分布布拉格反射单纵模光纤激光器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1.55μm单纵模光纤激光器在未来高速率光纤通信、高精度光纤传感、军事等领域具有广阔的前景,是很有意义的研究课题。针对单纵模光纤激光器,作者主要完成如下工作:
     1、推导了三能级光纤激光器的稳态工作特性,分析了Er/Yb系统能级结构及非辐射交叉驰豫过程,优化了光纤激光器的谐振腔结构。
     2、研究了短腔光纤激光器的谐振腔结构特点,实验优化了Er/Yb双掺光纤的长度,以13cm的短光纤获得了11mW的输出功率。
     3、采用耦合模式理论,分析了光纤Bragg光栅的原理,研究了光纤光栅的写入方法,并在厘米级Er/Yb双掺光纤上成功地写入一对光纤Bragg光栅。
     4、以5cm长度Er/Yb双掺光纤直接写入一对FBG作为谐振腔镜,实验研究了光纤激光输出特性、模式特性、及噪声特性,获得了稳定的单纵模激光输出。
     5、设计了新型光纤激光阵列结构,进行了实验研究,得到了初步的实验结果。
     6、采用12.5Gb/s高速外调制短腔单纵模Er/Yb双掺光纤激光器,进行21km传输实验,测量了发送、接收光眼图及误码率,得到了性能稳定的传输效果,并对实验结果进行了分析。
     7、分析了交叉敏感的物理机制,推导了应变和温度同时测量的矩阵方程。利用数值计算仿真光纤传感线形矩阵同时测量应变和温度变化。
The works in this thesis are on the basis of two projects: New Single Longitudinal-mode Laser Array Source in WDM All Optical Communications funded by Science and Technology Development of Jilin Province, China. Single longitudinal-mode fiber laser adopts short erbium/ ytterbium codoped fiber (EYDF) as gain medium, it is of high coupling efficiency, low noise, and single longitudinal-mode stability. This kind of fiber laser is one of the most attractile light source in high speed optical communications and high accuracy optical sensor. It is significance to research on the single longitudinal-mode fiber laser for the development of the high speed all optical communications and high accuracy optical sensing.
     This works mainly focuses on the single longitudinal-mode and high-speed modulation in the 1.55μm fiber laser in order to meet the requirements of modern telecommunication. We develop the single longitudinal-mode short cavity fiber laser according to communications demand as the aim. In this paper, the characteristics of the mode, the fiber Bragg gratings in the high concentration Er/Yb fiber, fiber laser array, and high-speed modulation have been studied experimentally and theoretically, which include:
     1. The three energy level stabilization characteristic of the fiber laser is deduced and the cavity configuration of the fiber is optimized.
     2. The single longitudinal-mode operation is realized by a short Er/Yb codoped as resonant cavity pumped by 980nm laser diode (LD). Two fiber Bragg gratings are written in the Er/Yb codoped fiber directly.
     3. The resonant cavity characteristics of the short cavity fiber laser are studied. The length of Er/Yb co-doped fiber is optimized, and 11mW output power is obtained by using 13cm Er/Yb co-doped fiber as resonant cavity.
     4. The longitudinal-mode is observed by the interferometer with free spectrum range (FSR) of 7.5GHz and the single longitudinal-mode is approved.
     5. A fiber laser array is experimented which two short cavity single longitudinal-mode fiber laser are pumped by a LD and the wavelength spacing is 0.8nm. This kind of the fiber laser array can be used in WDM systems and distributed fiber sensing.
     6. The high-speed rates, 10Gb/s and 12.5Gb/s, are used in the modulation experiment of single longitudinal-mode fiber laser. The eye diagrams of optical transmission and reception are measured by an optical sampling broadband oscilloscope, the transmission performance with high-speed modulation is perfect.
     7. In addition, the cross-sensitivity between strain and temperautre in the fiber sensor is studied. Then we described the physical mechanics of the cross-sensitivity in fiber sensor and the cross-sensitivity coefficient is obtained.
     The measurement matrix of the strain and temperature simultaneously are deduced. With highly elliptical core two-mode fiber and double wavelength single detecting the change of strain and temperature simultaneously, the cross-sensitivity can be solved. The relationship of the strain (and temperature) against the two wave phases shifts and Bragg wavelengths are showed. The feasibility of using this type of embedded sensors configuration for simultaneous strain and temperature measurements was demonstrated.
     With the experimental and theoretical analysis, there are some novel findings in the key technology and its application to fiber lasers in this paper as follows:
     1. Two fiber Bragg gratings are written in the short Er/Yb co-doped fiber directly and the short cavity is relized. The processing technology of writing gratings on short Er/Yb do-doped fiber is very difficult.
     2. Two resonant cavitis are pumped by a 980nm LD simultaneously, and the fiber laser array is realized. The fiber laser array will be applied in the WDM systems, distributed fiber sensing systems and microwave source.
     3. For the first time the fiber laser is experimented in the high-speed electro-optical externally modulated transmission tests, and the results according with optical communications requirements are achieved through 21km transmission of signal. This system employed NRZ format, LiNbO3 electro-optic modulator, modulation rate from 10Gb/s to 12.5Gb/s. The signal eye diagrams of the multi-rate transmission and reception are measured, and the eyelids are thin. The results show that the coding jam and signal aberrance were not observed and signal-to-noise ratio for better. The high-speed transmission error rate is 10-12, and the system has run error free continuously for 24 hours.
     The single longitudinal-mode fiber laser in this paper can emit single longitudinal-mode laser, with low noise, no chirp with high-speed modulation, and the laser couples with optical system efficiently, small size array, low cost. This product will be the most potential carrier sources in the new generation all optical communication systems.
引文
[1] K. C. Kao and G. A. Hockham, Dielectric-fiber surface waveguides for optical frequencies [J]. IEE Proc, 1966,113
    [2] F.P.Kapron, D.D.Keck and R.D. Maurer, Radiation losses in glass optical waveguides, Appl. Phys. Lett., 1970, 17: 423~425
    [3] Z J Chen, J D Minelly and Y Gu, Compact low cost Er3+/Yb3+ co-doped fiber amplifiers pumped by 827nm laser diode[J]. Electron Lett, 1996, 32(19):1812~1813
    [4] S G Grubb, W H Humer and R S Cannon, et al, +24.6dBm output power Er/Yb codoped optical amplifier pumped by diode-pumped Nd:YLF laser[J], Electron Lett, 1992, 28(13):1275~1276
    [5] Mizrahi V, Di Giovanni D J and Atkins R M, et al, Stable single-mode erbium fiber grating laser for digital communication [J], Lightwave Technol., 1993, 11(12): 2021~2025
    [6] Ball G A, Holton C E and Hull-Allen G, et al, 60mW 1.5μm single-frequency low-noise fiber laser MOPA[J]. IEEE Photon.Technol.Lett.,1994,6(2):192~194
    [7] Komukai T and Nakazawa M,Tunable single frequency Erbium doped fiber ring lasers using fiber grating etalons. Jpn. J . Appl . Phys, 1995 , 34(6A) :679~680
    [8] 李安民,恽斌峰,汪弋平,崔一平,一种光纤 Bragg 光栅传感器解调系统的实验研究,光电子·激光,2006, 17(4): 424~426
    [9] W. H. Loh, B. N. Samson and L. Dong, et al, High Performance Single Frequency Fiber Grating-Based Erbium: Ytterbium-Codoped Fiber Lasers [J]. Journal of Lightwave Technology, 1998, 16 (1): 114~118
    [10] Jun Li, Yubin Guo, Tianshu Wang, Yadong Sun, Bing Bai, Xiaobin Li and Guijun Hu, An all-fiber type Er3+/Yb3+ co-doped fiber laser, 2003, 1(9):503~505
    [11] I. D. Miller, et al, New all-fiber laser Bonference on Optical Fiber Communications, Reno. USA. January 1987
    [12] 刘颂豪,光纤激光器的新进展,光电子技术与信息,2003,16(1):1~8
    [13] Y. Cheng, J. T. Kringlebotn and W. H. Loh, et al, Stable single-frequency traveling-wave fiber loop laser with integral saturable-absorber-based tracking narrow-band filter , Opt. Lett., 1995, 20 (8): 875~877
    [14] Lees G P, Newson T P. Diode pumped high power simultaneously Q-switched and self mode-locked erbium doped fiber laser(J), Electro Lett, 1996,32(4):332~333
    [15] T. C. Teyo, V. Sinivasagam, M. K. Abdullah and H. Ahmad, An injection-locked erbium-doped fibre ring laser, Optics & Laser Technol., 1999, 31 (6) 493~496
    [16] X. Rejeaunier, S. Calvez, P. Mollier, H. Porte and J.P. Goedgebuer, A tunable mode-locked erbium-doped fiber laser using a Lyot-type tuner integrated in lithium niobate, Optics Communications, 2000, 185(11): 375~380
    [17] Zhihong Li, Caiyun Lou and Yizhi Gao, et al, A dual-wavelength and dual-repetition-rate actively mode-locked fiber ring laser, Optics Communications, 2000, 185(11): 381~385
    [18] J. M. Sousa and O.G. Okhotnikov, Short pulse generation and control in Er-doped frequency-shifted-feedback fibre lasers, Optics Communications, 2000, 183 (9): 227~241
    [19] Seung Kwan Kim, Moo Jung Chu and Jong Hyun Lee, Wideband multiwavelength erbium-doped fiber ring laser with frequency shifted feedback, Optics Communications 2001, 190 (4): 291~302
    [20] Yong Wang, Swee Chuan Tjin and Jian Yao, et al, Liming He, Kok Ann Ngoi, Wavelength-switching fiber laser for optically controlled phased-array antenna, Optics Communications, 2002, 211(10): 147~151
    [21] Yuan Shi, Milan Sejka and Ove Poulsen, A Unidirectional Er3+-Doped Fiber Ring Laser without Isolator, IEEE Photon. Technol. Lett., 1995, 7(3): 290~292
    [22] J. S. Wey, J.Goldhar and D. W. Rush, et al, Performance Characterization of a Harmonically Mode-Locked Erbium Fiber Ring Laser, IEEE Photon. Technol. Lett., 1995, 7(2): 152~154
    [23] Mao Qian, Applications and development of fiber communication technologies in China, In : The 6th Annual Asia Pacific Fiber Optics ’ 99 Conference ,Shanghai , 1999,11
    [24] 杨明涛,崔国琪,董孝义,盛秋琴,掺铒光纤激光器理论与实验研究,红外与激光技术,1995, 24(2): 42~46
    [25] Hinduer A, Chartier T and Brunel M et al.Generation of high energy femtosecond pulses from a side-pumped Yb-doped double-clad fiber taser(J), Appl Phys Lett, 2001, 79(21):3389~3391
    [26] 俞本立,甄胜来,朱军,曹志刚,低噪声光纤激光器的实验研究,光学学报,2006, 26 (2): 217~220
    [27] R.J.Mears, L.Reekie, S.B.Poole and D.N.Payne, Neodymium-doped silica single-mode fibre lasers, Election. Lett., 1985, 21(17): 738~740
    [28] R. Wyatt, High - power broadly tunable erbium - doped silica fiber laser, Electron.Lett . 1989 ,25(22) :1498~1499
    [29] R.P.Kashyap, LR.Armitage, R.Wyatt, S.T.Davey and D.L.Williams. All fiber narrowband reflection gratings at 1500nm, Electron. Lett., 1990, 26:730~731
    [30] G A. Ball, W. W. Morey and W.H.Glenn, Standing-wave monomode erbium fiber laser, IEEE Photon. Technol. Lett., 1991, 3(7): 613~615
    [31] G A. Ball and W. W. Morey, Continuously tunable single-mode crbimn fiber laser, Opt. Lett, 1992, 17(6): 420~422
    [32] G A. Ball and W H. Glenn, Design of a single-mode linear-cavity erbium fiber laser utilizing Bragg reflectors, Lightwave Teehnol., 1992, 10(10): 1338~1465
    [33] J. L. Zyskind, V. Mizrahi, D. J. DiGiovanni and J. W. Sulhoff, Short single frequency erbium-doped fiber laser, Electron. Lett.,1992, 28(15): 1385~1386
    [34] Victor Mizrahi, D. J. DiGiovanni and Robert M. Atkins, et al, Stable single-mode erbium fiber-grating laser for digital communication, J.Lightwave Technol., 1993,11(12): 2021~2025
    [35] Ball G A, Morey W W, Compression - tuned single-frequency Bragg grating fiber laser, Opt .Lett, 1994 ,19(23) :1979~1981
    [36] 衣永青,周述文,宁鼎,郑风振,铒镱双掺双包层光纤的研究,激光与红外,2007,37(3):259~261
    [37] 周炳焜,激光原理,国防工业出版社,2004,第 5 版:145~149
    [38] E.Snitzer, Neidymium glass laser, Proceedings of the Third International Conference on solid State Lasers, Paris, France, 1963
    [39] Mirek Karasek, Optimum Design of Er –Yb Codoped Fibers for Large-Signal High- Pump-Power Applications. IEEE JOURNAL OF QUANTUM ELECTRONICS,1997,33 (10):1699~ 1705
    [40] H. L. Liu, H. Y. Tam,W. H. Chung, P. K. A. Wai and N. Sugimoto, La-Codoped Bismuth- Based Erbium-Doped Fiber Ring Laser With 106-nm Tuning Range. IEEE photonics Tech- nology Letters, 2005,17(2):297~299
    [41] Wagener J L, Digonnet M J F and Shaw H J, High-stability Er-doped fiber amplifier source for the fiber optic gyroscope, J. Lightwave Technol, 1997, 15(9):1689~1694
    [42] J E Townsend and S G Grubb, Yb3+ sensitized Er3+ doped fiber silica optical fiber with ultrahigh transfer efficiency and gain[J], Electron.Lett.,1991,27:1958~1959
    [43] 王天枢,郭玉彬,李军,高信噪比可调谐环形掺铒光纤激光器的研究[J],激光杂志,2003,24(6):25~26
    [44] Eldad Yahel and Amos A. Hardy, Modeling and Optimization of Short Er3+-Yb3+ Codoped Fiber Lasers [J], IEEE Journal of Quantum Electronics, 2003, 39(11): 1444~1451
    [45] Pavel Polynkin, Alexander Polynkin, Masud Mansuripur, Jerome Moloney and N. Peyghambarian, Single-frequency laser oscillator with watts-level output power at 1.5μm by use of a twisted-mode technique [J], Opt. Lett., 2005, 30: 2745~2747
    [46] C. J. Koester and E. Snitzer, Amplification in a fiber laser, Appl, Opt.Vol.3, 1963
    [47] J. Nilsson, P. Scheer and B. Jaskorzynska, Modeling and optimization of short Yb-sensitized Er-doped fiber amplifiers [J], IEEE Photon. Technol. Lett., 1994, 6(3): 383~385
    [48] Ming Ding and Peter K. Cheo, Effects of Yb:Er-Codoping on Suppressing Self-Pulsing in Er-Doped Fiber Lasers [J], IEEE Photon. Technol. Lett., 1997, 9(3):324~326
    [49] L. Dong, W. H. Loh, J. E. Caplen, J. D. Minelly, K. Hsu and L. Reekie, Efficient single-frequency fiber lasers with novel photosensitive Er/Yb optical fibers [J], Opt. Lett., 1997, 22(10): 694
    [50] 朴德慧,郭玉彬,王天枢,大功率半导体激光器驱动电路及防护,激光与红外,2007, 37(3): 230~233
    [51] N. Park, J. W. Dawson and K. J. Vahala, All fiber, low threshold widely tunable single- frequency, erbium-doped fiber ring laser with a tandem fiber Fabry – Perot filter. Appl.Phys. Lett., 1991, 59(19):2369~2371
    [52] Gloag A. J., Langford N., Bennion I. and Zhang L., Single-frequency travelling-wave erbium doped fibre laser incorporating a fibre Bragg grating, Optics Communications, 1996, 123(2): 553~557
    [53] Young Min Jhon, Myong-Wook Kim and Bong Kyu Kim, et al, Single-Frequency and Single-Polarization Er3+-Doped Ring Laser with Less than 0.7KHz Linewidth, CLEO Pacific Rim’99, 1: 23~24
    [54] H. L. An, X. Z. Lin, W. J. Xu and H. D. Liu, Novel Single-frequency Erbium-doped Fiber Loop Laser, Microwave Opt. Technol. Lett., 1999, 23 (2): 95~97
    [55] Y. W. Song, S. A. Havstad and D. Starodubov, et al, 40-nm-Wide Tunable Fiber Ring Laser With Single-Mode Operation Using a Highly Stretchable FBG. IEEE Photonics Technology Lett, 2001, 13 (11): 1167~1169
    [56] Nathaniel J. C. Libatique, Li Wang and Ravi K. Jain, Single-longitudinal-mode tunable WDM-channel-selectable fiber laser, Optics Express, 2002(10): 1503~1507
    [57] N. Y. Voo, P. Horak, M. Ibsen and W. H. Loh, Anomalous Linewidth Behavior in Short-Cavity Single-Frequency Fiber Lasers, IEEE Photon. Technol. Lett., 2005, 17(3): 546~548
    [58] 俞本立,钱景仁,杨瀛海等.窄线宽激光的零拍测量法,中国激光,2001, 28(4): 351~354
    [59] 张书练,正交偏振激光原理,清华大学出版社,2005: 71~75
    [60] T. Qiu, S. Suzuki and A. Schülzgen, et al, Generation of watt-level single-longitudinal- mode output from cladding-pumped short fiber lasers, Opt. Lett., 2005, 30 (20): 2748~2750
    [61] Alexander Polynkin, Pavel Polynkin, Masud Mansuripur, et al, Single-frequency fiber ring laser with 1W output power at 1.5μm, Optics Express, 2005, 13(8): 3179~3184
    [62] 蓝信钜等,激光技术,科学出版社,2005,第二版:247~249
    [63] A. A. M. Saleh, R. M.Jopson, J. D. Evankow and J. Aspell, Modeling of Gain in Erbium-Doped Fiber Amplifiers, IEEE Photonics Technology Letters, 1990, 2(10): 714~717
    [64] A. Cucinotta, S. Dallargine, S. Selleri, C. Zilioli and M. Zoboli, Modeling of erbium doped fiber ring laser, Optics Communications, 1997, 141(8):21~24
    [65] Th. Pfeiffer and H. Bulow, Analytical Gain Equation for Erbium-Doped Fiber Amplifiers Including Mode Field Profiles and Dopant Distribution, IEEE Photonics Technol Lett ., 1992, 4(5): 449~451
    [66] Th. Pfeiffer, H. Schmuck and H. Bulow, Output power characteristics of erbium-doped fiber ring lasers, IEEE Photonics Technol Lett .,1992,4(8):847~849
    [67] Antoine Bellemare, Miroslav Karásek, Christophe Riviere, Fran?ois Babin, Gang He, Vincent Roy and Gregory W. Schinn, A Broadly Tunable Erbium-Doped Fiber Ring Laser: Experimentation and Modeling, IEEE Journal on Selected Topics in Quantum Electronics, 2001, 7 (1):22~29
    [68] 王天枢,郭玉彬,白冰,用超磁致伸缩材料调谐光纤光栅的多路分/插复用器,光子学报,2003,32(9):1106~1109
    [69] 郭玉彬,王天枢,袁国良等,可编程控制的全光磁调谐多路上/下载复用器,光子学报,2002,31(Z2):309~312
    [70] 王天枢,郭玉彬,李军,白冰,磁调谐光纤光栅全光分/插复用器,半导体光电,2003, 24(5):328~331
    [71] 魏林,郭玉彬,周健,张健生,肖磊,王天枢,基于单片机实现的光纤光栅应力传感器, 激光与红外,2005,35(6):420~423
    [72] B.S.Kawasaki, K.0.Hill, D.C.Johnson and Y.Fujii, Narrow-Band Bragg Refleetorsin Optical Fibers, Optics Letters, 1978,3(2):66~68
    [73] K. O. Hill, Y. Fujii, D. C. Johnson and B. S. Kawasaki, Photosensitivity in Optical Fiber Waveguides-APPlicationcto Reflection Filter Fabrication,APPI. Phys.Lett., 1978, 32(10):647~649
    [74] G.Meltz,W.W.Morey and w.H.Glenn,Formation fiber Bragg Gratings in optical Fibersby a Transverse Hologra Phie Method, Optics Letters, 1989, 14(15):823~825
    [75] K.0.Hill, B.Malo, F.Bilodeau, D.C.Johnson and J.Albert, Bragg Gratings Fabricated in Monomode Photosensitive Optieal Fiberby Uv Ex Posure through a PhaseMask, APPI. Phys.Lett., 1993,62(10):1035~1037
    [76] Victor Mizrahi and J. E. Sipe, Optical Properties of Photosensitive Fiber Phase Gratings,JOURNAL OF LIGHTWAVE TECHNOLGY, 1993, 11(10):1513~1517
    [77] Turan Erdogan, Fiber Grating Spectra, JOURNAL OF LIGHTWAVE TECHNOLOGY, 1997,15(8):1277~1294
    [78] A. W. Snyder, Coupled-mode theory for optical fibers, Journal of The optical Society of America, 1972, 62(11): 1267~1277
    [79] A. Yariv, Coupled-mode theory for guided-wave optics, IEEE Journal of Quantum Eleetronies, 1973, QE-9(9): 919~933
    [80] H. A. Haus, W. P. Huang and S. Kawakami, et al, Coupled-Mode Theory of optical Wave-Guides, J. Lightwave Teehnol., 1987, 5(l): 16~23
    [81] H. A. Haus and W. P. Huang, Coupled-Mode Theory, Proe. IEEE, 1991, 79(10): 1505~1518
    [82] 饶云江,王义平,朱涛,光纤光栅原理及应用,科学出版社,2006,第一版:136~140
    [83] B.J.Eggleton, P.A.Krug, L.Poladian and F.ouellette, Long Periodie Super structure Bragg Gratings in Optical Fibers, Eleetron.Lett., 1994,30 (19):1620~1622
    [84] Stone J, Phtorefractivity in GeO2-doped silica fibers, Journal of Applied Physics, 1987,62:4371~4374
    [85] Bilodeau F, et al, Ultraviolet-light photosensitivity in Er3+-doped optical fiber, Optics Letters, 1990,15:1138~1140
    [86] D. P. H and P. S.Russell, Photoindueed Refractive-Index Changes in Germanosilicate Fibers, Optics Letters, 1990, 15(2):102~104
    [87] J. P. Bernardin, N. M. Lawandy, Dynamics of the Formation of Bragg Gratings in Germanosilicate Optieal Fibers, opt. Commun.,1990, 79(34):194~199
    [88] Wong D, Poole S B, Sceats M G, Stress-birefringence Reduction in Elliptical-coreFibers under Ultraviolet, Optics Letters. 1992, 17: 1773~1775
    [89] M. G. Sceats, G. R. Atkins and S. B. Poole, Photo-induced Index Changes in Optical Fibers, Annu. Rev. Mater. Sei., 1993, 23: 381~410
    [90] Limberger H G, Fonjallaz P Y and Salathe R P, Spectra Characterization of Photoinduced Highly Efficient Bragg Gratings in Standard Telecmmunications Fibres, Electron. Letters, 1993,29: 47~49
    [91] P. J. Lemaire, R. M. Atkins, V. Mizrahi and W. A. Reed, High-Pressure H-2 Loading as a Teehnique for Achieving Ultrahigh Uv Photosensitivity and Thermal Sensitivity in GeO2 Doped Optical Fibers,Electron. Lett., 1993, 29(13): 1191~1193
    [92] J.Stone, Interactions of Hydrogen and Deuterium with Silica Optical Fibers a Review, J. Lightwave Teehnol., 1987, 5(5): 712~733
    [93] V. Mizrahi, P. J. Lemaire, T. Erdogan, W. A. Reed, D. J. Digiovanni and R. M. Atkins, Ultraviolet Laser Fabrication of Ultrastrong Optical-Fiber Gratings and of Germania-Doped Channel Wave-Guides, APPI. Phys. Lett., 1993, 63(13): 1727~1729
    [94] Williams D L, et al, Enhance UV photosensitivity in boron codoped germanosilicate fibers. Electron. Letters., 1993, 29: 45~47
    [95] Hermann Lin and Chia-Hsiung Chang, High power C+L-band Erbium ASE source using optical circulator with double-pass and bidirectional pumping configuration, Optics Express,2004,12:6135~6140
    [96] Hajime Inaba, Yoshiaki Akimoto, Koich Tamura, et al, Experimental observation of mode behavior in erbium-doped optical fiber ring laser, Optics Communications, 2000, 180 (6): 121~125
    [97] 陈柏,陈兰荣,范薇,林尊琪,掺 Yb3+光纤环形腔与直腔激光器的比较研究,中国激光, 2001,28(2):116~118
    [98] 伍波,刘永智,代志勇,环形腔高掺 Er3+窄线宽光纤激光器实验研究,光电子·激光,2006, 17(11): 1311~1314
    [99] 赵德双,刘永智,王秉中,张长命,黄绣江等,窄线宽高信噪比可调谐掺 Er3+光纤激光器,光子学报,2006, 35(4): 481~484
    [100] Pmyslinsiki, Dnguyen and Jchrostowski. Effects of concentration on the performance ofErbium-Doped fiber amplifiers. J. lightwave technol,1997,15(1):112~120
    [101] T. S. Wang, Y. B. Guo and K. Wang, Analyzing Longitudinal-mode of Single-frequency Ring Fiber Laser, Microwave and Optical Technology Letters, 2007, 49(6):1494~1497
    [102] Wang L A and Chen C D, Comparison of efficiency and output power of optimal Er- doped superfluorescent fiber sources in different configurations, Electron Lett., 1997, 33(8):703~704
    [103] Tianshu Wang, Yubin Guo and Yuhang Wang, Experimental Investigation on the C+L- band Super-fluorescence Fiber Source, The 13th International Conference on Advanced Laser Technologies(ALT 05), SPIE Proc. 2006, 6344
    [104] Wysocki P F, Digonnet M J F and Kim B Y, et al, Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications, J. Lightwave Technol., 1994, 12(3):550~567
    [105] 郭玉彬,王天枢,李军,白冰,一种高掺铒光纤超荧光辐射源,半导体光电,2003, 24(5): 316~318
    [106] 郭玉彬,王天枢,李军,白冰,高掺铒光纤光谱及增益特性研究,激光杂志,2003,24(5):13~14
    [107] Oh, M., Choi, H.B., Lee, D. and Ahn, S.J, Efficient tunable fiber ring laser for 1580 nm band with a fiber Bragg grating, Optical Fiber Communication Conference and Exhibit, 2001. OFC, 2001,3: WA6-1~WA6-3
    [108] 王天枢,郭玉彬,李军等.全光纤型 Er/Yb 双掺光纤短腔激光器,中国激光,2004, 31 (10): 1161~1164
    [109] Govind P. Agrawal, Fiber-optic Communication Systems, John Wiley&Sons, Inc., 2002:330~394
    [110] Ronan O'Dowd, Sean O'Duill and Neal O'Gorman, et al, Network Access to 2000 WDM Channels at 2GHz Granularity with a Single Laser in C-band, Photonic Network Communications, 2001, 3(4):377~381
    [111] M. Kamp, J. Hofmann and F. Schafer, et al, Lateral coupling-a material independent way to complex coupled DFB lasers, Optical Materials, 2001, 17(6):19~25
    [112] R. Gutierrez-Castrejon, A. Filios and A. Kruse, et al. Study of non-linear penalties in metropolitan DWDM transmission systems that employ directly modulated DFB laser transmitters, Optics Communications, 2002, 211(10): 135~145
    [113] F. N. Timofeev, E. G. Churin and P. Bayvel, et al. Transmission passband, optical crosstalk and cascadability of free-space concave grating demultiplexer for dense WDM networks . Optical and Quantum Electronics, 1999, 31 (3): 227~236
    [114] S. K. KOROTKY, A. H. GNAUCK and B. L. KASPER, 8-Gbit/s Transmission Experiment over 68km of Optical Fiber using a Ti:LiNbO3 External Modulator, Journal of Lightwave Technol., 1987, 5:1505~1509
    [115] I. L. gheorma, P. Savi and R. M. Osgood, et al, Thin Layer Design of X-cut LiNbO3 Modulators, IEEE Photon. Technol. Lett., 2000, 12:1618~1620
    [116] 郭玉彬,霍佳雨,靳江涛,王天枢,闫红伟,李沛然,LiNbO3外调制器的10Gbit/s光纤传输系统,光学 精密工程,2007,15(1):22~26
    [117] 丁国庆,邓柱斌,2.5Gbit/s光发射模块消光比与光接收误码特性,光通信研究,2001,1:52~55
    [118] 亢俊健,宁书年,苏美开,左方,高稚允,光收发模块眼图、消光比及灵敏度关系的实验研究,激光杂志,2003,24(2):61~62
    [119] Olivier Leclerc, Bruno Lavigne and Elodie Balmefrezol, Optical Regeneration at 40 Gb/s and Beyond, Journal of Lightwave Technol., 2003, 21(13):2779~2790
    [120] Wang Tianshu,Guo Yubin and Li Jun,et al, All-fiber type short cavity Er/Yb co-doped fiber laser [J],Chinese Journal of Lasers, 2004,31(10): 1161~1164 (in Chinese)
    [121] Khanh Kieu and Masud Mansuripur, Fiber laser using a microsphere resonator as a feedback element, Optics Letters, 2007, 32(3): 244~246
    [122] J. Nilsson, S. Alam and J.A. Alvarez-Chavez, et al, High-Power and Tunable Operation of Erbium-Ytterbium Co-Doped Cladding-Pumped Fiber Lasers, IEEE J. Quantum, 2003, 39(5) 987~994
    [123] J. D. Minelly, W. L. Barnes and R. I. Laming, et al, Diode-Array Pumping of Er3+/Yb3+ Co-Doped Fiber Lasers and Amplifiers [J], IEEE Photonics Technology Letters, 1993, 5(3): 301~303
    [124] ZHAO Ming, GUO Yu-bin and WANG Tian-shu, et al.Numerical Investigation of Wavelength-tunable Er:Yb-co-doped Fiber Ring Laser, JOURNAL OF A IR FORCE ENGINEER ING UN IVERSITY(NATURAL SCIENCE ED ITION), 2006, 7(2): 70~72
    [125] T. Qiu, L. Li and A. Schülzgen, et al, Generation of 9.3-W Multimode and 4-W Single-Mode Output From 7-cm Short Fiber Lasers, IEEE PHOTONICS TECHNOLOGY LETTERS, 2004, 16 (12): 2592~2594
    [126] 朱剑平,李乙钢,陈胜平,王华,徐团委,张赟,吕可诚, 环形腔Er3+/Yb3+双掺双包层光纤激光器,光电子·激光 2005,16(7):775~778
    [127] Qianfan Xu and Minyu Yao, Theoretical Analyses on Short-Term Stability of Semiconductor Fiber Ring Lasers, IEEE JOURNAL OF QUANTUM ELECTRONICS, 2003, 39 (10): 1260~1265
    [128] Peter Barnsley, Paul Urquhart, Colin Millar and Michael Brierley, Fiber Fox-Smith resonators: application to single-longitudinal-mode operation of fiber lasers. J. Opt. Soc. Am.A,1988, 5 (8):1339~1346
    [129] Jianliang Yanga, Jianping Yao and Kejiang Zhou, et al, Wideband wavelength tunable fiber ring laser with flattened output power spectrum, Optics Communications 2002, 210 (9): 313~318
    [130] YU Ben-li, CAO Zhi-gang and ZHEN Sheng-lai, et al, Er-Yb codoped frequency modulated fiber laser, Chinese Journal of Quantum Electronics, 2006, 23(2): 164~166
    [131] GAO Xue-song, GAO Chun-qing and SONG Xue-yong, et al, Study on Key Technology of Narrow-linewidth Fiber Laser, LASER & INFRARED, 2006, 36(6): 441~444
    [132] Polynkin, P. Polynkin and D. Panasenko, et al, Short-cavity, passively modelocked fibre laser oscillator at 1.5μm with 550MHz repetition rate and high average power, ELECTRONICS LETTERS, 2006, 42(3)
    [133] Y. Lai and I. Bennion, Wavelength-switchable DBR fibre laser with high spectral purity output, ELECTRONICS LETTERS, 2006, 42(1)
    [134] W. Guan and J.R. Marciante, Single-polarisation, single-frequency, 2cm ytterbium- doped fibre laser, ELECTRONICS LETTERS, 2007, 43(10)
    [135] Lei Xu, Bing C. Wang, Varghese Baby, Ivan Glesk and Paul R. Prucnal, Optical Spectral Bistability in a Semiconductor Fiber Ring Laser Through Gain Saturation in an SOA, IEEE PHOTONICS TECHNOLOGY LETTERS, 2002, 14(2):149~151
    [136] 张健生,郭玉彬,王天枢,可编程控制波长调谐的环形掺铒光纤激光器,半导体光电,2004,25(5):366~369
    [137] 白冰,郭玉彬,王天枢,一种高性能环形可调谐光纤光栅激光器研究,激光与红外,2005,35(7):484~487
    [138] 聂秋华,光纤激光器与光纤放大器技术,北京:电子工业出版社,1997, 3
    [139] Kishi N and Yazaki T, Frequency control of a single-frequency fiber laser by cooperatively induced spatial-hole burning, IEEE Photonics Technol. Lett., 1999,11 (2):182~184
    [140] M.Kamp, J.Hofmann, F.Schafer, M.Reinhard, M.Fischer, T.Bleuel, J.P.Reithmaier and A.Forchel, Lateral coupling-a material independent way to complex coupled DFB lasers[J], Optical Materials, 2001, 17(6)19~25
    [141] 郭玉彬,霍佳雨,靳江涛,王天枢,闫红伟,李沛然,LiNbO3外调制器的10Gbit/s光纤传输系统[J],光学精密工程,2007,15(1):22~26
    [142] 陈明华,马楠,石颖等,基于10Gb/s传输链路的40Gb/s光传输实验研究[J],中国激光,2005,32(4):529~531
    [143] Ulrik Gliese, Multi-functional fibre-optic microwave links [J], Optical and Quantum Electronics, 1998, 30(5) 1005~1019
    [144] 靳江涛,郭玉彬,王天枢,霍佳雨,基于WDM的多速率无源光接入系统传输实验研究,光通信技术,2007,2:15~17
    [145] A. M. Vengsarkar, W. Craig Michie, L. Jankovic, B. Culshaw and R. O.Claus, Fiber-optic dual-technique sensor for simultaneous measurement of strain and temperature, J. Lightwave Technol, 1994,12(1) :170~177
    [146] S. Y. Huang, J. N. Blake and B. Y. Kim, Perturbation effects on mode propagation in highly elliptical core two-mode fibers, J. Lightwave Technol,. 1990,8(1): 23~33
    [147] Culshaw and J. Dakin, Optical Fiber Sensors: Systems and Applications, Artech, Boston, 1988
    [148] E. Udd, Fiber Optic Sensors: An Introduction for Engineers and Scientists, Wiley, New York, 1991
    [149] F. Farahi and D. A. Jackson, Temperature and strain sensingnusing monomode optical fiber, in Fiber Optic Sensors: Engineering and Applications, A. J. Bruinsma and B. Culshaw, eds., Proc. SPIE 1511, 1992:234~243
    [150] F. Farahi, D. J. Webb, J. D. C. Jones and D. A. Jackson, Simultaneous measurements of temperature and strain: crosssensitivity considerations, J. Lightwave Technol, 1990,8(2): 138~142
    [151] W. J. Bock, W. Urban′ czyk, R. Buczynski and A. W. Domanski, Cross-sensitivity effect in temperature-compensated sensors based on highly birefringent fibers, J. Applied Optics, September 1994,33(25): 6078~6083
    [152] Wojtek J. Bock and Wac?aw Urban′ czyk, Temperature–hydrostatic pressure cross-sensitivity effect in elliptical-core, highly birefringent fibers, J. Applied Optics, November, 1996,35(31): 6267~6270
    [153] Jianjun Ma, Weizhong Tang and Wen Zhou, Optical-fiber sensor for simultaneous measurement of pressure and temperature: analysis of cross sensitivity, J. Applied Optics, September 1996, 35(25): 5206~5210
    [154] Jaehoon Jung, Hui Nam, Byoungho Lee, Jae Oh Byun and Nam Seong Kim, Fiber Bragg grating temperature sensor with controllable sensitivity, J. Applied Optics, May 1999, 38(13): 2752~2754
    [155] C. Boulet, D. J. Webb, M. Douay and P. Niay, Simultaneous Interrogation of Fiber Bragg Grating Sensors Using an Acoustooptic Tunable Filter, IEEE. J. Photonics Technology Letters, November 2001,13(11): 1215~1217
    [156] Flavin D A, McBride R, Jones J D C, Burnett J G and Greenaway A H, Combined temperature and strain measurement with a dispersive optical fiber Fourier-transform spectrometer, J. Opt. Lett, December, 1994, 19(24): 2167~2169
    [157] Minho Song, Byoungho Lee, Sang Bae Lee and Sang Sam Choi, Interferometrictemperature-insensitive strain measurement with different-diameter fiber Bragg gratings, J. Opt. Lett, June 1997, 22(11): 790~792
    [158] Xiaodan Jin, Sirkis J S and Chung J K, Optical fiber sensor for simultaneous measurement of strain and temperature, Fourth Ann. Conf. on Smart Structures and Materials Proc. SPIE 3042, 1997,120~127
    [159] A.D. Kersey, M.A. Davis, H.J. Patrick, M. LeBlanc, K.P. Koo, C.G. Askins, M.A. Putnam and E.J. Friebele, Fiber Grating Sensors, J. Lightwave Technol, August, 1997,15(8): 1442~1463
    [160] Z. Yong and L. Yanbiao, Discrimination methods and demodulation techniques for fiber Bragg grating sensors, J. Optics Lasers Engg, 2004,41(1): 1~18
    [161] P. Ferraro and G. De Natale, On the possible use of optical fiber Bragg gratings as strain sensors for geodynamical monitoring, J. Optics Lasers Engg, February,2002,37(2) 115~130
    [162] M. G. Xu, J. L. Archambault and L. Reekie, etal, Discrimination between strain and temperature effects using dua-wavelength fiber grating sensors, J. Electronics Letters, June 1994, 30(13): 1085~1087
    [163] H. B. Liu, H. Y. Liu, G. D. Peng and P. L. Chu, Strain and temperature sensor using a combination of polymer and silica fibre Bragg gratings, J. Opt. Communication, April 2003 , 219(4): 139~142
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.