, Lu S, Liu L and Kloepper J W. 1996. The use of yield increasing bacteria (YIB) as plant growth-promoting rhizobacteria in Chinese agriculture. In: Utkehede R S and Gupta V K. 1996. Management of Soil Borne Disease. New Delhi: Kalyani Publishers: 165~184
    Chiapusio G, Pujol S, Toussaint M L, Badot P M, Binet P. 2007. Phenanthrene toxicity and dissipation in the rhizosphere of grassland plants (Lolium perenne L. and Trifolium pratense L.) in three spiked soils. Plant and Soil, 294: 103~112
    Couto M N P F S, Monteiro E and Vasconcelos M T S D V. 2010. Mesocosm trials of bioremediation of contaminated soil of a petroleum refinery: comparison of natural attenuation, biostimulation and bioaugmentation. Environmental Science and Pollution Research, Doi:10.1007/s11356-010-0318-y
    De Freitas J R, and Germida J J. 1991. Pseudomonas cepacia and P. putida as winter wheat inoculants for biocontrol of Rhizobium solani. Canadian Journal of Microbiology, 37: 780~789
    Debiane D, Gar?on G, Verdin A, Fontaine J, Durand R, Ferjani A G, Shirali P, HadjSahraoui A L. 2008. In vitro evaluation of the oxidative stress and genotoxic potentials of anthracene on mycorrhizal chicory roots. Environmental and Experimental Botany, 64(2): 120~127
    Delille D, Pelletier E, Blanco A R, Ghiglione J F. 2009. Effects of nutrient and temperature on degradation of petroleum hydrocarbons in sub-Antarctic coastal seawater. Polar Biology, 32: 1521~1528
    Deveau A, BruléC, Palin B, Champmartin D, Rubini P, Garbaye J, Sarniguet A and Frey-Klett P. 2010. Role of fungal trehalose and bacterial thiamine in the improved survival and growth of the ectomycorrhizal fungus Laccaria bicolor S238N and the helper bacterium Pseudomonas fluorescens BBc6R8. Environmental Microbiology Reports, doi: 10.1111/j.1758-2229.2010.00145.x
    Deveau A, Palin B, Delaruelle C, Peter M, Kohler A, Pierrat J C, Sarniguet A, Garbaye J, Martin F and Frey-Klett P. 2007. The mycorrhiza helper Pseudomonas ?uorescens BBc6R8 has a specific priming effect on the growth, morphology and gene expression of the ectomycorrhizal fungus Laccaria bicolor S238N. New Phytologist, 175(4): 743~755
    Díaz M P, Grigson S J W, Peppiatt C J and Burgess J G. 2000. Isolation and Characterization of Novel Hydrocarbon-Degrading Euryhaline Consortia from Crude Oil and Mangrove Sediments. Marine Biotechnology, 2: 522~532
    Dodd J C, Boddington C L, Rodriguez A, Carmen G-C, Mansur I. 2000. Mycelium of Arbuscular Mycorrhizal fungi (AMF) from different genera: form, function and detection. Plant and Soil, 226: 131~151
    Donnelly P K and Fletcher J S. 1995. PCB metabolism by ectomycorrhizal fungi. Bulletin of Environmental Contamination and Toxicology, 54: 507~513
    Duponnois R and Garbaye J. 1990. Some mechanisms involved in growth stimulation of ectomycorrhizal fungi by bacteria. Canadian Journal of Botany, 68(10): 2148~2152
    Freitas J R, Gupta V V S R, Germida, J J. 1993. Influence of Pseudomonas syringae R25 and P. putida on the growth and N fixation (acetilene reduction activity) of pea (Pisum sativum L.) and field bean (Phaseolus vulgaris L.). Biology and Fertility of Soils, 16: 215~220
    Garbaye J and Duponnois R. 1992. Specificity and function of mycorrhization helper bacteria (MHB) associated with the Pseudotsuga menziesii-Laccaria laccata symbiosis. Symbiosis, 14: 335~344
    Garbaye J. 1994. Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytologist, 128: 197~210
    Gaskins M H, Albrech S L, Hubbell D H. 1985. Rhizosphere bacteria and their use to increase plant productivity: A review. Agriculture, Ecosystems and Environment, 12(2): 99~116
    Gerhardt K E, Huang X D, Glick B R, Greenberg B M. 2009. Phytoremediation and rhizoremediation of organic soil contaminants: Potential and challenges. Plant Science, 176(1): 20~30
    Gramass G, Voigt K D, Kirsche B. 1999. Degradation of polycyclic aromatic hydrocarbons with three to seven aromatic rings by higher fungi in sterile and unsterile soils. Biodegradation, 10: 51~ 62
    Gunderson J. 2006. The effect of hydrocarbon contamination and mycorrhizal inoculation on poplar fine root dynamics. Saskatoon. Canada: University of Saskatchewan.
    Gunderson J J, Knight J D, and Van Rees K C J. 2007. Impact of Ectomycorrhizal Colonization of Hybrid Poplar on the Remediation of Diesel-Contaminated Soil. Journal of Environmental Quality, 36: 927~934
    Gutiérrez-Ma?ero F J, Ramos-Solano B, Probanza A, Mehouachi J R, Tadeo F and Talon M. 2001. The plant-growth-promoting rhizobacteria Bacillus pumilus and B. licheniformis produce high amounts of physiologically active gibberellins. Physiologia Plantarum, 111: 206~211
    Handelsman J, Raffel S, Mester E H, Wunderlich L and Crau C R. 1990. Biological control of damping-off of alfalfa seedlings with Bacillus cereus UW85. Appllied and Environmental Microbiology, 56: 713~718
    Hartley J, Cairney J W G, Meharg A A. 1997. Do ectomycorrhizal fungi exhibit adaptive tolerance to potentially toxic metals in the environment. Plant and Soil, 189: 303~319
    Heinonsalo J, Jorgensen K S, Haahtela K, Sen R. 2000. Effects of Pinus sylvestris root growth and mycorrhizosphere development on bacterial carbon source utilization and hydrocarbon oxidation in forest and petroleum-contaminated soils. Canadian Journal of Microbiology, 46(5): 451~464
    Hester M W and Mendelssohn I A. 2000. Long-term recovery of a Louisiana brackish marsh plant community from oil-spill impact:vegetation response and mitigating effects of marsh surface elevation. Marine Environmental Research, 49(3): 233~254
    Horel A and Schiewer S. 2009. Investigation of the physical and chemical parameters affecting biodegradation of diesel and synthetic diesel fuel contaminating Alaskan soils. Cold Regions Scienceand Technology, 58(3): 113–119
    Hrynkiewicz K, Baum C, Niedojad?o J, Dahm H. 2009. Promotion of mycorrhiza formation and growth of willows by the bacterial strain Sphingomonas sp. 23L on fly ash. Biology and Fertility of Soils, 45: 385~394
    Johansson J F, Paul L R, Finlay R D. 2004. Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiology Ecology, 48: 1~13
    Joner E J, Hirmann D, Szolar O H J, Todorovic D, Leyval C and Loibner A P. 2004. Priming effects on PAH degradation and ecotoxicity during a phytoremediation experiment. Environmental Pollution, 128(3): 429~435
    Kaimi E, Mukaidani T, Miyoshi S, Tamaki M. 2006. Ryegrass enhancement of biodegradation in diesel-contaminated soil. Environmental and Experimental Botany, 55(1-2): 110~119
    Kanaly R A, Bartha R, Watanabe K, Harayama S. 2000. Rapid Mineralization of Benzo[a]pyrene by a Microbial Consortium Growing on Diesel Fuel. Applied and Environmental Microbiology, 66: 4205~4211
    Kataoka R and Taniguchi T. 2009. Fungal selectivity of two mycorrhiza helper bacteria on five mycorrhizal fungi associated with Pinus thunbergii. World Journal Microbiology and Biotechnology, 25: 1815~1819
    Kataoka R and Futai K. 2009. A new mycorrhizal helper bacterium, Ralstonia species, in the ectomycorrhizal symbiosis between Pinus thunbergii and Suillus granulatus. Biology and Fertility of Soils, 45: 315~320
    Kennedy A C and Smith K L. 1995. Soil microbial diversity and the sustainability of agricultural soils. Plant and Soil, 170: 75~86
    Khan A G, Kuek C, Chaudhry T M, Khoo C S and Hayes W J. 2000. Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere, 41(1-2): 197~207
    Kirk J L, Moutoglis P, Klironomos J, Lee1 H, Trevors J T. 2005. Toxicity of diesel fuel to germination, growth and colonization of Glomus intraradices in soil and in vitro transformed carrot root cultures. Plant and Soil, 270: 23~30
    Kloepper J W, Schroth M N, Miller T D. 1980. Effects of rhizosphere colonization by plant growth-promoting rhizobacteria on potato plant development and yield. Phytopathology, 70: 1078~1082
    Kloepper J W. 1993. Plant-growth promoting rhizobacteria as biological control agents. In: Metting FB (ed) Soil Microbial Ecology: Applications in Agricultural and Environmental. New York: Management Marcel Dekker: 255~274
    Koller C E, Patrick J W, Rose R J, Offler C E and MacFarlane G R. 2008. Arsenic and Heavy Metal Accumulation by Pteris vittata L. and P. umbrosa R Br.. Bulletin of Environmental Contamination and Toxicology, 80: 128~133
    Komilis D P, Vrohidou A E K, Voudrias E A. 2010. Kinetics of Aerobic Bioremediation of a Diesel-Contaminated Sandy Soil: Effect of Nitrogen Addition. Water, Air, & Soil Pollution, 208: 193~208
    Kottke I, Guttenberger M, Hampp R, Oberwinkler F. 1987. An in vitro method for establishing mycorrhizae on coniferous tree seedlings. Trees-Structure and Function, 1: 191~194
    Krupa P and Kozdrój J. 2007. Ectomycorrhizal Fungi and Associated Bacteria Provide Protection Against Heavy Metals in Inoculated Pine ( Pinus Sylvestris L. ) Seedlings. Water Air Soil Pollut, 182: 83~90
    Kuiper I, Lagendijk E L, Bloemberg G V, Lugtenberg B J J. 2004. Rhizoremediation: a beneficial plant-microbe interaction. Molecular Plant-Microbe Interactions, 17: 6~15
    Leigh M B, Fletcher J S, Fu X, Schmitz F J. 2002. Root turnover: an important source of microbial substrates in rhizosphe reremediation of recalcitrant contaminants. Environmental Science and Technology, 36: 1579~1583
    Li H, Zhang Y, Kravchenko I, Xu H, Zhang C G. 2007. Dynamic changes in microbial activity and community structure during biodegradation of petroleum compounds: A laboratory experiment. Journal of Environmental Sciences, 19(8): 1003~1013
    Lin X Z, Yang B J, Shen J H, Du N. 2009. Biodegradation of Crude Oil by an Arctic Psychrotrophic Bacterium Pseudoalteromomas sp P29. Current Microbiology, 59: 341~345
    Liu D. 1980. Fate of petroleum hydrocarbons in sewage sludge after land disposal. Bulletin of Environmental contamination and Toxicology, 25: 612~622
    Lugtenberg B J J, Dekkers L, Bloemberg G V. 2001. Molecular determinants of rhizosphere colonization by Pseudomonas. Annual Review of Phytopathology, 39: 461~490
    Marshall K C. 1992. Biofilms: an overview of bacterial adhesion, activity, and control at surfaces. ASM (American Society for Microbiology) News, 58: 202~207
    Marx D H and Rowan S J. 1981. Fungicides influence growth and development of sensitive specific ectomycorrhizae on loblolly pine seedlings. Forest Science, 27: 167~176
    Mathur N and Vyas A. 2000. Infulence of arbuscular mycorrhizae on biomass production, nutrient uptake and physiological changes in Ziziphus mauritiana Lam, under water stress. Journal of Arid Environments, 45(3): 191~195
    Mayak, Tirosh T, and Glick B R. 1999. Effect of wild-type and mutant plant growth-promoting rhizobacteria on the rooting of mung bean cuttings. Journal of Plant Growth Regulation, 18: 49~53
    McEldowney S, Hardman D J, Waite S. 1993. Treatment Technologies. In: Khan A G, Kuek C, Chaudhry T M, Khoo C S and Hayes W J. 2000. Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere, 41: 197~207
    Meharg A A and Cairney J W G. 2000. Ectomycorrhizas-extending the capabilities of rhizosphere remediation? Soil Biology and Biochemistry, 32: 1475~1484
    Meharg A A, Dennis G R, Cairney J W G. 1997. Biotransformation of 2,4,6-trinitrotoluene (TNT): by ectomycorrhizal basidiomycetes. Chemosphere, 35: 513~521
    Miransari M. 2010. Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stress. Plant Biology, doi: 10.1111/j.1438-8677.2009.00308.x
    Mishra A and Nautiyal C S. 2009. Functional diversity of the microbial community in the rhizosphere of chickpea grown in diesel fuel-spiked soil amended with Trichoderma ressei using sole-carbon-source utilization profiles. World journal of Microbiology and Biotechnology, 25: 1175~1180
    Mohan S V, Kisa T, Ohkuma T, Kanaly R A, Shimizu Y. 2006. Bioremediation technologies for treatment of PAH-contaminated soil and strategies to enhance process efficiency. Reviews in Environmental Science and Biotechnology, 5: 347~374
    Mohsenzade F, Nasseri S, Mesdaghinia A, Nabizadeh R, Zafari D, Chehregani A. 2009.Phytoremediation of petroleum-contaminated soils: Pre-screening for suitable plants and rhizospheral fungi. Toxicological and Environmental Chemistry, 91: 1443~1453
    Molina R, Massicotte H, Trappe J M. 1992. Specificity Phenomena in Mycorrhizal Symbiosis: Community-Ecological Consequences and Practical Implications In: Allen M F. Mycorrhizal Functioning: an integrative plant-fungal process. New York: Chapman and Hall: 357~423
    Nikolopoulou M and Kalogerakis N. 2008. Enhanced bioremediation of crude oil utilizing lipophilic fertilizers combined with biosurfactants and molasses. Marine Pollution Bulletin, 56(11): 1855~1861
    Okon Y and Hadar Y A. 1987. Microbial inoculants as crop yield enhacers. Critical Review in Biotechnology, 6(1): 61~85
    Penet F, Marchal R, Sghir A, Monot F. 2004. Biodegradation of hydrocarbon cuts used for diesel oil formulation. Applied Microbiology and Biotechnology, 66: 40~47
    Peterson R L, Massicotte H B and Melviliel L H. 2004. Mycorrhizas: Anatomy and Cell Biology. Ottawa: NRC Research Press.
    Phillips J M, Hayman D S, 1970. Improved procedures for clearing and staining parasitic and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55: 158~161
    Poole E J, Bending G D, Whipps J M, Read D J. 2001. Bacteria associated with Pinus sylvestris-Lactarius rufus ectomycorrhizas and their effects on mycorrhiza formation in vitro. New Phytologist, 151: 741~753
    Ramos J, Duque E, Huertas M J, and Haidour A. 1995. Isolation and Expansion of the Catabolic Potential of a Pseudomonas putida Strain Able To Grow in the Presence of High Concentrations of Aromatic Hydrocarbons. Journal of Bacteriology, 17: 3911~3916
    Reber H H and Kaiser P. 1981. Regulation of the utilization of glucose and aromatic substrates in four strains of Pseudomonas putida. Archives of Microbiology, 130: 243~247
    Reid B J, Jones K C, Semple K T. 2000. Bioavailability of persistent pollutants in soils and sediments-a perspective on mechanisms, consequences and assessment. Environental Pollution, 108(1): 103~112
    Richter D L, Zuellig T R, Bagley S T and Bruhn J N. 1989. Effects of red pine (Pinus resinosa Ait.) mycorrhizoplane-associated actinomycetes on in vitro growth of ectomycorrhizal fungi. Plant and soil, 115: 109~116
    Romero C and Lopez-Goni I. 1999. Improved method for purification of bacterial DNA form bovine milk for detection of Brucella spp by PCR. Applied and Environmental Microbiology, 65: 3735~3737
    Roy S, Khasa D P, Greer C W. 2007. Combining alders, frankiae, and mycorrhizae for the revegetation and remediation of contaminated ecosystems. Canadian Journal of Botany, 85: 237~251
    Sarkhoh N A, Ghannoum M A, Ibrahim A S, Stretton R J and Radwan S S. 1990. Crude oil and hydrocarbon degrading strains of Rhodococcus: Rhodococcus strains isolated from soil and marine environments in Kuwait. Environental Pollution, 65: 1~18
    Schelkle M and Peterson R L. 1996. Suppression of common root pathogens by helper bacteria and ectomycorrhizal fungi in vitro. Mycorrhiza, 6: 481~485
    Schrey D S, Schellhammer M, Ecke M, Hampp R, Tarkka M. 2005. Mycorrhiza helper bacterium Streptomyces AcH 505 induces differential gene expression in the ectomycorrhizal fungus Amanita muscaria. New Phytologist, 168: 205~216
    Sheng M, Tang M, Chen H, Yang B W, Zhang F F, Huang Y H. 2008. Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza, 18: 287~296
    Simmons J S. 1926. A culture medium for differentiating organisms of the Typhoid-Colon-Aerogenes groups and for isolation of certain fungi. Journal of infectious Diseases, 39: 209
    Smith D E and Read D J. 1997. Mycorrhizal Symbiosis. Academic Press, London. In: Barea J M, Azcón R and Azcón-Aguilar C. 2002. Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie van Leeuwenhoek, 81: 342~351
    Song Y Y, Song C C, Ju S B, Chai J H, Guo J, Zhao Q D. 2010. Hydroponic Uptake and Distribution of Nitrobenzene in Phragmites Australis: Potential for Phytoremediation. International Journal of Phytoremediation, 12(3): 217~225
    Tang M, Chen H, Huang J C, Tian Z Q. 2009. AM fungi effects on the growth and physiology of Zea mays seedlings under diesel stress. Soil Biology and Biochemistry, 41(5): 936~940
    Teng Y, Luo Y M, Ping L F, Zou D X, Li Z A, Christie P. 2010. Effects of soil amendment with different carbon sources and other factors on the bioremediation of an aged PAH-contaminated soil. Biodegradation, 21: 167~178
    Toljander J F, Artursson V, Paul L R, Jansson J K, Finlay R D. 2006. Attachment of different soil bacteria to arbuscular mycorrhizal fungal extraradical hyphae is determined by hyphal vitality and fungal species. FEMS Microbiol Letters, 254: 34~40
    Vermaa S, Bhargavaa R, Pruthi V. 2006. Oily sludge degradation by bacteria from Ankleshwar, India. International Biodeterioration and Biodegradation, 57(4): 207~213
    Vieira P A, Vieira R B, Franc F P, Cardoso V L. 2007. Biodegradation of effluent contaminated with diesel fuel and gasoline. Journal of Hazardous Materials, 140(1-2): 52~59
    Vivas A, Barea J M, Azcón R. 2005. Brevibacillus brevis Isolated from Cadmium-or Zinc-Contaminated Soils Improves in Vitro Spore Germination and Growth of Glomus mosseae under High Cd or Zn Concentrations. Microbial Ecology, 49: 416~424
    Voisard C, Keel C, Haas D and Defago G. 1989. Cyanide production by Pseudomonas fluorescens helps suppress Black Root Rot of tobacco under gnotobiotic conditions. The European Molecular Biology Organization Journal, 8(2): 351~358
    Warmink J A and Van Elsas J D. 2008. Selection of bacterial populations in the mycosphere of Laccaria proxima: is type III secretion involved? International Society for Microbial Ecology, 2: 887~900
    Whipps J M. 2004. Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Canadian Journal of Botany, 82: 1198~1227
    White Jr P M, Wolf D C, Thoma G J and Reynolds C M. 2006. Phytoremediation of alkylated polycyclic aromatic hydrocarbons in a crude oil-contaminated soil. Water, Air and Soil Pollution, 169: 207~220
    Zhang Z Z, Su S M, Luo Y J, Lu M. 2009. Improvement of natural microbial remediation of petroleum-polluted soil using graminaceous plants. Water Science and Technology, 59(5): 1025~1035
    Zheng Z M and Obbard J P. 2003. Oxidation of Polycyclic Aromatic Hydrocarbons by Fungal Isolates from an Oil Contaminated Refinery Soil. Environental Science and Pollution Research, 10: 173~176
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.