经颅重复性低频磁刺激治疗神经精神疾病的神经生物学机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:A Study on Neurobiological Mechanism of repetitive Transcranial Magnetic Stimulation in Treating Neuropsychiatry Disorders
  • 作者:林宏
  • 论文级别:博士
  • 学科专业名称:神经生物学
  • 学位年度:2001
  • 导师:鞠躬
  • 学科代码:071006
  • 学位授予单位:第四军医大学
  • 论文提交日期:2001-05-01
摘要
经颅重复性磁刺激(rTMS)作为一种研究手段已被广泛应用于人类脑生理
    功能许多方面如:运动功能、视觉、语言和脑疾病状态下的病理生理改变等的
    研究。近年来rTMS更是在治疗一系列的神经精神疾患如帕金森病、抑郁等上
    取得了较好的效果,但其治疗机制尚不明了,而且这些神经精神疾病又被认为
    是神经环路和神经元在细胞及分子水平上的功能失调,因此探讨rTMS所致的
    磁刺激对中枢神经系统中神经元基因活性、神经介质或/和调质、结构变化等的
    调控作用有着重要的意义。
     基底节环路对来自皮质的信号加以处理,从而使自主运动得以正确地完
    成,帕金森病时黑质致密部多巴胺神经元的变性导致整个基底节结构的功能出
    现变化,特别是对基底节输出核团的影响更加明显;基底节还具有如同海马相
    似的对感觉运动信息门控功能,参与了认知、记忆等行为活动。
     本研究首先用免疫组织化学方法观察了长程rMS对正常及6-OHDA损毁
    大鼠纹状体(ST)FosB蛋白表达的影响,以了解rTMS是否对纹状体神经元
    基因活性产生影响及多巴胺能在其中可能的作用。结果发现,rTMS后能够引
    起大鼠纹状体区域明显的FosB蛋白表达,这种表达广泛分布于尾壳核(CP)
    及苍白球(GP),尤以腹侧纹状体(VST)及尾侧的壳核明显。6-OHDA损毁
    后予以rTMS,损毁侧FosB蛋白表达未出现减少,且尾壳核的背外侧部表达明
    
    
    第四军医大学博士论文
    显上调。对照组动物仅损毁侧有少量的下。sB表达外,纹状体内未见F。sB阳性
    标记。
     我们还观察到,lMS后大鼠海马齿状回及CAI区表现出明显增多及染色
    增强的F。sB免疫阳性产物,我们认为这些阳性标记更可能是F。SB的稳定变异
    型 A FOSB,CAZ、CA3区则未出现hSB免疫阳性产物;假刺激组动物仅海马
    齿状回表现出少许淡染的 F。SB免疫阳性产物,CA、CAZ、CA3区则无 F。SB
    免疫阳性产物出现。
     酪氨酸羟化酶(TH)是基底节环路中重要的神经介质,在皮质纹状体长
    时程抑制(LTD)的产生上发挥着作用。帕金森病基底节输出核团特别是苍白
    球外侧部多巴胺(DA)明显下降,由于内源性 DA减少,导致皮质内抑制能
    力的下降可以出现运动功能的异常。低频rTMS能够使皮质的兴奋性降低也己
    得到证实。我们应用免疫组织化学法检测了 rTMS对苍白球及黑质(SN)等部
    位TH免疫阳性产物表达的影响。结果观察到,较之假刺激组动物,rTMS后
    大鼠 GP的 TH免疫阳性神经突起明显增多,尤以苍白球外侧部(GPe)明显;
    两组动物黑质致密部(SNC)和网状部(SNR)TH 阳性标记的细胞数目未见
    明显差别,但 rTMS组 TH阳性细胞染色加深,且 SNR和黑质外侧部(SNL)
    的TH阳性突起数量有所增加。
     神经生长因子能保护及减少神经元的丢失或/和增强存活神经元的功能,新
    近的报道表明BDNF不仅控制着神经元的生长和生存,而且还具有新的功能一
    促进多巴肢D3受体的表达,调节神经元对多巴胺这种神经递质的反应。神经
    变性疾病如Alzheimer、Parkinson病时BDNF下降,而应用BDNF后出现了行
    为学上的显著改善。本研究中我们对fYMS后正常及6-OHDA损毁侧大鼠基底
    节BDNF免疫阳性标记物的改变进行了观察,结果显示,rTA4S后正常侧大鼠
    尾、壳核表现出明显增强的BDNF表达,与假刺激组相比,大量颗粒状阳性
    BDNF标记物集中于rTMS后大鼠的尾、壳核;苍白球细胞表现出更强的胞浆
     4
    
     第四军医大学搏士论文
     及突起染色,且BDNF免疫阳性反应物的数量增多,特别是与纹状体相邻的区
     域明显:BDNF在SNC和SNR阳性标记的神经元胞浆的着色深度亦明显增强。
     注射6OHDA15d后,假刺激组大鼠注射例尾、壳核、苍白球及黑质阳性着色
     的胞体和突起从数量和染色的深度上较对照侧明显减少和减弱;riMs组动物
     则仍可观察到与对照侧类似的损毁侧尾、壳核密集的颗粒状BDNF阳性反应物
     表达及大量胞浆深染的阳性细胞集中于苍白球和黑质。
     氧化应激虽然不是唯一因素,但在lzhime和Parknson病中均发现了线
     粒体电子传递链的异常,提示其在神经变性疾病神经元的损伤及死亡过程中发
     挥着作用。本研究中,应用源自于人神经母细胞瘤的 TE671细胞,MTT法观
     察了fi34s对培养的TE671细胞生存力的影响,rTMS处理组MTT法测定的
     光密度(OD)值为1.ZI 99土0.11,假刺激组OD值为0.9928士0.互吕,Prto刀卜
     将rTMS组和假刺激组TE671细胞与过氧化氢共培养,观察rTMS对细胞毒性
     反应的影响发现,MTT法测定的两组OD值分别为0.5884土0.ZI和0.3287土
     0.23,P<0刀1。
     尽管rTMS被认为是一种安全的手段而可以应用于临床,但从细胞和结构
     水平上探讨其可能的伤害性效应的报道尚且不多。我们利用免疫组织化学法检
     测 GPe及 SN等部位高分子量微管相关蛋白(HMW MAPZ)的免疫阳性产物。
Repetitive transcranial magnetic stimulation (rTMS) has been widely used as a research tool to study aspects of human brain physiology including motor function, vision, language and pathophysiology of brain disorders. In recent years, rTMS has also been used as a therapeutic tool in a variety of neuropsychiatry disorders such as Parkinson disease and depression that were conceptualized in term of a dysfuction of neuronal circuits and neurons at a cellular and molecular level. However, the mechanism is unclear. To understand how magnetic stimuli induced by rTMS interact with central nervous system such as neuronal gene activity, neurotransmitter or modulator regulation and structure alterations are necessary.
    The basal ganglia circuitry processes the signals flow from the cortex, allowing the correct execution of voluntary movements. In Parkinson's disease, the degeneration of dopaminergic neurons of substantia nigra pars compacta triggers a cascade of functional changes affecting the whole basal ganglia network especially the output nuclei of the circuit. Another possible function of the basal ganglia is gating sensorimotor processing as hippocampus plays, and involves in controlling many behavioral activities such as cognition and memory.
    In present study, we firstly observe the effect of long-term rTMS on FosB expressions in normal and 6-OHDA lesioned striatum immunohistochmically. The
    
    
    
    result shows, high FosB expressions are induced in the striatum of rTMS treated rats, especially in the rostral ventral striatum and caudal putamen. There is an apparent upregulation of FosB expression in the dorsalateral caudate putamen of 6-OHDA lesioned side after rTMS. In controlled animals, striatal cells do not express FosB- like immunoreactivity except few positive neurons appear in 6-OHDA lesioned side.
    We also find that high and deeply stained FosB expressions which most possibly are the stable variants of FosB?A FosB are induced in hippocampus of experimental rats, mainly locate in the granule cell layer of dentate gyrus and pyramidal cell layer of CA1 area. No FosB immunoreactive nuclei can be seen in CA2 and CA3 areas. In controlled animals, few and slightly stained FosB positive neurons are found in the granule cell layer of dentate gyrus, but no FosB expressions appear in CA1, CA2 and CA3 areas.
    Tyrosine hydroxylase (TH) is an important neurotransmitter in basal ganglia circuitry, and plays the role in inducing corticostriatal long-term depression (LTD). In Parkinson's disease, endogenous dopamine in basal ganglia output nucleus especially external globus pallidus reduces, which induces the ability of intracortical inhibition decrease and then abnormal movement turns up. It has been approved that low frequency of repetitive transcranial magnetic stimulation can depress the motor cortex excitability. In current study, we investigate the changes of TH immunostaining in globus pallidus (GP) and substantia nigra (SN). Compared with that in control group, high TH positive projections are induced in the GP of experimental rats, especially in the external part of GP (GPe). No significant difference of the numbers of TH-positive cells in substantia nigra pars compacta (SNC) and pars reticulata (SNR) in both groups, but TH-positive projections in
    
    
    
    SNR and lateral substantia nigra (SNL) of rTMS group animals increase than that in sham stimulation group and cells stain darkly in rTMS group.
    Newly report showed that brain derived neurotrophin factor (BDNF) not only controlled the growth and survival of neurons, but also had another task: boosting the expression of dopamine D3 receptors that allowed neurons to respond to the neurotransmitter dopamine. BDNF reduced in neurodegenerative disorders such as Alzheimer disease and Parkinson's disease, and significant behavioral improvement could be induced when BDNF were applied. The effects of long-term of rTMS on the BDNF expression in normal and 6-OHDA lesioned basal ganglia are studied in present research. Significant increase of large BDNF immunoreactive gr
引文
1. Afifi AK, Bergman RA. Functional neuroanatomy.西安:世界图书出版公司 , 1998:275-294.
    2. Alexander GE, Crutcher MD. Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci, 1990; 13; 266-271.
    3. Altar CA, Boylan CB, Fritsche M, et al. The neurotrophins NT-4/5 and BDNF augment serotonin, dopamine, and GABAergic systems during behaviorally effective infusions to the substantia nigra. Exp Neurol, 1994; 30: 31-40.
    4. Altar CA. Neurotrophins and depression. Trends Pharmacol Sci, 1999; 20:59-61.
    5. Amaral DG, Witter MR The rat nervous system: hippocampal formation (eds Heimer L). London: Academic Press, 1995.
    6. Amassian VE, Cracco RQ, Maccabee PJ, et al. Suppression of visual perception by magnetic coil stimulation of human occipital cortex. Electroencephalogr Clin Neurophysiol, 1989, 74: 485-462.
    7. Amassian VE, Quirk GJ, Stewart M. A comparison of corticospinal activation by magnetic coil and electrical stimulation on monkey motor cortex. Electroencephalogy Clin Neurophysiol, 1990; 77:390-401.
    8. Barker AT, Jalinous R, Freeston IL. Noninvasive magnetic stimulation of human motor cortex. Lancet, 1985; 2:1106-1107.
    9. Bazzett TL, Becker JB, Kaatz KW, et al. Chronic intrastriatal dialytic administration of quinolinic acid produces selective neural degeneration. Exp Neurol, 1993,120:177-185.
    10. Beckers G, Zeki S. The consequences of inactivating areas V1 and V5 on visual motion perception. Brain, 1995; 118: 49-60.
    11. Behl C, Davis JB, Lesley R, et al. Hydrogen peroxide mediates amyloid 3 protein toxicity. Cell, 1994; 77: 817-827.
    12. Ben-Shachar D, Belmaker R, Grisaru N, et al. Transcranial magnetic stimulation induces alterations in brain monoamines. J Neural Transm, 1997; 104:191-197.
    13. Ben-Shachar D, Gazawi H, Riboyand-Levin J, et al. Chronic repetitive transcranial magnetic stimulation alters beta-adrenergic and 5-HT2 receptor characteristics in rat brain. Brain Res, 1999; 816: 78-83.
    14. Blandini F, Nappi G, Tassorelli C et al. Functional changes of the basal ganalia circuitry in Parkinson's disease. Progr Neurobiol, 2000; 62: 63-88.
    
    
    15. Binder LI, Frankfurter A, Rebhun LI. Differential localization of MAP-2 and tau neurons in situ. Ann N Y Acad Sci, 1986,466:145-166.
    16. Calabresi P, Maj R, Pisani A, et al. Long-term synaptic depression in the striatum: physiological and pharmacological characterization. J Neurosci, 1992a; 12:4224-4233.
    17. Calabresi P, De Murtas M, Mercuri NB, et al. Chronic neuroleptic treatment: D2 dopamine receptor supersensitivity and striatal glutamatergic transmission. Ann Neurol, 1992b; 31: 366-373.
    18. Calabresi P, Mercuri NB, Sancesario G, et al. Electrophysiology of dopamine-denervated striatal neurons. Implications for Parkinson's disease. Brain, 1993; 116: 433-452.
    19. Calabresi P, Pisani A, Mercuri NB, et al. Post-receptor mechanisms underlying striatal long-term depression. J Neurosci, 1994; 14: 4871-4881.
    20. Calabresi P, Pisani A, Mercuri NB, et al. The corticostriatal projection: from synaptic plasticity to dysfunctions of the basal ganglia. Trends Neurosci, 1996; 19: 19-24.
    21. Campbell K, Bjorklund A. Prefrontal corticostriatal afferents maintain increased enkephalin gene expression in the dopamine-denervated rat striatum. Eur J Neurosci, 1994; 6: 1371-1383.
    22. Cassarino DS, Bennett-Jr JP. An evaluation of the role of mitochondria in neurodegenerative diseases: mitochondrial mutations and oxidative pathology, protective nuclear responses, and cell death in neurodegeneration. Brain Res Rev, 1999; 29: 1-25.
    23. Castren E, Berninger B, Leingartner A, et al. Regulation of brain-derived neurotrophic factor mRNA levels in hippocampus by neuronal activity. Progr Brain Res, 1998; 117:57-64.
    24. Cenci MA, Kalen P, Mandel RJ, et al. Doperminergic transplants normalize amphetamine-and apomorphine-induced Fos expression in the 6-hydroxydopamine-lesioned striatum. Neuroscience, 1992; 46: 943-957.
    25. Charpier S, Mahon S, Deniau JM. In Vivo induction of striatal long-term potentiation by low-frequency stimulation of the cerebral cortex. Neurosci, 1999; 91: 1209-1222.
    26. Chen J, Nye HE, Kelz MB, et al. Regulation of dFosB and Fosb-like proteins by electroconvulsive seizure and cocaine treatments. Mol Pharmacol, 1995; 48; 880-889.
    27. Chen J, Kelz MB, Hope BT, et al. Chronic Fos related antigens: stable variants of △FosB induced in brain by chronic treatments. J Neurosci,
    
     1997; 17:4933-4941.
    28. Chen R, Classen J, Gerloff C, et al. Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology, 1997; 48: 1398-1403.
    29. Cohen LG, Celnik P, Pascual-Leone A, et al. Functional relevance of cross-modal plasticity in blind humans. Nature, 1997; 389: 180-183.
    30. Cohrs S, Tergau F, Riech S, et al. High-frequency repetitive transcranial magnetic stimulation delays rapid eye movement sleep. Neuroreport, 1998; 9: 3439-43.
    31. Connor B, Dragunow M. The role of neuronal growth factors in neurodegenerative disorders of the human brain. Brain Res Rev, 1998; 27: 1-39.
    32. Corthout E, Uttl B, Ziemann U et al. Two periods of processing in the (circum) striate visual cortex as revealed by transcranial magnetic stimulation. Neuropsychologia, 1999; 37: 137-145.
    33. Cossette M, Levesque M, Parent A. Extrastriatal dopaminergic innervation of human basal ganglia. Neurosci Res, 1999; 34: 51-54.
    34. Counter SA. Neurobiological effects of extensive transcranial electromagnetic stimulation in an animal model. Electroencephalogr Clin Neurophysiol, 1993; 89: 341-348.
    35. Crossman AR. Neural mechanisms in disorders of movement. Comp Biocnem Physiol, 1989; 93: 141-149.
    36. Das KC, Lewis-Molock Y, White CW. Activation of NF-kappa B and elevation of MnSOD gene expression by thiol reducing agent in lung adenocarcinoma (A549) cells. Am J Physiol, 1995; 269: L588-L602.
    37. Day BL, Thompson PD, Dick JP, et al. Different sites of action of electrical and magnetic stimulation of the human brain. Neurosci Lett, 1987, 75: 101-106.
    38. Day BL, Rothwell JC, Thompson PD, et al. Delay in the execution of voluntary movement by electrical or magnetic brain stimulation in intact man. Brain, 1989; 112: 649-663.
    39. Di Lazzaro V, Oliviero A, Profice P, et al. Comparison of descending volleys evoked by transcranial magnetic and electric stimulation in conscious humans. Electroencephalogy Clin Neurophysiol, 1998; 109; 397-401.
    40. Drevets WC, Raichle ME. Neuroanatomical circuits in depression: implications for treatment mechanisms. Psychopharmacol Bull, 1992; 28:261-274.
    
    
    41. Dubner R, Ruda M. Activity-dependent neuronal plasticity following tissue injury and inflammation. Trends Neurosci, 1992; 15: 96-103.
    42. Dudek SM, Bear MR Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyi-D-aspartate receptor blockade. Proc Natl Acad sci USA, 1992; 89: 4363-4367.
    43. Duman RS, Henninger GR, Nestler EJ. A molecular and cellular theory of depression. Arch Gen Psychiatry, 1997; 54:597-606.
    44. Ebadi M, Srinivasan SK, Baxi MD. Oxidative stress and antioxidant therapy in Parkinson's disease. Progr Neurobiol, 1996; 48: 1-19.
    45. Ebmeier KB, Shajahan PM, Glabus MF. Neuroimaging of TMS effects in humans. Int J Neuropsychopharmacol, 2000:3:S26. Abstract: S.16. 1.
    46. Epstein CM, Lar JJ, Meador K, et al. Optimum stimulus parameters for lateralized suppression of speech with magnetic brain stimulation. Neurology, 1996; 47: 1590-1593.
    47. Felipo V, Grau E, Minana MD, et al. Ammonium injection induces an Af-methyl-D-aspartate receptor-mediated proteolysis of the microtubule-associated protein MAP-2. J Neurochem, 1993,60:1626-1630.
    48. Fleischmann A, Prolov K, Abarbanel J, et al. The effects of transcranial magnetic stimulation of rat brain on behavioral models of depression. Brain Res, 1995; 699: 130-132.
    49. Fleischmann A, Sternheim A, Etgen A, et al. Transcranial magnetic stimulation downregulates beta-adrenoreceptors in rat cortex. J Neural Transm, 1996; 103: 1361-1366.
    50. Fujiki M, Steward O. High frequency TMS mimics the effects of ECS upregulating astroglial gene expression in the murine CNS. Mol Brain Res, 1997; 44: 301-308.
    51. George MS, Wassermann EM, Williams WA, et al. Daily repetitive transcranial magnetic stimulation (rTMS) improves mood in depression. NeuroReport, 1995; 6:1853-1856.
    52. George MS, Wassermann EM, Post RM. Transcranial magnetic stimulation: a neuropsychiatric tool for the 21st century. J Neuropsychiatry Clin Neurosci, 1996; 8: 373-382.
    53. Gerfen CR. The neostriatal mosaic: striatal patch-matrix organization is related to cortical lamination. Science, 1989; 246: 385-388.
    54. Gerloff C, Corwell B, Chen R, et al. Stimulation over the human supplementary motor area interferes with the organization of future elements in complex motor sequences. Brain, 1997; 120: 1587-1602.
    
    
    55. Grafinan J, Wassermann E. Transcranial magnetic stimulation can measure and modulate learning and memory. Neuropsychologia, 1999; 37:159-67.
    56. Graybiel AM. Neurotransmitters and neuromodulators in the basal ganglia. Trends Neurosci, 1990; 13:244-254.
    57. Graybiel AM. Basal ganglia-input, neural activity, and relation to the cortex. Curr Opin Neurobiol, 1991; 1; 644-651.
    58. Grisaru N, Amir M, Cohen H, et al. Effects of transcranial magnetic stimulation in posttraumatic stress disorder: a preliminary study. Biol Psychiatry, 1998; 44: 53-55.
    59. Grunhaus L, Dannon P, Schreiber S, et al. Effects of transcranial magnetic stimulation on severe depression. Similarities with ECT. Biol Psychiatry, 1998; 43:768.
    60. Hallett M, et al. Spasticity: Mechanism and Mmanagement (eds Thilmann AF, Burke DJ, Rymer WZ) 67-81 (Springer, Berlin, 1993) .
    61. Hallett M, Chen R, Ziemann U, et al. Transcranial magnetic stimulation. Electroencephalography and Clinical Neurophysiology Supplement 51 (eds Paulus W, Hallett M, Rossini PM, Rothwell JC), 183-187 (Elsevier, Amsterdam, 1999) .
    62. Hallett M. The neurophysiology of dystonia. Arch Neurol, 1998; 55: 601-603.
    63. Hallett M. Transcranial magnetic stimulation and the human brain. Nature, 2000; 406:147-150.
    64. Hausmann A, Weis C, Marksteiner J, et al. Chronic repetitive transcranial magnetic stimulation enhances c-fos in the parietal cortex and hippocampus. Mol Brain Res, 2000; 76: 355-362.
    65. Hess G, Donoghue JP. Long-term depression of horizontal connections in rat motor cortex. Eur J Neurosci, 1996; 8: 658-665.
    66. Hikosaka O. Basal ganglia--possible role in motor coordination and learning. Curr Opin Neurobiol, 1991; 1; 638-643.
    67. Hiroi N, Brown JR, Haile CN, et al. FosB "knockout" mice: loss of chronic FRAs and abnormalities in cocaine regulated behavior. Soc Neurosci Abstr, 1996; 22: 386.
    68. Hoffman R, Boutros N, Hu S, et al. Transcranial magnetic stimulation and auditory hallucination in schizophrenia. Lancet, 2000; 355: 10783-10785.
    69. Hope BT, Nye HE, Kelz MB, et al. Induction of a long-lasting AP-1 complex composed of altered Fos-like proteins in brain by chronic cocaine and other chronic treatments. Neuron, 1994a; 13: 1235-1244.
    70. Hope BT, Kelz MB, Duman RS, et al. Chronic electroconvulsive seizure
    
     (ECS) treatment results in expression of a long-lasting AP-1 complex in brain with altered composition and characteristics. J Neurosci, 1994b; 14; 4318-4328.
    71. Homykiewicz O. Biochemical aspects of Parkinson's disease. Neurology, 1998;51(suppl 2) :s2-s9.
    72. Ji R, Schlaepfer T, Aizenman C, et al. Repetitive transcranial magnetic stimulation activates specific regions in rat brain. Proc Natl Acad Sci USA, 1998:95: 15635-15640.
    73. Kelz MB, Chen JS, Carlezon WA, et al. Expression of the transcription factor [Delta] FosB in the brain controls sensitivity to cocaine. Nature, 1999; 401: 272-276.
    74. Kew JJ, Ridding MC, Rothwell JC, et al. Reorganization of cortical blood flow and transcranial magnetic stimulation maps in human subjects after upper limb amputation. J Neurophysiol, 1994; 72: 2517-2524.
    75. Kirik D, Rosenblad C, Bjorklund A. Characterization of behavioral and neurodegenerative changes following partial lesions of the nigrostriatal dopamine system induced by intrastriatal 6-hydroxydopamine in the rat. Exp Neurol, 1998; 152: 259-277.
    76. Kirkcaldie MTK, Pridmore SA, Pascual-Leone A. Transcranial magnetic stimulation as therapy for depression and other disorders. Aust NZJ Psychiatry, 1997; 31: 264-272.
    77. Kirkwood A, Dudek SM, Gold JT, et al. Common forms of synaptic plastivity in the hippocampus and neocortex in vitro. Science, 1993; 260: 1518-1521.
    78. Klein E, Kreinin I, Chistyakov A, et al. Therapeutic efficiency of right prefrontal slow repetitive transcranial magnetic stimulation in major depression: a double blind controlled trial. Arch Gen Psychiatry, 1999; 56: 315-320.
    79. Kokaia Z, Zhao Q, Kokaia M, et al. Regulation of brain-derived neurotrophic factor gene expression after transient middle cerebral artery occlusion with and without brain damage. Exp Neurol, 1995; 138:73-88.
    80. Kole M, Fuchs E, Ziemann U, et al. Changes in 5-HT1A and NMD A binding sites by a single rapid transcranial magnetic stimulation procedure in rats. Brain Res, 1999; 826: 309-312.
    81. Koshikawa N, Koshikawa F, Tomiyama K, et al. Effects of dopamine D1 and D2 agonists and antagonists injected into nucleus accumbens and globus pallidus on jaw movements of rats. Eur J Pharmacol, 1990; 182: 375-380.
    82. Kumazawa T. Primitivism and plasticity of pain--implication of polymodal
    
     receptors [Review]. Neurosci Res, 1998; 32: 9-31.
    83. Lauterbach EC. External globus pallidus in depression (letter). J Neuropsychiatry Clin Neurosci, 1999; 11:515-516.
    84. Lefaucheur J, Drouot X, Poilin B, et al. Chronic pain treated by rTMS of motor cortex. Electroencephalogr Clin Neurophysiol, 1999; 110: S166.
    85. Levkovitz Y, Marx J, Grisaru N, et al. Long-term effects of transcranial magnetic stimulation on hippocampal reactivity to afferent stimulation. J Neurosci, 1999; 19: 3198-3203.
    86. Liepert J, Tegenthoff M, Marlin JP. Changes of cortical motor area size during immobilization. Electroencephalogy Clin Neurophysiol, 1995; 97: 382-386.
    87. Lindholm D, Dechant G, Heisenberg CP, et al. Brain-derived neurotrophic factor is a survival factor for cultured rat cerebellar granule neurons and protects them against glutamate-induced neurotoxicity. Eur J Neurosci, 1993; 5:1455-1464.
    88. Lindvall O, Bojrklund A. Dopaminergic innervation of the globus pallidus by collaterals from the nigrostriatal pathway. Brain Res, 1979; 172: 169-173.
    89. Lovinger DM, Tyler EC, Merritt A. Short-and long-term synaptic depression in rat neostriatum. J Neurophysiol, 1993; 70: 1937-1949.
    90. Maher P, Davis J. The role of monoamine metabolism in oxidative glutamate toxicity. J Neurosci, 1996; 15: 6394-6401.
    91. Mally J, Stone TW. Improvement in Parkinsonian symptoms after repetitive transcranial magnetic stimulation. J Neuro Sci, 1999; 162: 179-184.
    92. Mano Y, Nakamuro T, Tamura R, el al. Central motor reorganization after anastomosis of the musculocutaneous and intercostal nerves in patients with traumatic cervical root avulsion. Ann Neurol, 1995; 38:15-20.
    93. Matsumiya M, Yamamoto T, Yarita M, et al. Physical and physiological specification of magnetic pulse stimuli that produced cortical damage in rats. J Clin Neurophysiol, 1992; 9: 278-287.
    94. Matsunaga W, Miyata S, Kiyohara T. Redistribution of MAP2 immunoreactivity in the neurohypophysial astrocytes of adult rats during dehydration. Brain Res, 1999; 829: 7-17.
    95. McCann U, Kimbrell T, Morgan C, et al. Repetitive transcranial magnetic stimulation for posttraumatic stress disorder. Arch Gen Psychiatry, 1998; 55: 276-279.
    96. Menkes DL, Bodnar P, Ballesteros RA, et al. Right frontal lobe slow frequency repetitive transcranial magnetic stimulation (SF r-TMS) is an
    
     effective treatment for depression: a case-control pilot study of safety and efficacy. J Neuro Neurosury Psychiatr, 1999; 67: 113-115.
    97. Merton PA, Morton HB. Stimulation of the cerebral cortex in the intact human subject Nature, 1980; 285:227.
    98. Migita K, Tohru U, Arita K, et al. Transcranial magnetic coil stimulation of motor cortex in patients with central pain. Neurosurgery, 1995; 36: 1037-1039.
    99. Mogi M, Togari A, Kondo T, et al. Brain-derived growth factor and nerve growth factor concentrations are decreased in the substantia nigra in Parkinson's disease. Neurosci Lett, 1999; 270:45-48.
    100. Montz J, Bradley L, Alarcon G. Abnormal functional activity of the central nervous system in fibromyalgia syndrom. Am J Med Sci, 1998; 315: 385-396.
    101. Morgan JI, Cohen DR, Hempstead JL, el al. Mapping patterns of c-fos expression in the central nervous system after seizure. Science, 1987; 237:192-197.
    102. Muller MB, Toschi N, Kresse AE, et al. Long-term repetitive transcranial magnetic stimulation increases the expression of brain-derived neurotrophic factor and cholecystokinin mRNA, but not neuropeptide tyrosine mRNA in specific areas of rat brain. Neuropsychopharm, 2000; 23:205-215.
    103. Nini A, Feingold A, Slovin H, et al. Neurons in the globus pallidus do not show correlated activity in the normal monkey, but phase-locked oscillations appear in the MPTP model of Parkinsonism. J Neurophysiol, 1995; 74: 1800-1805.
    104. Numan S, Seroogy KB. Increased expression of trkB mRNA in rat caudate-putamen following 6-OHDA lesions of the nigrostriatal pathway. Eur J Neurosci, 1997; 9: 489-495.
    105. Pascual-Leone A, Gates JR, Dhuna A. Induction ofspeech arrest and counting errors with rapid rate transcranial magnetic stimulation. Neurology, 1991; 41: 697-702.
    106. Pascual-Leone A, Cammarota A, Wassermann EM, et al. Modulation of motor cortical outputs to the reading hand of Braille readers. Ann Neurol, 1993; 34: 33-37.
    107. Pascual-Leone A, Vails SJ, Wassermann EM, et al. Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain, 1994a; 117:847-858.
    108. Pascual-Leone A, Valls-Sole J, Brasil-Noto JP, et al. Akinesia in Parkinson's disease. Ⅱ. Effects of subthreshold repetitive transcranial motor
    
     cortex stimulation. Neurology, 1994b; 44: 892-898.
    109. Pascual-Leone A, Wassermann EM, Sadato N, et al. The role of reading activity on the modulation of motor cortical outputs to the reading hand in Braille readers. Ann Neurol, 1995a; 38:910-915.
    110. Pascual-Leone A, Nguyet D, Cohen LG, et al. Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills. J Neurophysiol, 1995b; 74: 1037-1045.
    111. Pascual-Leone A, Catala MD. Lasting beneficial effect of rapid rate transcranial magnetic stimulation on slowness in Parkinson's disease. Neurology, 1995c; 45: 550.
    112. Paus T, Jech R, Thompson CJ, et al. Transcranial magnetic stimulation during positron emission topography: a new method for studying connectivity of the human cerebral cortex. J Neurosci, 1997; 17:3178-3184.
    113. Philip CG, Porter RR. Corticospinal neurons. London: Academic Press, 1987.
    114. Post A, Muller MB, Engelmann M, et al. Repetitive transcranial magnetic stimulation in rats: evidence for a neuroprotective effect in vitro and in vivo. Eur J Neurosci, 1999; 11: 3247-3254.
    115. Pridmore S. Rapid transcranial magnetic stimulation and normalization of the dexamethasone suppression test. Psychiatry Clin Neurosci, 1999; 53: 33-37.
    116. Pridmore S, Bruno R, Turnier SY, et al. Comparison of unlimited numbers of rapid transcranial magnetic stimulation (rTMS) and ECT treatment sessions in major depressive episode. Int J Neuropsychopharmacol, 2000a; 3: 129-134.
    117. Pridmore S, Oberoi G. Transcranial magnetic stimulation applications and potential use in chronic pain: studies in waiting. J Neuro Sci, 2000b; 182: 1-4.
    118. Priori A, Berardelli A, Inghilleri M, et al. Motor cortical inhibition and the dopaminergic system. Brain, 1994; 117:317-323.
    119. Raley-Sussman KM, Murata J. Time course of protein changes following in vitro ischemia in the rat hippocampal slice. Brain Res, 1995,694:94-102.
    120. Reutens DC, Berkovic SF, Macdonell RA, et al. Magnetic stimulation of the brain in generalized epilepsy: reversal of cortical hyperexcitability by anticonvulsants. Ann Neurol, 1993; 34: 351-355.
    121. Richards TL, Lappin MS, Lawrie FW, et al. Bioelectromagnetic applications for multiple sclerosis. Phys Med Rehabil Clin N Am, 1998; 9: 659-674.
    
    
    122. Ridding MC, Sheean G, Rothwell JC, et al. Changes in the balance between motor cortical excitation and inhibition in focal, task specific dystonia. J Neurol Neurosurg Psychiatr, 1995; 59; 493-498.
    123. Robertson HA, Peterson MR, Murphy K, et al. Dl-dopamine receptor agonists selectively activate striatal c-fos independent of rotational behaviour. Brain Res, 1989; 503: 346-349.
    124. Rodrigo J, Fernandez P, Bentura ML, et al. Distribution of catecholaminergic afferent fibres in the rat globus pallidus and their relations with cholinergic neurons. J Chem Neuroanat, 1998; 15: 1-20.
    125. Sacaan Al, Bymaster FT, Schoepp DD. Metaootropic glutamate receptor activation produces extrapyramidal motor system activation that is mediated by striatal dopamine. J Neurochem, 1992; 59: 245-251.
    126. Sadato N, Pascual-Leone A, Grafrnan J, et al. Activation of the primary visual cortex by Braille reading in blind subjects. Nature, 1996; 380: 526-528.
    127. Sagar SM, Sharp FR, Curran T. Expression of c-fos protein in brain: metabolic mapping at cellular level. Science, 1988; 240:1328-1331.
    128. Salerno A, Thomas E, Olive P, et al. Motor cortical dysfunction disclosed by single and double magnetic stimulation in patients with fibromyalgia. Clin Neurophysiol, 2000; 111: 994-1001.
    129. Sanchez AC, Diaz-Nido J, Avila J. Phosphorylation of microtubule-associated protein 2 (MAP2) and its relevance for the regulation of the neuronal cytoskeleton function. Prog Neurobiol, 2000,61:133-168.
    130. Sanchez-Ramos J, Overvik E, Ames BN. A marker of oxyradical-mediated DNA damage (8-hydroxy-2'-deoxyguanosine) is increased in nigro-striatum of Parkinson's disease brain. Neurodegeneration, 1994; 3: 197-204.
    131. Sanes JN, Suner S, Donoghue JP. Dynamic organization of primary motor cortex output to target muscles in adult rats. I. Long-term patterns of reorganization following motor or mixed peripheral nerve lesions. Exp Brain Res, 1990; 79: 479-491.
    132. Sautter J, Sable M, Sommer C et al. BDNF and TrkB expression in intrastnatal ventral mesencephalic grafts in a rat model of Parkinson's disease. J Neural Transm, 1998; 105: 253-263.
    133. Scimohama S, Tamura Y, Akaike A, et al. Brain-derived neurotrophic factor pretreatment exerts a partially protective effect against glutamate-induced neurotoxicity in cultured rat cortical neurons. Neurosci Lett, 1993,164:55-58.
    134. Sgro JA, Ghatak NR, Stanton PC, et al. Repetitive high magnetic field
    
     stimulation: the effect upon rat brain. In Levy WJ et al. (eds). Magnetic motor stimulation: basic principles and clinical experience. Elsevier, Amsterdam, 180-185.
    135. Sheline YI, Wang PW, Gado MH, et al. Hippocampal atrophy in recurrent major depression. Proc Natl Acad Sci USA, 1996; 93: 3908-3913.
    136. Siebner HR, Mentschel C, Auer C, et al. Repititive transcranial magnetic stimulation has a beneficial effect on bradykinesia in Parkinson's disease. NeuroReport, 1999a; 10: 589-594.
    137. Siebner HR, Tormos J, Ceballos BA, et al. Low-frequency repetitive transcranial magnetic stimulation of the motor cortex in Writer's cramp. Neurology, 1999b; 52: 529-537.
    138. Siegel GJ, Chauhan NB. Neurotrophic factors in Alzheimer's and Parkinson's disease brain. Brain Res Rev, 2000; 33: 199-227.
    139. Smith AD, Bolam JP. The neural network of the basal ganglia as revealed by the study of synaptic connections of identified neurones. Trends Neurosci, 1990; 13:259-265.
    140. Speer A, Wassermann E. RTMS in the treatment of mania: preliminary date. Electroencephalogr Clin Neurophysiol, 1998; 107: 971.
    141. Starr MS. Glutamate/dopamine D1/D2 balance in the basal ganglia and its relevance to Parkinson's disease. Synapse, 1995; 19: 264-293.
    142. Tergau F, Naumann U, Paulus W, et al. Low-frequency repetitive transcranial magnetic stimulation improves intractable epilepsy. Lancet, 1999; 353:2209.
    143. Thompson PD, Day BL, Crockard HA, et al. Intra-operative recording of motor tract potentials at the cervico-medullary juction following scalp electrical and magnetic stimulation of the motor cortex. J Neurol Neurosurg Psychiatry, 1991; 54: 618-623.
    144. Triggs WJ, McCoy KJ, Greer R, et al Effects of left frontal transcranial magnetic stimulation on depressed mood, cognition, and corticomotor threshod. Biol Psychiatry, 1999; 45: 1440-1446.
    145. Ullal GR, Ninchoji T, Uemura K, et al. Low frequency stimulation induces an increase in after-discharge thresholds in hippocampal and amygdaloid kindling. Epilepsy Res, 1989; 3: 232-235.
    146. Valzania F, Strafella AP, Tropeani A, et al. Facilitation of rhythmic events in progressive myoclonus epilepsy: a transcranial magnetic stimulation study. Clin Neurophysiol, 1999; 110: 152-157.
    147. Villar FDS, Walsh JP. Modulation of long-term synaptic plasticity at
    
     excitatory striated synapses. Neurosci, 1999; 90: 1031-1041.
    148. Volpe BT, Wildmann J, Altar CA. Brain-derived neurotrophic factor prevents the loss of nigral neurons induced by excitotoxic striatal/pallidial lesions. Neurosci, 1998; 83: 741-748.
    149. Wang H, Wang X, Scheich H. LTD and LTP induced by transcranial magnetic stimulation in auditory cortex. NeuroReport, 1996; 7: 521-525.
    150. Walsh JP. Depression of excitatory synaptic input in rat striated neurons. Brain Res, 1993; 608: 123-128.
    151. Wassermann EM. Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the international workshop on the safety of repetitive transcranial magnetic stimulation. Electroencephalogr Clin Neurophysiol, 1998; 108: 1-16.
    152. Watanabe Y, Stone E, McEwen BS. Induction and habituation of c-fos and Zif/286 by acute and repeated stressor. NeuroReport, 1994; 5: 1321-1324.
    153. Weiss SRB, Li XL, Rosen JB, et al. Quenching: inhibition of development and expression of amygdala kindled seizures with low frequency stimulation. NeuroReport, 1995; 6: 2171-2176.
    154. Wichmann T, Derlong MR. Functional and pathophysiological models of the basal ganglia. Curr Opin Neurobiol, 1996; 6: 751-758.
    155. Woolf NJ, Zinnerman MD, Johnson GVW. Hippocampal microtubule-associated protein-2 alteration with contextual memory. Brain Res, 1999,821:241-249.
    156. Yashitoma Y, Lin Q, Collier TJ, et al. Astrocytes retrovirally transduced with BDNF elicit behavioral improvement in a rat model of Parkinson's disease. Brain Res, 1995; 691: 25-36.
    157. Yasukazu K, Bruce S, McEwen. Effect of chronic restraint stress and tianeptine on growth factors, growth-associated protein-43 and microtubule-associated protein 2 mRNA expression in the rat hippocampus. Mol Brain Res, 1998,76:355-362.
    158. Yoritaka A, Hattori N, Uchida K, et al. Immunohistochemical detection of 4-hydroxy-nonenal protein adducts in Parkinson's disease. Proc Nat Acad Sci USA, 1996; 93: 2696-2713.
    159. Zangaladze A, Epstein CM, Grafton ST, et al. Involvement of visual cortex in tactile discrimination of orientation. Nature, 1999; 401: 587-590.
    160. Ziemann U, Rothwell JC, Ridding MC. Interaction between intracortical inhibition and facilitation in human motor cortex. J Physiol (Lond.), 1996a; 496:873-881.
    
    
    161. Ziemann U, Lonnecker S, Steinhoff BJ, et al. Effects of antiepileptic drugs on motor cortex excitability in man. A transcranial magnetic stimulation study. Ann Neurol, 1996b; 40: 367-378.
    162. Zyss T, Gorka Z, Kowalska M, et al. Preliminary comparison of behavioral and biochemical effects of chronic transeranial magnetic stimulation and electroconvulsive shock in the rat. Biol Psychiatry, 1997; 42: 920-924.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.