光纤熔锥耦合系统理论新方法及其在光纤器件和传感中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锥形光纤是光波导理论和技术领域的一个很重要的研究课题,由锥形光纤构成的单模光纤器件包括有光纤耦合器、光纤波分复用器、光纤准直器、光纤扩束器、光纤滤波器和由锥形光纤构成的光纤传感器件包括有耦合式传感器、双锥形弯曲传感器和渐逝波传感器及其它熔锥型光纤器件已广泛应用于光纤通信和光纤传感等领域。
     根据国内外有关熔融拉锥耦合理论的研究概况和现状,本论文首先从熔锥形光纤的动态形状曲线、空气层对熔锥形光纤传输特性的影响和熔锥形光纤波导耦合三个方面入手,以解决目前不能严格而完整地表示熔锥形光纤的形状曲线函数和熔锥形光纤耦合的分段处理等问题.然后,将所获得的结果具体应用于三种光纤无源器件的研制开发上。最后,对熔锥耦合式光纤渐逝波传感器进行了理论和实验研究。
     本论文共分十章。第一章概述了光纤熔锥型耦合理论的发展状况。第二章根据熔锥型光纤的形成机理,导出了数理微分方程,利用动态熔融区长度的概念,结合初始、边界和锥区体积守恒条件,由行波法首次获得完整而精确地描述光纤熔融拉锥动态形状曲线解析函数,这种解析解对于任意参数的灯头,能方便、精确和完整地描述熔融光纤在不同拉锥过程中锥体动态形状的变化,并以大量光纤熔融拉锥实验进行了验证。应该指出:只要已知初始熔融区长度,获得的解能预知任意拉伸长度下的拉锥锥形曲线。从而,完整地解决了以往在光纤熔锥耦合的理论分析计算上难以严格导出拉锥动态形状曲线函数的困难。第三章将等效阶跃光纤方法推广到任意折射率分布的多包层结构光纤。多包层结构光纤的折射率分布一旦确定,利用这一方法能精确地计算得到其等效阶跃光纤的归一化折射率差,从而可方便地预知该多包层光纤的各传输特性参数。同时,将该方法应用于锥形光纤,以考虑空气层对锥形光纤波导光传输特性及其耦合效应的影响。第四章首先建立任意横截面介质光波导间的模耦合方程及其耦合系数的计算公式,并就相同单模光纤的情况,与R.Vanclooster等人的经典理论计算结果进行比较,验证了本论文的耦合理论。同时,结合第二,三章的理论结果,通过对光纤熔融拉锥时耦合输出功率随拉伸长度变化的动态耦合过程的精确描述及其与实验结果的比对,验证本论文的系列理论。第五章至第八章分别分析研究四种光纤无源器件,也即三纤双环熔锥互耦全光纤滤波器、单模光纤超平坦宽带熔锥型耦合器、开环三纤耦合光纤光开关以及基于2×2熔锥型单模光纤耦合器和磁流体薄膜的光纤光开关。第九章在分析研究光纤渐逝波及其耦合传感原理的基础上,对熔锥耦合式高灵敏度光纤渐逝波温度传感器系统进行较深入的理论和实验研究。最后,第十章对整篇论文进行了总结。
The fused tapering optical fibers are the significant research project both in the theory and in the technology of the optical waveguide. Many optical fiber devices can be developed from the fused tapering optical fibers such as couplers, wavelength division multiplexers (WDMs), coaxial couplers, beam expanders, wavelength filters and so on. In addition, many types of optical fiber sensors such as coupler sensors, biconically tapered bend sensors, evanescent-wave sensors can also be made from the fused tapering optical fibers devices. And in such sensors the transmission through the tapered coupling zone depends on the index refraction of the external medium. In all, the fused tapering optical fiber devices have been extensively used in optical fiber communications and optical fiber sensors.
     Based on the current status of the coupling theory of the fused tapering optical fibers, at first, this dissertation mainly deals with three aspects including: (1) the dynamic-shape-curve function for the fused tapering optical fibers; (2) the air-layer influence for the transmission characteristics of the fused tapering optical fibers; (3) the waveguide-coupling of the fused tapering optical fibers, in order to obtain the accurate and integrative expression of the shape-curve and to solve the problem of the sectional treatment of the coupling for the fused tapering optical fibers. Then it makes introduction of three novel optical devices which have been developed with the obtained theoretical results. At last, in this dissertation fused tapering fiber coupler evanescent-wave sensors are investigated both in theory and in experiment.
     The dissertation is arranged in ten chapters. In chapter 1, there are brief introductions of basic configurations and characteristics, development trends, and application fields of the tapered fibers. In chapter 2, a physics-mathematics equation of dynamic-shape curves just for the fused tapering optical fibers is deduced. The closed-form solution of the equation can be acquired by use of its initial, boundary, volume-conserved conditions and the traveling-wave method. The shape curves in different tapering processes can be described by the solution conveniently, accurately and integratively. A large quantity of experimental data has been provided and shown to have a coincidence with the theoretical results properly. Especially, when the initial length of the fused zone is known, the solution can predict the whole tapering shape curve with an arbitrary elongating length. Thereby, we solved the long before troubling problem in that how to deduce the function of the dynamic tapering-shape-curve strictly and integratively in the theoretical calculation of the coupling for the fused tapering optical fibers. In chapter 3, an equivalent step-index-fiber method (ESFM) has been extended to multicladding fibers for any refractive index profile. Upon defining the refractive index profile for the multicladding fiber, the equivalent normalized index difference for the equivalent step-index-fiber can be exactly derived by the method so that varieties of transmission parameters for the fiber would be predicted conveniently. Then the extended method has been used to analyze the transmission and coupling characteristics of the fused tapering optical fiber. In chapter 4, firstly, coupling-mode equations for the medium optical waveguide with the any cross-section-shape are established and the coupling coefficients are derived. Then, under the condition of the same single-mode optical fibers, the coupling theory has been confirmed by comparing with the results of R. Vanclooster's classic coupling theory. Meanwhile, combining with the theoretical results in chapter 2 and 3, a series of the theories in this dissertation can be confirmed by describing accurately the dynamic coupling processes for the output coupling powers with the elongating length and comparing with the experimental results. In chapter 5, 6, 7 and 8, four novel optical fiber devices are presented and analyzed theoretically and experimentally using the above theory of the fused tapering fibers, which include all-fiber filter with three fiber-two ring mutually fused biconical couplings, super-flat-wideband single-mode optical fiber couplers ranged from 1250nm to 1650nm, fiber-optic switch using a three fiber-one open loop coupler, and a fiber-optic switch using 2×2 fiber fused coupler and magnetic fluid film. In chapter 9, based on analysis of evanescent wave transmission and coupling sensor on single-mode optical fibers, an optical fiber evanescent wave temperature sensor has been investigated comprehensively in theory and experiment. At last, in chapter 10, the conclusion for the whole dissertation is made.
引文
[1] R. Vanclooster and P. Phariseau, "The Coupling of two parallel dielectric fibers, I. Basic equations", Physica, Vol. 47, No. 4, pp: 485-500, 1970.
    [2] A. W. Snyder, "Coupled-mode theory for optical fibers", IEEE J. Lightwave Technol., Vol. 62, No.11, pp: 1267-1277, 1972.
    [3] P. D. Mclntyre, and A. W. Snyder, "Power transfer between optical fibers", Journal of the Optical Society of America, Vol. 63, No. 12, pp: 1518-1527, 1973.
    [4] M. F. Braeey, et al., "Surface wave research in Sheffield", I. R. E./trans., AP-7, S 219, 1959.
    [5] N. S. Kapany, "Fiber optics", Academic Press, 1967.
    [6] A. L. Jones, "Coupling of optical fibers and scattering in fibers", I. Opt. Soc. Amer., Vol. 55, p. 261, 1965.
    [7] E. Snitzer., "Cylindrical dielectric waveguide modes", I. Opt. Soc. Amer., Vol. 51, p. 491, 1961.
    [8] Huang Hung-Chia, "Coupled mode theory: as applied to microwave and optical transmission", Brill Academic Publishes, 1984.
    [9] Huang Hung-Chia, and A. W. Snyder, "Optical waveguide sciences", Springer, 2002.
    [10] D. Marcuse, "Coupling coefficients for imperfect asymmetric slab waveguide", J. Bell syst. Tech., Vol. 52, pp. 63, 1973
    [11] A. W. Snyder, "Optical waveguide theory", London, Chapman and Hall Ltd, 410, 1983.
    [12] D. Mareuse, "Theory of dielectric optical waveguides", 2nd. Ed. Boston, MA : Academic, 1991.
    [13] A. Hardy, and W. Streifer, "Coupled mode theory of parallel wave-guides", Journal of Lightwave Technology, Vol. 3, No. 5, pp: 1135-1146, 1985.
    [14] A. Hardy, S. Shakir, and W. Streifer, "Coupled-mode equations for 2 weakly guiding single-mode fibers", Optics Letters, Vol. 11, No. 5, pp: 324-326, 1986.
    [15] D. B. Mortimore, "Fiber loop reflectors", Journal of Lightwave Technology, Vol. 6, No. 7, pp: 1217-1224, 1988.
    [16] J. D. Love, "Application of a low-loss criterion to optical wave-guides and devices", IEE Proceedings-J Optoelectronics, Vol. 136, No. 4, pp: 225-228, 1989.
    [17] H. S. Hung, and H. C. Chang, "Analysis of optical fiber directional coupling based on the HE_(11) modes---Part Ⅰ: The identical-core ease," J. Lightwave Technol., Vol. 8, pp: 823-831, 1990.
    [18] 严方,陈振宜,武时勉,“可调抛光型光纤耦合器对位公差的分析”,《光学学报》,Vol.9,No.9,pp:810-813,1989.
    [19] A. Yariv, "Coupled-mode theory for guided wave optics," IEEE J. Quantum Electron., Vol. QE-9, pp: 919-933, 1973.
    [20] L. Thylen and D. Yevick, "Beam propagation method in anisotropic media," Appl. Opt., Vol. 21, pp: 2751-2754, 1982.
    [21] J. Van Roey, J. Van Der Donk, and P. E. Lagasse, "Beam propagation method: analysis and assessment," J. Opt. Soc. Amer., Vol. 71, pp: 803-810, 1981.
    [22] K. Oda, N. Takato, and H. Toba, "A wide-FSR waveguide double-ring resonator for optical FDM transmission systems," Journal of Lightwave Technology, Vol. 9, No. 6, pp: 728-736, 1991.
    [23] J. Capmany, and M. A. Muriel, "A new transfer matrix formalism for the analysis of fiber ring resonators: compound coupled structures for FDMA demultiplexing," Journal of Lightwave Technology, Vol. 8, No. 12, pp: 1904-1919, 1990.
    [24] G. Barbarossa, A. M. Matteo, and M. N. Armenise, "Theoretical analysis of triple-coupler ring-based optical guided-wave resonator," Journal of Lightwave Technology, Vol. 13, No. 2, pp: 148-157, 1995.
    [25] I. Ohtomo, S. Shimada, and K. Ohi, "Two-cavity ring-type channel-dropping filters for a millimeter-wave guide wave communication system," IEEE Trans. Microwave Theory Technol., Vol. MTT-19, No. 5, pp: 481-484, 1971.
    [26] L. F. Stockes, M. Chodorow, and H. J. Shaw, "Sensitive all single-mode fiber resonant ring interferometer," J. Lightwave Technol., Vol. LT-1, No. 1, pp: 110-115, 1983.
    [27] L. F. Stockes, M. Chodorow, and H. J. Shaw, "All single mode fiber resonator," Opt. Lett., Vol. 7, No. 6, pp: 288-290, 1982.
    [28] Y. Ohtsuka, "Analysis of a fiber-optic passive loop resonator gyroscope: Dependence on resonator parameters and light source coherence," J. Lightwave Technol., Vol. LT-3, No. 2, pp: 378-384, 1985.
    [29] Y. H. Ja, "Generalized theory of optical fiber loop and ring resonators with multiple couplers. 1: Circulating and output fields," Appl. Opt., Vol. 29, pp: 3517-3523, 1990.
    [30] Y. H. Ja, "Generalized theory of optical fiber loop and ring resonators with multiple couplers. 2: General characteristics," Appl. Opt., Vol. 29, pp: 3524-3529, 1990.
    [31] P. Urquhart, "Compound optical-fiber-based resonators," J. Opt. Soc. Am. A, Vol. 5, pp: 803-812, 1988.
    [32] Y. H. Ja, "A vernier s-shaped fiber double-loop resonator with double couplers and degenerate two-wave mixing," J. Lightwave Technol., Vol. 11, No. 2, pp: 258-264, 1993.
    [33] G. Abd-EI-Hamid, and P. A. Davies, "Fiber-optic double ring resonator", Electronics Letters, Vol. 25, No. 3, pp: 224-225, 1989.
    [34] C. K. Chan, and L. K. Chen, "Theoretical-analysis of high-repetition-rate optical-pulse multiplication using fiber-coupler loop configuration", IEEE Photonics Technology Letters, Vol. 7, No. 10, pp: 1145-1147, 1995.
    [35] A. R. L. Travis, and J. E. Carroll, "Possible fused fiber in-phase quadrature measuring multiport", Electronics Letters, Vol. 21, No. 21, pp: 954-955, 1985.
    [36] F. Sanchez, "Matrix algebra for all-fiber optical resonators," Journal of Lightwave Technology, Vol. 9, No. 7, pp: 838-844, 1991.
    [37] J. Bures, S. Lacroix, and J. Lapierre, "Analysis of a fused biconical single-mode fiber coupler", Applied Optics, Vol. 22, No. 12, pp: 1918-1922,1983.
    [38] M. Eisenmann, and E. Weidel, "Single-mode fused biconical couplers for wavelength division multiplexing with channel spacing between 100nm and 300nm", Journal of Lightwave Technology, Vol. 6, No. 1, pp: 113-119, 1988.
    [39] J. D. Love, A. Ankiewicz, "Cutoff in Single-Mode Optical Fiber Couplers", Electronics Letters, Vol. 20, No. 9, pp: 362-363, 1984.
    [40] A. W. Snyder, "Coupling of modes on a tapered dielectric cylinder", IEEE Trans. Microwave Theory and Techniques, Vol. MTT-18, p. 383,1970.
    [41] A. W. Snyder, and X. H. Zheng, "Fused couplers of arbitrary cross-section", Electronics Letters, Vol. 21, No. 23, pp: 1079-1080,1985.
    [42] F. P. Payne, C. D. Hussey, M. S. Yataki, "Modeling fused single-mode-fiber couplers", Electronics Letters, Vo;. 21, No. 11, pp: 461-462, 1985.
    [43] R. G Lamont, D. C. Johnson, and K. O. Hill, "Power transfer in fused biconical-taper single-mode fiber couplers - Dependence on external refractive-index", Applied Optics, Vol. 24, No. 3, pp: 327-332, 1985.
    [44] J. V. Wright, "Variational analysis of fused tapered couplers", Electronics Letters, Vol. 21, No. 23, pp: 1064-1065. 1985.
    [45] K. S. Chiang, "Analysis of fused couplers by the effective-index method", Electronics Letters, Vol. 22, No. 23, pp: 1221-1222,1986.
    [46] F. P. Payne, T. Finegan, M. S. Yataki, R. J. Mears, and C. D. Hussey, "Dependence of fused taper couplers on external refractive-index", Electronics Letters, Vol. 22, No. 22, pp: 1207-1209, 1986.
    [47] Z. M. Mao, X. S. Fang, and B. H. Li, "Mode excitation theory and experiment of single-mode fiber directional coupler with strong coupling", Journal of Lightwave Technology, Vol. 4, No. 4, pp: 466-472,1986.
    [48] Rodriques, "Completely fused tapered couplers: Comparison of theoretical and experimental results", Electron. Lett., 1987.
    [49] S. Lacroix, R. J. Black, C. Veilleux, and J. Lapierre, "Tapered single-mode fibers: external refractive-index dependence", Appl. Opt, Vol. 25, p. 2468, 1986
    [50] S. Lacroix, R. Bourbonnais, F. Gonthier, and J. Bures, "Tapered monomode optical fibers: Understanding large power transfer", Appl. Opt., Vol. 25, p. 4421, 1986.
    [51] F. Gonthier, J. Lapierre, C. Veilleux, S. Lacroix, and J. Bures, "Investigattion of power oscillations along tapered monomode fibers", Appl. Opt., Vol. 26, p. 444, 1987.
    [52] S. Lacroix, F. Gonthier, R. J. Black, and J. Bures, "Tapered-fiber interferometric wavelength reponse: the achromatic fringe", Opt. Lett., Vol. 13, p. 395, 1988.
    [53] A. C. boucouvalas, and G Georgiou, "Biconical taper coaxial coupler filter", Electron. Lett., Vol. 21, p. 1033, 1985.
    [54] W. J. Stewart, and J. D. Love, "Design limitation on tapers and couplers in single-mode fiber", Technical Digest, 5~(th) ICOC-ECOC85, Veice, pp: 559-562, 1985
    [55] J. R. Cozens, A. C. Boucouvalas, A. Alassam, M. J. Lee, and D. G. Morris, "Optical coupling in coaxial fibers", Electron. Lett., Vol. 18, p. 679, 1982.
    [56] A. C. Boucouvalas, and G. Georgiou, "External refractive-index response of tapered coaxial couplers", Opt. Lett., Vo;. 11, p. 257,1986.
    [57] J. L. Zhang, Z. M. Mao, and Z. Q. Lin, "Measurements and analyses of fields in fused tapered single-mode fiber couplers", Appl. Opt., Vol. 28, No. 11, pp: 50-54,1989.
    [58] J. L. Zhang, Z. M. Mao, and Z. Q. Lin, "Near field and far field patterns of fields in fused tapered single-mode fiber couplers", in Technical Digest, Sino-Japanese Symposium on optical fiber sensor, Beijing, China, p. 112,1988.
    [59] I. Yokohama, et al., "Fiber-coupler fabrication with automatic fusion-elongation processes for low excess loss and high coupling-ratio accuracy", Journal of Lightwave Technology, IEEE, Vol. LT-5, No. 7,1987.
    [60] W. K. Bums, M. Abebe, "Coupling model for fused fiber couplers with parabolic taper shape", Applied Optics, Vol. 26, No. 19, pp: 4190-4192, 1987.
    [61] K. S. Chiang, "Effects of cores in fused tapered single-mode fiber couplers", Optics Letters, Vol. 12, No. 6, pp: 431-433, 1987.
    [62] J. M. P. Rodrigues, T. S. M. Maclean, B. K. Gazey, and J. F. Miller, "Parabolic shape of a tapered fused coupler - Comparison with experiment", Applied Optics, Vol. 26, No. 9, pp: 1578-1581, 1987.
    [63] P. Kaczmarski, P. Lagasse, and J. Vandewege, "Propagating-beam model for a single-mode-fiber fused coupler", IEE Proceedings-J Optoelectronics, Vol. 134, No. 2, pp: 111-116,1987.
    [64] J. D. Minelly, and C. D. Hussey, "Single-mode fiber Y-junction beam-splitter", Electronics Letters, Vol. 23, No. 20, pp: 1087-1088,1987.
    [65] A. J. Stevenson, and J. D. Love, "Vector modes of 6-port couplers", Electronics Letters, Vol. 23, No. 19, pp: 1011-1013,1987.
    [66] M. N. McLandrich, "Core dopant profiles in weakly fused single-mode fibers", Electronics Letters, Vol. 24, No. 1, pp: 8-10, 1988.
    [67] F. Bilodeau, K. O. Hill, S. Faucher, D. C. Johnson, "Low-loss highly overcoupled fused couplers - Fabrication and sensitivity to external-pressure", Journal of Lightwave Technology, Vol. 6, No. 10, pp: 1476-1482,1988.
    [68] E. Suhir, "Free-vibrations of a fused biconical taper lightwave cvoupler", International Journal of Solids and Structures, Vol. 29, No. 24, pp: 3145-3152, 1992.
    [69] S. Lacroix, F. Gonthier, and J. Bures, " Modeling of symmetrical 2×2 fused-fiber couplers", Applied Optics, Vol. 33, No. 36, pp: 8361-8369, 1994.
    [70] C. D. Hussey, E. M. O'Brien, P. F. O'Sullivan, and K. P. Oakley, "Adiabatic fused tapered couplers", Electronics Letters, Vol. 37, No. 16, pp: 1009-1010, 2001.
    [71] T. L. Wu, "Three-dimensional electromagnetic modeling of fiber-core effects on the coupling characteristics of weakly fused tapered fiber-optic couplers," Journal of Lightwave Technology, Vol. 18, No. 7, pp: 1024-1030, 2000.
    [72] M. J. F. Digonnet, H. J. Shaw, "Analysis of a tunable single-mode optical fiber coupler", IEEE Journal of Quantum Electronics, Vol. 18, No. 4, pp: 746-754, 1982.
    [73] W. P. Huang and H. A. Haus, "Self-consistent vector coupled-mode theory for tapered optical waveguides", Journal of Lightwave Technology, Vol. 8, No. 6, pp: 922-926, 1990.
    [74] F. P. Payne, C. D. Hussey, M. S. Yataki, "Modeling fused single-mode-fiber couplers", Electronics Letters, Vol. 21, No. 11, pp: 461-462,1985.
    [75] H. A. Haus and W. P. Haung, "Mode coupling in tapered structure", J. Lightwave Tech., Vol. 7, pp: 729-730, 1989.
    
    [76] C. M. Ragdale, M. H. Slonecker, J. C. Williams, "Review of fused single-mode coupler technology", Proceedings of the Society of Photo-Optical Instrumentation Engineers, Vol. 479, pp: 2-8, 1984.
    
    [77] W. E. Moore et al., "Mass production of fused couplers and coupler based devices", 1992.
    [78] F. P. Payne, C. D. Hussey, M. S. Yataki, "Polarization analysis of strongly fused and weakly fused tapered couplers", Electronics Letters, Vol. 21, No. 13, pp: 561-563, 1985.
    [79] J. D. Love, M. Hall, "Polarization modulation in long couplers", Electronics Letters, Vol. 21, No. 12, pp: 519-521,1985.
    [80] A. W. Snyder, "Polarizing beam-splitter from fused-taper couplers", Electronics Letters, Vol. 21, No. 14, pp: 623-625, 1985.
    [81] I. Yokohama, K. Okamoto, J. Noda, "Analysis of fiber-optic polarizing beam-splitters consisting of fused-taper couplers", Journal of Lightwave Technology, Vol. 4, No. 9, pp: 1352-1359,1986.
    [82] K. Morishita, and K. Takashina, "Polarization properties of fused fiber couplers and polarizing beamsplitters", Journal of Lightwave Technology, vol. 9, No. 11, pp: 1503-1507,1991.
    [83] M. Eisenmann, E. Weidel, "Single-mode fused biconical coupler optimized for polarization beamsplitting", Journal of Lightwave Technology, Vol. 9, No. 7, pp: 853-858, 1991.
    [84] K. Morishita, and K. Aso, "Fiber loop polarizers using a fused taper coupler", IEEE J. Lightwave Technol., Vol. 12, No. 4, pp: 634-637, 1994.
    [85] T. L. Wu, and H. C. Chang, "Rigorous analysis of form birefringence of weakly fused fiber-optic couplers", IEEE J. Lightwave Technol., Vol. 13, No. 4, pp: 687-691, 1995.
    [86] S. W. Yang and H. C. Chang, "Numerical modeling of weakly fused fiber-optic polarization beamsplitters — Part I: Accurate calculation of coupling coefficients and form birefringence", Journal of Lightwave Technology, Vol. 16, No. 4, pp: 685-690, 1998.
    [87] I. Yokohama, K. Okamoto, and J. Noda, "Analysis of fiber-optic polarizing beam splitters consisting of fused-taper couplers", Journal of Lightwave Technology, Vol. LT-4, No. 9, pp: 1352-1359, 1986.
    [88] T. L. Wu and H. C. Chang, "Rigorous analysis of form birefringence of fused fiber couplers", Electron. Lett., Vol. 30, pp: 1221-1222, 1994.
    [89] X. H. Zheng, W. M. Henry, and A. W. Snyder, "Polarization characteristics of the fundamental mode of optical fibers", Journal of Lightwave Technology, Vol. 6, No. 8, pp: 1300-1305, 1988.
    [90] K. Morishita, and K. Aso, "Fiber loop polarizers using a fused taper coupler", IEEE J. Lightwave Technol., Vol. 12, No. 4, pp: 634-637, 1994.
    [91] 陈振宜,王子华,严方,“保偏单模光纤在线偏振器”,《上海科技大学学报》,Vol.15,No.3,pp:1-5,1992.
    [92] Y. J. Chen., "Theoretical investigation of wavelength-flattened fused coupler", Optical and Quantum Electronics, Vol. 21, No. 2, pp: 123-129, 1989.
    [93] K. Okamoto, "Theoretical investigation of light coupling phenomena in wavelength-flattened couplers", Journal of Lightwave Technology, Vol. 8, No. 5, pp: 678-683, 1990.
    [94] D. B. Mortimore, J. W. Arkwright, "Theory and fabrication of wavelength flattened 1×N single-mode couplers", Applied Optics, Vol. 29, No. 12, pp: 1814-1818, 1990.
    [95] H. C. Chang, T. H. Lin, "Modelling of optical fibre couplers with weakly fused asymmetrical cross-sections based on superposition of normal modes", Optical and Quantum Electronics, Vol. 28, No. 10, pp: 1359-1369, 1996.
    [96] T. L. Wu, "Vectorial analysis for polarization effect of wavelength-flattened fiber-optic couplers", Microwave and Optical Technology Letters, Vol. 23, No. 1, pp: 12-16, 1999.
    [97] P. Shum, M. Liu, "Effects of intermodal dispersion on two-nonidentical-core coupler with different radii", IEEE Photonics Technology Letters, Vol. 14, No. 8, pp: 1106-1108, 2002.
    [98] Tewari et al., "Novel method for characterization of single mode fibers and prediction of crossover wavelength and bandpass in nonidentical fiber directional couplers", Electron. Lett., 1987.
    [99] M. N. McLandrich, R. J. Orazi, and H. R. Marlin, "Polarization independent narrow channel wavelength division multiplexing fiber coulers for 1.55 μtm", Journal of Lightwave Technology, Vol. 9, No. 4, pp: 442-447, 1991.
    [100] X. J. Fang, R. O. Claus, G. Indebetouw, "Interferometric model for phaseanalysis in fiber couplers", Applied Optics, Vol. 35, No. 22, pp: 4510-4515, 1996.
    [101] Y. C. Chung, J. C. Yi, S. H. Kim, and S. S. Choi, "Analysis of a tunable multichannel two-mode-interference wavelength division multiplexer/ demultiplexer", IEEE J. Lightwave Technol., Vol. 7, No. 5, pp: 766-777, 1989.
    [102] M. Eisenmann and E. Weidel, "Single-mode fused biconical couplers for wavelength division multuplexing with channel spacing between 100nm and 300nm", Journal of Lightwave Technology, Vol. 6, No. 1, pp: 113-119, 1988.
    [103] H. S. Park, S. H. Yun, I. K. Hwang, S. B. Lee, and B. Y. Kim, "All-fiber add-drop wavelength-division multiplexer based on intermodal coupling", IEEE Photon. Technol. Letter., Vol. 13, No. 5, pp: 460-462, 2001.
    [104] W. K. Burns, M. Abebe, and C. A. Villarruel, "Parabolic model for shape of fiber taper", Appl. Opt., Vol. 24, pp: 2753-2755, 1985.
    [105] W. K. Burns and M. Abebe, "Coupling model for fused fiber couplers with parabolic taper shape", Appl. Opt., Vol. 26, pp:4190-4192, 1987.
    [106] J. M. P. Rodrigues, T. S. M. Maclean, B. K. Gazey, and J. F. Miller, "Parabolic shape of a tapered fused coupler - Comparison with Experiment," Appl. Opt. Vol. 26, pp: 1578-1581, 1987.
    [107] J. Dewynne, J. R. Ockendon, and P. Wilmott, "On a mathematical model for fiber tapering", SIAM J. Appl. Mathematics, Vol. 49, pp. 983-990, 1989.
    [108] R. P. Kenny, T. A. Birks and K. P. Oakley, "Control of optical fibre taper Shape", Electronics Letters, Vol. 27, No. 18, pp: 1654-1656, 1991.
    [109] T. A. Birks et al., "The Shape of fiber tapers", IEEE J. Lightwave Technology, Vol. 10, No. 4, pp. 432-438, 1992.
    [ 110] F. Yan, Z. Y. Chen, and Y. Z. Song, "An all-fiber fused biconical filter with two ring-three fiber mutually couplings", Acta Optica Sinica, Vol. 17, No. 2, pp. 181-185, 1997.
    [111] M. V. Andres and K. W. H. Foulds, "Optical-fiber resonant ring based on polarization-dependent couplers", Journal of Lightwave Technology, Vol. 8, No. 8, pp: 1212-1220, 1990.
    [112] J. L. Zhang and J. W. Y. Lit, "All-Fiber Compound Ring Resonator with a Ring Filter", Journal of Ligthwave Technology, Vol.12, No. 7, pp: 1256-1262, 1994.
    [113] Y. H. Ja, "Optical fiber filter comprising a single-coupler fiber ring (or Loop) and a double-coupler fiber mirror", Journal of Lightwave Technology, Vol. 9, No. 8, pp: 964-974, 1991.
    [114] M. S. Yataki, D. N. Payne and M. P. Varnham, "All-fiber wavelength filters using concatenated fused-taper couplers", Electronics Letters, 21 (6): 248-249, 1985.
    [115] M. S. Whalen, "In-line optical fiber filter for wavelength multiplexing", Electron. Lett., pp:724-725, 1985.
    [116] J. A. Salehi, R. C. Menedez and C. A. Brackett, "A low-pass digital optical filter for optical fiber communications", Journal of Lightwave Technology, Vol. 6, No. 12, pp: 1841-1847,1988.
    [117] J. E. Bowers, S. A. Newton, W. V. Sorin, and H. J. Shaw, "Filter response of single-mode fiber recirculating delay lines", Electron. Lett., Vol. 18, No. 3, pp: 110-111, 1982.
    [118] S. Lacroix, F. Gonthier, and J. Bures, "All-fiber wavelength filter from successive biconical tapers," Optics Letters, Vol. 11, No. 10, pp. 671-673, 1986.
    [119] W. A. Gambling, and H. Matsumura, "Propagation in radially-inhomogeneous single-mode fiber", Opt. & Quant. Electron., Vol. 10, No. 1, pp:31-40, 1978.
    [120] W. A. Gambling, H. Matsumura, and C. M. Ragdale, "Wave propagation in a single-mode fiber with dip in the refractive index", Opt. & Quant. Electron., Vol. 10, No. 4, pp: 301~309, 1978.
    [121] R. A. Sammut, and A. K. Ghatak, "Perturbation theory of optical fibers with power-law core profile", Opt. & Quant. Electron., Vol. 10, No. 6, pp: 475~482, 1978.
    [122] A. W. Snyder, and R. A. Sammut, "Fundamental (HE_(11)) modes of graded optical fibers", S. Opt. Soc. Am., Vol. 69, No. 12, pp: 1663~1671, 1979.
    [123] S. Kawakami, and S. Nishida, "Characteristics of a doubly clad optical fiber with a low-index inner cladding", IEEE J. Quant. Electron., Vol. QE-10, No. 12, pp: 879~889, 1974.
    [124] S. Kawakami, and S. Nishida, "Perturbation theory of doubly clad optical fiber with a low-index inner cladding", IEEE J. Quantum Electron., Vol. QE-11, No. 4, pp: 130~138, 1975.
    [125] R. A. Sammut, "Range of monomode operation of W-fibers", Opt. & Quant. Electron., Vol. 10, No. 6, pp: 509~514, 1978.
    [126] M. Monoerie, "Propagation in doubly clad single-mode fibers", IEEE J. Quantum Electron., Vol. QE-18, No. 4, pp: 535-542, 1982.
    [127] D. Marcuse, "Loss analysis of single-mode fiber splices", Bell Syst. Tech. J., Vol. 56, No. 5, pp: 703~718, 1977.
    [128] L. Jeunhomme, "Single-mode fiber optics", New York, Marcel Dekker, INC., pp: 21~26, 1983.
    [129] F. Yan, and Z. Y. Chert, "Equivalent Step-Index-Fiber Method for Multicladding Fibers," Acta Optica Sinica, Vol. 13, No. 11, pp. 1025-1030, 1993.
    [130] 李玲,黄永清,“光纤通信基础”,国防工业出版社,中国北京, p.81,1999.
    [131] A. Osamu, and N. Shu, "Recent advances of ultra-broadband fiber optics wavelength converters", 13th Annual Meeting. IEEE Lasers and Electro-Optics Society, 2000.
    [132] T. V. Clapp, T. Bricheno, and S. Day, "Low-power, optically switched fiber directional coupler", Electronics Letters, Vol. 25, No. 2, pp: 157-159, 1989.
    [133] D. O. Culverhouse, S. G. Farwell, T., A. Birks, and P. St. J. Russel, "Four port fused taper acousto-optic devices using standard single-mode telecommunication fiber", Electron. Lett., Vol. 31, No. 15, pp. 1279-1280, 1995.
    [134] R. G. Lamont, "Power transfer in fused biconical-taper single-mode fiber coupler: dependence on external refractive index", Applied Optics, Vol. 24, No. 3, pp: 327-332, 1985.
    [135] G. I. Papadimitriou, C. Papazoglou, and A. S. Pomportsis, "Optical switching: switch fabrics, techniques, and architectures", IEEE J. Lightwave Technol., Vol. 21, No.2, pp: 384-405, 2003.
    [136] J. Hudgings, L. Molter, and M. Dutta, "Design and modeling of passive optical switches and power dividers using non-planar coupled fiber arrays", IEEE Journal of Quantum Electronics, Vol. 36, No. 12, pp: 1438-1444, 2000.
    [137] S. Bregni, G. Guerra, and A. Pattavina, "State of the art of optical switching technology for all-optical networks", Communications World. Rethymo, Greece: WSES Press, 2001.
    [138] R. A. Forber, and E. Marom, "Symmetric directional coupler switches," IEEE J. Quantum Electron., Vol. QE-22, pp: 911-919, 1986.
    [139] L. C. Bobb, et al., "Tapered optical fiber components and sensors", Microwave Journal, pp: 218-228, 1992,.
    [140] G. Meltz, J. R. Dunphy, W. W. Morey, and E. Snitzer, "Cross-talk fiber-optic temperature sensor", Applied Optics, Vol. 22, No. 3, pp: 464-477, 1983.
    [141] M. Quinten, A. Park, and R. Wannemacher, "Scattering and extinction of evanescent waves by small particles", Appl. Phys. B, Vol. 68, pp: 87-92, 1999,.
    [142] T. Y. Wang, et al., "Research on magnetostrictive fiber optic differentiating current sensor", J. ofOptoelectronics. Laser (光电子激光), Vol. 13, No. 9, pp: 923-925, 2002. (In Chinese)
    [143] S. K. Khijwania, and B. D. Gupta, "Fiber optic evanescent field absorption sensor: effect of fiber parameters and geometry of the probe", Optical and Quantum Electronics, Vol. 31, pp: 625-636, 1999.
    [144] M. D. Marazuela, and M. C. Moreno-Bondi, "Fiber-optic biosensors-an overview", Anal.. Bioanal.. Chem., Vol. 372, pp: 664-682, 2002.
    [145] M. D. DeGrandpre, and L. W. Burgess, "Long path fiber-optic sensor for evanescent field absorbance measurement", Anal. Chem., Vol. 60, pp: 2582-2588, 1988.
    [146] O. G. Sarecoglu, and S. Ozsoy, "Simple equation to estimate the output power of an evanescent field absorption-based fiber sensor", Opt. Eng. Vol. 41, No. 3, pp: 598-600, 2002,.
    [147] 廖延彪,“光纤光学”,清华大学出版社,中国北京,2000.
    [148] L. C. Bobb, P. M. Shankar, and H. D. Krumboltz, "Bending effects in biconically tapered single-mode fibers", Journal of Lightwave Technology, Vol. 8, No. 7, pp: 1084-1090, 1990.
    [149] S. Y. Yang, and Y. F. Chen, "Magnetically-modulated refractive index of magnetic fluid films", Applied Physics Letters, Vol. 81, pp: 4931-4933, 2002.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.