多孔性壳聚糖—硅基复合材料的制备及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
壳聚糖(Chitosan,CS)是来源丰富的环境可再生资源,具有良好的生物相容性。CS分子中丰富的羟基和氨基使其易于衍生化。将CS用作蛋白质分离纯化和酶固定化基质材料具有很好的应用前景。本论文建立了多孔性壳聚糖-硅基复合材料的制备方法,并将所得材料用于生物分离和酶的固定化。
     论文概述了蛋白质色谱分离模式,总结了蛋白质色谱和酶固定化所需基质材料的特性及分类。认为固相材料对蛋白质的非特异性吸附、蛋白质在固相表面的构象稳定性、蛋白质分离与制备的速度及材料的功能化是开发新型生物色谱及酶固定化基质材料的关键。
     论文将基于CS的有机-无机复合材料分为无机材料负载CS型和原位复合型两大类,综述了CS与硅胶、玻璃微珠、氧化铝、量子点、金、碳纳米管、Fe_3O_4、羟基磷灰石等无机材料的复合方法和应用,并总结了制备多孔CS材料的致孔方法。
     论文将CS负载在高比表面积、高机械强度的硅胶表面,以环氧氯丙烷为交联剂,聚乙二醇(PEG)为致孔剂,建立了新型多孔性CS-硅胶复合基质(CTS-SiO_2)的制备方法。研究了涂覆液中CS含量、致孔剂的分子量及含量对复合材料形貌和性能的影响。结果表明,涂覆液中CS含量为2%;致孔剂为PEG 20000,在涂覆液中含量为10%;涂覆液与硅胶质量比为2∶1;交联剂浓度为1mol L~(-1)时,所得复合材料具有表面大孔结构。CTS-SiO_2吸附Cu~(2+)后,制备了固定化金属亲和吸附剂(Cu-CTS-SiO_2)。以牛血清白蛋白(BSA)为模型蛋白,研究了CTS-SiO_2对BSA的非特异性吸附以及Cu-CTS-SiO_2对BSA的特异性吸附性能。研究发现,CTS-SiO_2对BSA具有低的非特异性吸附,具有大孔结构的Cu-CTS-SiO_2具有较高的BSA吸附容量。考察了CTS-SiO_2的酸碱稳定性等性能。发现CTS-SiO_2具有功能性表面和良好的酸碱稳定性。
     论文考察了CTS-SiO_2在酶固定化中的应用。将CTS-SiO_2经环氧化、重氮化或醛基化三种不同的衍生化方法活化后,用于共价固定胰蛋白酶。采用生物信息学手段,推测了各种固定化方法中酶与活化微珠的多位点或单位点结合模式。实验结果表明,CTS-SiO_2易于衍生化,不同固定化方法对酶固定化率和稳定性有显著影响。与游离酶相比,固定化胰蛋白酶的热稳定性、pH稳定性、长期保存稳定性均显著提高。环氧化活化法制备的固定化胰蛋白酶与微珠的多位点结合导致酶刚性提高,并表现出最好的稳定性和重复利用性。
     论文考察了CTS-SiO_2在固定化金属亲和色谱、生物配基亲和色谱中的应用。复合材料吸附Cu~(2+)后,研究了所得固定化金属亲和色谱填料(Cu-CTS-SiO_2)对BSA的吸附性能。结果表明,缓冲液酸度影响Cu-CTS-SiO_2对BSA的吸附。在pH 6.0时,Cu-CTS-SiO_2对BSA的吸附达到最大。Cu-CTS-SiO_2具有快的BSA吸附速度,吸附等温线符合Langmuir吸附模式。Cu-CTS-SiO_2可用于粗BSA样品的亲和色谱纯化。将CTS-SiO_2经环氧基团活化后,共价偶联胰蛋白酶,制备的生物配基亲和色谱填料可用于蛋清中胰蛋白酶抑制剂的亲和纯化。
     论文以HAc为反应介质,以γ-缩水甘油基丙基三甲氧基硅氧烷为无机源,通过PEG印迹的溶胶-凝胶过程,将CS的共价交联与无机网络的引入一步完成,建立了尼龙膜支载CS/硅基多孔性复合膜的制备方法。研究了涂膜液中PEG分子量和含量对所得复合膜材料形貌的影响。当涂膜液中CS含量为2%,致孔剂PEG 20000的含量为15%时,所得复合膜具有等级式孔结构:除具备大孔结构外,还具有与大孔互相贯穿的孔结构。推测了等级式孔结构形成机理,研究了复合膜的热稳定性、对BSA的非特异性吸附等性能。结果表明,复合膜材料具有高的热稳定性和低的BSA非特异性吸附。具有等级式孔结构的膜材料结合Cu~(2+)后,对BSA具有较高的吸附容量。
As a functional biopolymer, chitosan (CS) remains a focus of study in recent years. A set of unique characteristics including hydrophilicity, remarkable biocompatibility and high concentration of amino groups, guides its applications in bioseparation and enzyme immobilization. In this thesis, CS-based porous organic-inorganic composite materials were prepared and their applications in enzyme immobilization and affinity chromatography were evaluated.
     The type of chromatography for protein separation was described. The characteristics for matrices used for enzyme immobilization and bioseparation were summarized. The matrices usually used were also listed. The keys for the development of new matrices inculding non-specific interaction with protein, stability of protein on solid matrix, speed of bioseparation and functionality of materials, were described.
     The preparation and application of CS-based organic-inorganic composite materials were reviewed. The methods for the preparation of porous CS materials were also summarized。
     The preparation of new CS-silica porous organic-inorganic composite matrix (CTS-SiO_2) was prepared by coating cross-linked CS on silica. Porous structure could be formed on the coated layer using polyethylene glycol (PEG) as porogen. A new immobilized metal affinity chromatography (IMAC) matrix was prepared by coordinating Cu~(2+) with CTS-SiO_2 (Cu-CTS-SiO_2). Effects of CS and PEG content in coating solution on the surface morphology and protein adsorption capacity of Cu-CTS-SiO_2 were investigated. The CTS-SiO_2 prepared using 2% CS and 10% PEG 20000 in coating solution, 1 mol L~(-1) epichlorohydrin as cross-linking reagent, possessed macroporous surface. The non-specific protein adsorption was investigated using BSA as model protein. Results showed that CTS-SiO_2 possessed functional surface, low non-specific interaction with BSA, stability in both alkali and acid solution.
     The application of CTS-SiO_2 in enzyme immobilization was investigated. CTS-SiO_2 was easily activated with the functional group of epoxy, diazo and aldehyde respectively. Trypsin was covalently immobilized on the three activated matrices. The characteristics of the immobilized trypsin were investigated in comparison with free enzyme. The results were explained and discussed by analyzing the protein structure such as surface exposure rate of amino acid residues related to enzyme coupling. Results showed that trypsin immobilized via all employed methods could tolerate relatively tough environmental conditions, such as high temperature and wide pH range. The immobilized trypsin was obviously stable in long time storage. The best results were obtained when trypsin was immobilized via epoxy activation, which might be ascribed to the multi-point attachment (MPA) between enzyme and the support.
     The application of CTS-SiO_2 in affinity chromatography was investigated. BSA adsorption to Cu-CTS-SiO_2 was conducted for elucidating the optimal pH, adsorption kinetics and adsorption isotherm. The adsorption of BSA reached the maximum at pH 6.0. The macroporous morphology of Cu-CTS-SiO_2 could significantly affect the rate of adsorption toward BSA. Adsorptive isotherm of BSA on Cu-CTS-SiO_2 could be fitted to the Langmuir isotherm equation. A crude BSA sample was purified on the IMAC column packed with Cu-CTS-SiO_2. When CTS-SiO_2 was activated epoxy groups, trypsin was covalently coupled as a bio-ligand for capturing typsin inhibitor (TIs). The separation of TIs from egg white by column packing with trypsin-immobilized bead could be achieved.
     The preparation of porous CS/silica composite membrane supported by microfiltration nylon membrane was developed. Gamma-glycidoxypropyltrimethoxysilane (GPTMS) was used as an inorganic source as well as crosslinking reagent. Polyethylene glycol (PEG) with different molecular weight and content was used as porogen for morphology control. Results showed that the molecular weight and content of PEG had remarkable effect on the surface morphology of the conposite membrane. A special porous surface with 3-D hierarchical structure-in-structure pore fashion was obtained when content of PEG 20000 was controlled at 15%. The CS component in the composite materials could directly coordinate with Cu~(2+). The immobilized metal affinity membrane could effectively adsorb BSA. As expected, the affinity membrane imprinted with 15% PEG 20000 had remarkably high copper ion binding and BSA adsorption capacity, which might result from its large surface area, high ligand density and suitable interconnected 3-D hierarchical porous surface.
引文
[1] Leonard M. New packing materials for protein chromatography. J. Chromatogr. B, 1997, 699(1-2): 3-27
    [2] Krajewska B. Application of chitin- and chitosan-based materials for enzyme immobilizations: a review. Enzyme Microb. Tech., 2004, 35(2-3): 126-139
    [3] Kumar M N V Ravi, Muzzarelli R A A, Muzzarelli C, Sashiwa H, Domb A J. Chitosan Chemistry and Pharmaceutical Perspectives. Chem. Rev., 2004, 104(12): 6017-6084
    [4] Yi H, Wu L Q, Bentley W E, Ghodssi R, Rubloff G W, Culver J N, Payne G F. Biofabrication with chitosan. Biomacromolecules, 2005, 6(6): 2881-2894
    [5] Kurita K, Akao H, Yang J, Shimojoh M. Nonnatural branched polysaccharides: synthesis and properties of chitin and chitosan having disaccharide maltose branches. Biomacromolecules, 2003, 4(5): 1264-1268
    [6] Guibal E. Heterogeneous catalysis on chitosan-based materials: a review. Prog. Polym. Sci., 2005, 30(1): 71-109
    [7] Thommes J, Etzel M. Alternatives to chromatographic separations. Biotechnol. Progr., 2007, 23 (1): 42-45
    [8] Janson J C. The development of gel media and columns for large-scale chromatography of proteins, a historical review. Chinese J. Chem. Eng., 2002, 10 (6): 690-695
    [9] Millot M C, Sebille B, Mangin C. Enantiomeric properties of human albumin immobilized on porous silica supports coated with polymethacryloyl chloride. J. Chromatogr. A, 1997, 776(1): 37-44
    [10] Matthijs G, Schacht E. Dextran-coated silica and its behavior in high-performance size-exclusion chromatography. J. Chromatogr. A, 1996, 755(1): 1-10
    [11] Coradin T, Allouche J, Boissiere M, Livage J. Sol-gel biopolymer/silica nanocomposites in biotechnology. Curt. Nanosci., 2006, 2(3): 219-230
    [12] Muzzarelli C, Muzzarelli R A A. Natural and artificial chitosan-inorganic composites. J. Inor. Biochem., 2002, 92(2): 89-94
    [13] Langford J F, Schure M R, Yao Y, 1, Maloney, Lenhoff A M. Effects of pore structure and molecular size on diffusion in chromatographic adsorbents. J. Chromatogr. A, 2006, 1126(1): 95-106
    [1] Ligler F S, Lingerfelt B M, Price R P, Schoen P E. Development of uniform chitosan thin-film layers on silicon chips. Langmuir, 2001, 17(16): 5082-5084
    [2] Quignard F, Choplin A, Domard A. Chitosan: A natural polymeric support of catalysts for the synthesis of fine chemicals. Langmuir, 2000, 16(24): 9106-9108
    [3] Kurita K, Akao H, Yang J, Shimojoh M. Nonnatural branched polysaccharides: synthesis and properties of chitin and chitosan having disaccharide maltose branches. Biomacromolecules, 2003, 4(5): 1264-1268
    [4] Khor E, Lim L Y. Implantable applications of chitin and chitosan. Biomaterials, 2003, 24(13): 2339-2349
    [5] Zhang Y, Zhang M Q. Synthesis and characterization of macroporous chitosan/calcium phosphate composite scaffolds for tissue engineering. J. Biomed. Mater. Res., 2001, 55(3), 304-312
    [6] Kumar M N V Ravi, Muzzarelli R A A, Muzzarelli C, Sashiwa H, Domb A J. Chitosan Chemistry and Pharmaceutical Perspectives. Chem. Rev., 2004, 104(12): 6017-6084
    [7] Yi H, Wu L Q, Bentley W E, Ghodssi R, Rubloff G W, Culver J N, Payne G F. Biofabrication with chitosan. Biomacromolecules, 2005, 6(6): 2881-2894
    [8] Feng J, Gao C Y, Wang B, Shen J C. Co-patterning chitosan and bovine serum albumin on an aldehyde-enriched glass substrate by microcontact printing. Thin Solid Films, 2004, 460(1-2): 286-290
    [9] Twu Y K, Huang H I, Chang S Y, Wang S L. Preparation and sorption activity of chitosan/cellulose blend beads. Carbohyd. Polym., 2003, 54(4): 425-430
    [10] Huang Y C, Yeh M K, Chiang C H. Formulation factors in preparing BTM-chitosan microspheres by spray drying method. Int. J. Pharm., 2002, 242(1-2): 239-242.
    [11] Cerchiara T, Luppi B, Bigucci F, Zecchi V. Effect of chitosan on progesterone release from hydroxypropyl-β-cyclodextrin complexes. Int. J. Pharm., 2003, 258(1-2): 209-215
    [12] 贺小进,谭天伟,戚以政,李伟,刘青.球形CS树脂制备方法及吸附性能研究.离子交换与吸附,2000,16(1):47-53
    [13] 李艳丽,史永昶,姜涌明,马中良,赵国俊,王云.CS多孔珠作为亲和吸附剂载体纯化人尿胰蛋白酶抑制剂.药物生物技术,2000,7(4):218-220
    [14] Fu G Q, Li H Y, Yu H F, Liu L, Yuan Z, He B L. Synthesis and lipoprotein sorption properties of porous chitosan beads grafted with poly(acrylic acid). React. Functi. Polym., 2006, 66(2): 239-246
    [15] Jaafari K, Ruiz T, Elmaleh S, Coma J, Benkhouja K. Simulation of a fixed bed adsorber packed with protonated cross-linked chitosan gel beads to remove nitrate from contaminated water. Chem. Eng. J., 2004, 99(2): 153-160
    
    [16] 李学斌,祝华.CS微球制备方法研究.药学进展.2005,29(4):166-169
    [17] Shi Y C, Jiang Y M, Sui D X, Li Y L, Chen T, Ma L, Ding Z T. Affinity chromatography of trypsin using chitosan as ligand support. J. Choromatogr. A, 1996, 742(1-2): 107-112
    [18] Sinha V R, Singla A K, Wadhawan S, Kaushik R, Kumria R, Bansal K, Dhawan S. Chitosan microspheres as a potential carrier for drugs. Int. J. Pharm. 2004, 274 (1-2): 1-33
    [19] De la Torre P M, Enobakhare Y, Torrado G, Torrado S. Release of amoxicillin from polyionic complexes of chitosan and poly(acrylic acid): study of polymer/polymer and polymer/drug interactions within the network structure. Biomaterials, 2003, 24(8): 1499-1506.
    [20] Muzzarelli R A A, Muzzarelli C, Cosani A, Terbojevich M. 6-Oxychitins, novel hyaluronan-like regiospecifically carboxylated chitins. Carbohyd. Polym., 1999,39(4): 361-367.
    [21] Kweon D K, Lim S T. Preparation and characteristics of a water-soluble chitosan-heparin complex. J. Appl. Polym. Sci., 2003, 87(11): 1784-1788.
    [22] Hugerth A, Caram-Lelham N, Sundelof L O. The effect of charge density and conformation on the polyelectrolyte complex formation between carrageenan and chitosan. Carbohyd. Polym., 1997, 34(4): 149-156
    [23] Hoagland P D, Parris N. Chitosan/Pectin Laminated Films. J. Agr. Food Chem., 1996, 44(7): 1915-1919.
    [24] Nordby M H, Kjoniksen A L, Nystrom B, Roots J. Thermoreversible gelation of aqueous mixtures of pectin and chitosan, rheology. Biomacromolecules, 2003,4(2): 337-343
    [25] Meshali M M, Gabr K E. Effect of interpolymer complex formation of chitosan with pectin or acacia on the release behaviour of chlorpromazine HCl. Int. J. Pharm., 1993, 89(3): 177-181.
    [26] Kim H J, Lee H C, Oh J S, Shin B A, Oh C S, Park R D, Yang K S, Cho C S J. Polyelectrolyte complex composed of chitosan and sodium alginate for wound dressing application. Biomater. Sci., 1999, 10(5): 543-546.
    [27] Lai H L, Khalil A A, Craig D Q M. The preparation and characterisation of drug-loaded alginate and chitosan sponges. Int. J. Pharm., 2003,251(1-2): 175-181.
    [28] Wang L Y, Gu Y H, Zhou Q Z, Ma G H, Wan Y H, Su Z G. Preparation and characterization of uniform-sized chitosan microspheres containing insulin by membrane mulsiflcation and a two-step solidification process. Colloid. Surfaces B, 2006, 50(2): 126-135
    [29] Wang L Y, Ma G H, Su Z G. Preparation of uniform sized chitosan microspheres by membrane emulsification technique and application as a carrier of protein drug. J. Control Release, 2005, 106(1-2): 62-75
    [30] Jin J, Song M, Hourston D J. Novel chitosan-based films cross-linked by genipin with improved physical properties. Biomacromolecules, 2004, 5(1): 162-168
    [31] Chen H M, Ouyang W, Lawuyi B, Prakash S. Genipin cross-linked alginate-chitosan microcapsules: membrane characterization and optimization of cross-linking reaction. Biomacromolecules, 2006, 7(7): 2091-2098
    [32] Krajewska B. Diffusion of metal ions through gel chitosan membranes. React. Funct. Polym., 2001, 47: 37-47
    [33] Musale D A, Kumari A, Pleizier G. Formation and characterization of poly(acrylonitrile)/chitosan composite ultrafiltration membranes. J. Membrane Sci., 1999, 154 (2): 163-173
    [34] Liu C X, Bai R B. Adsorptive removal of copper ions with highly porous chitosan/cellulose acetate blend hollow fiber membranes. J. Membrane Sci., 2006, 284(1-2): 313-322
    [35] Muzzarelli C, Muzzarelli R A A. Natural and artificial chitosan-inorganic composites. J. Inorg. Biochem., 2002, 92(2): 89-94
    [36] Guibal E. Heterogeneous catalysis on chitosan-based materials: a review. Prog. Polym. Sci., 2005, 30(1): 71-109
    [37] Coradin T, Allouche J, Boissiere M, Livage J. Sol-gel biopolymer/silica nanocomposites in biotechnology. Curr. Nanosci., 2006, 2(3): 219-230
    [38] Franco P, Senso A, Oliveros L, Minguillon C. Covalently bonded polysaccharide derivatives as chiral stationary phases in high-performance liquid chromatography. J. Chromatogr. A., 2001, 906 (1-2): 155-170
    [39] Liu Y, Zou H, Haginaka J. Preparation and evaluation of a novel chiral stationary phase based on covalently bonded chitosan for ligand-exchange chromatography. J. Sep. Sci., 2006, 29(10): 1440-1446
    [40] Huang X J, Wang Q Q, Huang B L. Preparation and evaluation of stable coating for capillary electrophoresis using coupled chitosan as coated modifier. Talanta, 2006, 69(2): 463-468
    [41] Shi Q H, Tian Y, Dong X Y, Bai S, Sun Y. Chitosan-coated silica beads as immobilized metal affinity support for protein adsorption. Biochem. Eng. J., 2003, 16(3): 317-322
    [42] Sardinha J P M, Gil M H, Mercader J V, Montoya A. Enzyme-linked immunofiltration assay used in the screening of solid supports and immunoreagents for the development of an azinphos-methyl flow immunosensor. J. Immunol. Methods., 2002, 260 (1-2): 173-182
    [43] Li F, Li X M, Zhang S S. One-pot preparation of silica-supported hybrid immobilized metal affinity adsorbent with macroporous surface based on surface imprinting coating technique combined with polysaccharide incorporated sol-gel process. J. Chromatogr. A., 2006, 1129 (2): 223-230
    [44] Kubota M, Matsui M, Chiku H, Kasashima N, Shimojoh M, Sakaguchi K. Cell adsorption and selective desorption for separation of microbial cells by using chitosan-immobilized silica. Appl. Environ. Microb., 2005, 71(12): 8895-8902
    [45] 胡道道,史启祯,唐宗薰,房喻.甲壳素/CS 的配位化学和配合物应用的研究进展.无机化学学报,2000,16(5):386-394
    [46] Kucherov A V, Kramareva N V, Finashina E D, Koklin A E, Kustov L M. Heterogenized redox catalysts on the basis of the chitosan matrix 1. Copper complexes. J. Mol. Catal. A-Chem., 2003, 198 (1-2): 377-389
    [47] Zhang J, Xia C G. Natural biopolymer-supported bimetallic catalyst system for the carbonylation to esters of Naproxen. J. Mol. Catal. A-Chem., 2003, 206 (1-2): 59-65
    [48] Kucherov A, Finashina E, Kramareva N, Rogacheva V, Zezin A, Said-Galiyev E, Kustov L. Comparative study of Cu(II) catalytic sites immobilized onto different polymeric supports. Macromol. Symp., 2003, 204: 175-189
    [49] Kramareva N V, Finashina E D, Kucherov A V, Kustov L M. Copper complexes stabilized by chitosans: Peculiarities of the structure, redox, and catalytic properties. Kinet. Catal., 2003, 44 (6): 793-800
    [50] Sun Y X, Guo Y, Lu Q Z, Meng X L, Xiaohua W, Guo Y L, Wang Y S, Liu X H, Zhang Z G. Highly selective asymmetry transfer hydrogenation of prochiral acetophenone catalyzed by palladium-chitosan on silica. Catal. Lett., 2005, 100 (3-4): 213-217
    [51] Yin M Y, Yuan G L, Wu Y Q, Huang M Y, Jiang Y Y. Asymmetric hydrogenation of ketones catalyzed by a silica-supported chitosan-palladium complex. J. Mol. Catal. A-Chem., 1999, 147 (1-2): 93-98
    [52] Huang K, Liu H W, Dou X, Huang M Y, Jiang Y Y. Silica-supported chitosan-osmium tetroxide complex catalyzed vicinal hydroxylation of olefins using hexacyanoferrate (III) ion as a cooxidant. Polym. Advan. Technol., 2003,14 (3-5): 364-368
    [53] Xue L, Zhou D J, Tang L, Ji X F, Huang M Y, Jiang Y Y. The asymmetric hydration of 1-octene to (S)-(+)-2-octanol with a biopolymer-metal complex, silica-supported chitosan-cobalt complex. React. Funct. Polym., 2004, 58 (2): 117-121
    [54] Huang A M, Liu Y F, Chen L, Hua J D. Synthesis and property of nanosized palladium catalysts protected by chitosan/silica. J Appl Polym Sci., 2002, 85 (5): 989-994.
    [55] Wei W L, Hao S J, Zhou J, Huang M Y, Jiang Y Y. Catalytic behavior of silica-supported chitosan-platinum-iron complex for asymmetric hydrogenation of ketones. Polym. Advan. Technol., 2004, 15 (5): 287-290
    [56] Zhou D Q, Zhou D J, Cui X H, Wang F M, Huang M Y, Jiang Y Y. Asymmetric hydrogenation of ketones catalyzed by silica-supported chitosan-iron-nickel complex. Polym. Advan. Technol., 2004, 15 (5): 287-290
    [57] Liu X D, Tokura S, Haruki M, Nishi N, Sakairi N. Surface modification of nonporous glass beads with chitosan and their adsorption property for transition metal ions. Carbohyd. Polym., 2002, 49(6): 103-108
    [58] Liu X D, Tokura S, Nishi N, Sakairi N. A novel method for immobilization of chitosan onto nonporous glass beads through a 1,3-thiazolidine linker. Polymer, 2003,44 (4): 1021-1026
    [59] Darder M, Aranda P, Hernandez-Velez M, Manova E, Ruiz-Hitzky E. Encapsulation of enzymes in alumina membranes of controlled pore size. Thin Solid Films, 2006, 495(1-2): 321-326
    [60] Boddu V M, Abburi K, Talbott J L, Smith E D. Removal of hexavalent chromium from wastewater using a new composite chitosan biosorbent. Environ. Sci. Technol., 2003, 37(19): 4449-4456
    [61] Steenkamp G C, Keizer K, Neomagus H W J P, Krieg H M. Copper(II) removal from polluted water with alumina/chitosan composite membranes. J. Membr. Sci., 2002, 197(1-2): 147-156
    [62] Steenkamp G C, Neomagus H W J P, Krieg H M, Keizer K. Centrifugal casting of ceramic membrane tubes and the coating with chitosan. Sep. Purif. Technol., 2001, 25(1-3): 407-413
    [63] Nova C J M, Paolucci-Jeanjean D, Barboiu M, Belleville M P, Rivallin M, Rios G. Affinity membrane chromatography with a hybrid chitosan/ceramic membrane. Desalination, 2006, 200(1-3): 470-471
    [64] Coradin T, Allouche J, Boissiere M, Livage J. Sol-gel biopolymer/silica nanocomposites in biotechnology. Curr. Nanosci., 2006, 2(3): 219-230
    [65] Cho G J, Moon I S, Lee J S. Preparation and characterization of alpha-amylase immobilized inorganic/organic hybrid membrane using chitosan as a dispersant in the sol-gel process. Chem. Lett., 1997, 6(6): 577-578
    [66] Park S B, You J O, Park H Y, Haam S J, Kim W S. A novel pH-sensitive membrane from chitosan-TEOS IPN; preparation and its drug permeation characteristics. Biomatedals, 2001, 22(4): 323-330
    [67] Ayers M R, Hunt A J. Synthesis and properties of chitosan-silica hybrid aerogels. J. Non. -Cryst. Solids, 2001, 285(1-3): 123-127
    [68] Lai S M, Yang A J M, Chen W C, Hsiao J F. The properties and preparation of chitosan/silica hybrids using sol-gel process. Polym. -Plast. Technol., 2006, 45(9): 997-1003
    [69] Cestari A R, Vieira E F S, Pinto A A, Lopes E C N. Multistep adsorption of anionic dyes on silica/chitosan hybrid - 1. Comparative kinetic data from liquid- and solid-phase models. J. Colloid Interf. Sci., 2005, 292(2): 363-372
    [70] Molvinger K, Ouignard F, Brunel D, Boissiere M, Devoisselle J M. Porous chitosan-silica hybrid microspheres as a potential catalyst. Chem. Mater., 2004, 16(17): 3367-3372
    [71] Martinez Y, Retuert J, Yazdani-Pedram M, Clofen H. Hybrid ternary organic-inorganic films based on interpolymer complexes and silica. Polymer, 2004, 45(10): 3257-3265
    [72] Retuert J, Quijada R, Arias V, Yazdani-Pedram M. Porous silica derived from chitosan-containing hybrid composites. J. Mater. Res., 2003, 18 (2): 487-494
    [73] Pabon E, Retrert J, Quijada R, Zarate A. TiO_2-SiO_2 mixed oxides prepared by a combined sol-gel and polymer inclusion method. Micropor. Mesopor. Mat., 2004, 67(2-3): 195-203
    [74] Chen H M, Tian X M, Zou H. Preparation and blood compatibility of new silica chitosan hybrid biomaterials. Artif. Cell Blood Sub., 1998, 26(4): 431-436
    [75] Suzuki T, Mizushima Y, Umeda T, Ohashi R. Further biocompatibility testing of silica-chitosan complex membrane in the production of tissue plasminogen activator by epithelial and fibroblast cells. J. Biosci. Bioeng., 1999, 88(2): 194-199
    [76] Tamaki R, Chujo Y. Synthesis of chitosan/silica gel polymer hybrids. Compos. Interface, 1999, 6(3): 259-272
    [77] Zhu A P, Zhang Z, Shen J. Preparation and characterization of novel silica-butyrylchitosan hybrid biornaterials. J. Mater. Sci. -Mater. M., 2003, 14(1): 27-31
    [78] Zhu A P, Yan X, Zhang C, Shen J, Lin S C, Preparation of chitosan/SiO_2 hybrid polymer material via sol-gel process. Chem. J. Chinese Unvi., 2001,22(12): 2113-2116
    [79] Chang J S, Kong Z L, Hwang D F, Chang KLB. Chitosan-catalyzed aggregation during the biomimetic synthesis of silica nanoparticles. Chem. Mater., 2006, 18(3): 702-707
    [80] Wang X Y, Du Y M, Yang H H, Wang X H, Shi X W, Hu Y. Preparation, characterization and antimicrobial activity of chitosan/layered silicate nanocomposites. Polymer, 2006, 47(19): 6738-6744
    [81] Silva S S, Oliveira J M, Mano J F, Reis R L. Physicochemical characterization of novel chitosan-soy protein/TEOS porous hybrids for tissue engineering applications. Mater.Sci. Forum., 2006, 514-516: 1000-1004
    [82] Airoldi C, Monteiro O A C. Chitosan-organosilane hybrids-Syntheses, characterization, copper adsorption, and enzyme immobilization. J. Appl. Polym. Sci., 2000, 77(4): 797-804
    [83] Airoldi C, Monteiro O A C. Copper adsorption and enzyme immobilization on organosilane-glutaraldehyde hybrids as support. Polym. Bull., 2003, 50(1-2): 61-68
    [84] Tishchenko G, Bleha M, Diffusion permeability of hybrid chitosan/polyhedral Oligomeric silsesquioxanes(POSSTM)membranes to amino acids. J. Membrane Sci., 2005, 248(1-2): 45-51
    [85] Bleha M, Tishchenko G, Pientka Z, Brus J. Effect of POSS (TM) functionality on morphology of thin hybrid chitosan films. Des. Monomers Polym., 2004, 7(1-2): 25-43
    [86] Liu Y L, Su Y H, Lai J Y. In situ crosslinking of chitosan and formation of chitosan-silica hybrid membranes with using γ-glycidoxypropyltrimethoxysilane as a crosslinking agent. Polymer, 2004, 45 (20): 6831-6837
    [87] Shirosaki Y, Tsuru K, Hayakawa S, Osaka A, Lopes M A, Santos J D, Fernandes M H. In vitro cytocompatibility of MG63 cells on chitosan-organosiloxane hybrid membranes, Biomaterials, 2005, 26 (5): 485-493
    [88] Tsuru K, Shirosaki Y, Hayakawa S, Osaka A, Lopes M A, Santos J D, Fernandes M H. In vitro biodegradability of chitosan-organosiloxane hybrid membrane. Key Eng. Mater., 2005, 284-286: 823-826
    [89] Jiang Z Y, Yu Y X, Wu H. Preparation of CS/GPTMS hybrid molecularly imprinted membrane for efficient chiral resolution of phenylalanine isomers. J. Membrane Sci., 2006, 280(1-2): 876-882
    [90] Shchipunov Y A, Karpenko T Y, Krekoten A V, Postnova I V. Gelling of otherwise nongelable polysaccharides. J. Colloid. Interf. Sci., 2005, 287(2): 373-378
    [91] Wang G H, Zhang L M. Using novel polysaccharide-silica hybrid material to construct an amperometric biosensor for hydrogen peroxide. J. Phys. Chem. B, 2006, 110(49): 24864-24868
    [92] Liu Y L, Hsu C Y, Su Y H, Lai J Y. Chitosan-silica complex membranes from sulfonic acid functionalized silica nanoparticles for pervaporation dehydration of ethanol-water solutions. Biomacromolecules, 2005, 6(1): 368-373
    [93] Fuentes S, Retuert P J, Ubilla A, Fernandez J, Gonzalez G. Relationship between composition and structure in chitosan-based hybrid films. Biomacromolecules, 2000, 1(2): 239-243
    [94] Fei B, Lu H F, Xin J H. One-step preparation of organosilica@chitosan crosslinked nanospheres. Polymer, 2006, 47(4): 947-950
    [95] Silva S S, Ferreira R A S, Fu L S, Carlos L D, Mano J F, Reis R L, Rocha J. Functional nanostructured chitosan-siloxane hybrids. J. Mater. Chem., 2005, 15(35-36): 3952-3961
    [96] Chen X, Jia J B, Dong S J. Organically modified sol-gel/chitosan composite based glucose biosensor. Electroanal., 2003, 15(7): 608-612
    [97] Wang G, Xu J J, Chen H Y, Lu Z H. Amperometric hydrogen peroxide biosensor with sol-gel/chitosan network-like film as immobilization matrix. Biosens. Bioelectron., 2003, 18(4): 335-343
    [98] Luo X L, Xu J J, Du Y, Chen H Y. A glucose biosensor based on chitosan-glucose oxidase-gold nanoparticles biocomposite formed by one-step electrodeposition. Anal. Biochem., 2004, 334(2): 284-289
    [99] Martinez Y, Returet J, Yazdani-Pedram M. Sensing properties of hybrid polymeric films obtained by sol-gel. J. Chil. Chem. Soc., 2004, 49(2): 127-131
    [100] Zhang F F, Wan Q, Wang X L, Sun Z D, Zhu Z Q, Xian Y Z, Jin L T, Yamamoto K. Amperometric sensor based on ferrocene-doped silica nanoparticles as an electron transfer mediator for the determination of glucose in rat brain coupled to in vivo microdiaiysis. J. Electroanal. Chem., 2004, 571(2): 133-138
    [101] Tan X C, Tian Y X, Cai P X, Zou X Y. Glucose biosensor based on glucose oxidase immobilized in sol-gel chitosan/silica hybrid composite film on Prussian blue modified glass carbon electrode. Anal. Bioananl. Chem., 2005, 381(2): 500-507
    [102] Tan X C, Li M J, Cai P X, Luo L J, Zou X Y. An amperometric cholesterol biosensor based on multiwalled carbon nanotubes and organically modified sol-gel/chitosan hybrid composite film. Anal. Biochem., 2005, 337(1): 111-120
    [103] Xian Y Z, Liu F, Xian Y, Zhou Y Y, Jin L T. Preparation of methylene blue-doped silica nanoparticle and its application to electroanalysis heme proteins. Electrochim. Acta, 2006, 51(28): 6527-6532
    [104] Xu Q, Mao C, Liu N N, Zhu J J, Shen J. Immobilization of horseradish peroxidase on O-carboxymethylated chitosan/sol-gel matrix. React. Funct. Polym., 2006, 66(8): 863-870
    [105] Zhang L H, Xu Z A, Dong S J. Electrogenerated chemiluminescence biosensor based on Ru(bpy)(3)(2+) and dehydrogenase immobilized in sol-gel/chitosan/poly(sodium 4-styrene sulfonate) composite material. Anal. Chim. Acta, 2006, 575(1): 52-56
    [106] Shyuan L K, Heng LY, Ahmad M, Aziz S A, Ishak Z. Screen-printed biosensor with alkaline phosphatase immobilized in sol-gel/chitosan film for the detection of 2, 4-dichlorophenoxyacetic acid. Sens. Lett., 2006, 4(1): 17-21
    [107] Liu Y L, Su Y H, Lee K R, Lai J K. Crosslinked organic-inorganic hybrid chitosan membranes for pervaporation dehydration of isopropanol-water mixtures with a long-term stability. J. Membrane Sci., 2005, 251(1-2): 233-238
    [108] Uragami T, Katayama T, Miyata T, Tamura H, Shirairwa T, Higuchi A. Dehydration of an ethanol/water azeotrope by novel organic-inorganic hybrid membranes based on quaternized chitosan and tetraethoxysilane. Biomacromolecules, 2004, 5(4): 1567-1574
    [109] Kato M, Saruwatari H, Sakai-kato K, Toyooka T. Silica sol-gel/organic hybrid material for protein encapsulated column of capillary electrochromatography. J. Chromatogr. A, 2004, 1044(1-2): 267-270
    [110] Rashidoba S S, Shakarova D S, Ruzimuradov O N, Satubaldieva D T, Zalyalieva S V, Shipigun O A, Varlamov V P, Kabulov B D. Bionanocompositional chitosan-silica sorbent for liquid chromatography. J. Chromatogr. B, 2004, 800(1-2): 49-53
    [111] Rhee S H, Lee Y K, Lim B S. Evaluation of a chitosan nano-hybrid material containing silanol group and calcium salt as a bioactive bone graft. Key Eng. Mater., 2005, 284-286: 765-768
    [112] Fonseca M G, Oliveira A S, Airoldi C. Silylating agents grafted onto silica derived from leached chrysotile. J. Colloid Interf. Sci., 2001, 240 (2): 533-538
    [113] Miao Y, Tan S N. Amperometric hydrogen peroxide biosensor with silica sol-gel/chitosan film as immobilization matrix. Anal. Chim. Acta, 2001, 437 (1): 87-93
    [114] Yang Y M, Wand J W, Tan R X. Immobilization of glucose oxidase on chitosan-SiO_2 gel. Enzyme Microb. Tech., 2004, 34(2): 126-131
    [115] Cao W D, Easley C J, Ferrance J P, Landers J P. Chitosan as a polymer for pH-induced DNA capture in a totally aqueous system. Anal. Chem., 2006, 78(20): 7222-7228
    [116] Abdullah J, Ahmad M, Heng L Y, Karuppiah N, Sidek H. Stacked films immobilization of MBTH in nation/sol-gel silicate and horseradish peroxidase in chitosan for the determination of phenolic compounds. Anal. Bioanal. Chem., 2006, 386(5): 1285-1292
    [117] Abdullah J, Ahmad M, Heng L Y, Karuppiah N, Sidek H. Chitosan-based tyrosinase optical phenol biosensor employing hybrid nafion/sol-gel silicate for MBTH immobilization. Talanta, 2006, 70(3): 527-532
    [118] Sha D, Wang X H, Du Y M, Wang Q Q. Third-order nonlinear optical properties of hybrid films of biopolymer-CdSe/ZnS core-shell quantum dots. Acta Phys. Sin., 2006, 55(2): 753-757
    [119] Wang X H, Du Y M, Ding S, Wang Q Q, Xiong G G, Xie M, Shen X C, Pang D W. Preparation and third-order optical nonlinearity of self-assembled chitosan/CdSe-ZnS core-shell quantum dots films. J. Phys. Chem. B, 2006, 110(4): 1566-1570
    [120] Nie Q L, Tan W B, Zhang Y. Synthesis and characterization of monodisperse chitosan nanoparticles with embedded quantum dots. Nanotechnology, 2006, 17(1): 140-144
    [121] Wang X H, Du Y M, Ding S, Fan L H, Shi X W, Wang Q Q, Xiong G G. Large two-photon absorbance of chitosan-ZnS quantum dots nanocomposite film. Physica E, 2005, 30(1-2): 96-100
    [122] Xie M, Liu H H, Chen P, Zhang Z L, Wang X H, Xie Z X, Du Y M, Pan B Q, Pang D W. CdSe/ZnS-labeled carboxymethyl chitosan as a bioprobe for live cell imaging. Chem. Commun., 2005, 5(44): 5518-5520
    [123] Li Z, Du Y M, Zhang Z L, Pang D W. Preparation and characterization of CdS quantum dots chitosan biocomposite. React. Funct. Polym., 2003, 55(1): 35-43
    [124] Tan W B, Zhang Y. Multifunctional quantum-dot-based magnetic chitosan nanobeads. Adv. Mater., 2005, 17(19): 2375-2380
    [125] 赵秀丽,丁小斌,郑朝晖,彭宇行,田春蓉,王建华,龙新平.纳米金粒子/高分子复合物.化学进展,2005,17(5):847-853
    [126] Huang H Z, Yang X R. Synthesis of chitosan-stabilized gold nanoparticles in the absence/presence of tripolyphosphate. Biomacromolecules, 2004, 5(6): 2340-2346
    [127] Bahadur K C R, Aryal S, Bhattarai S R, Bhattaral N, Kim C H, Kim H Y. Stabilization of gold nanoparticles by hydrophobically-modified polycations. J. Biomater. Sci. -Polym. Ed., 2006, 17(5): 579-589
    [128] Huang H Z, Yang X R. Synthesis of polysaccharide-stabilized gold and silver nanoparticles: a green method. Carbohyd. Res., 2004, 339(15): 2627-2631
    [129] Chen J, Yan F, Du D, Wu J, Ju H X. Electrochemical immunoassay of human chorionic gonadotrophin based on its immobilization in gold nanoparticles-chitosan membrane. Electroanal., 2006, 18(7): 670-676
    [130] Luo X L, Xu J J, Du Y, Chen H Y. A glucose biosensor based on chitosan-glucose oxidase-gold nanoparticles biocomposite formed by one-step electrodeposition. Anal. Biochem., 2004, 334(2): 284-289
    [131] Wu L Q, Lee K, Wang X, English D S, Losert W, Payne G F. Chitosan-mediated and spatially selective electrodeposition of nanoscale particles. Langmuir, 2005, 21 (8): 3641-3646
    [132] Feng J J, Zhao G, Xu J J, Chen H Y. Direct electrochemistry and electrocatalysis of heme proteins immobilized on gold nanoparticles stabilized by chitosan. Anal. Biochem., 2005, 342(2): 280-286
    [133] Xu Q, Mao C, Liu N N, Zhu J J, Sheng J. Direct electrochemistry of horseradish peroxidase based on biocompatible carboxymethyl chitosan-gold nanoparticle nanocomposite. Biosens. Bioelectron., 2006, 22(5): 768-773
    [134] Xue M H, Xu Q, Zhou M, Zhu J J. In situ immobilization of glucose oxidase in chitosan-gold nanoparticle hybrid film on Prussian Blue modified electrode for high-sensitivity glucose detection. Electrochem. Commun., 2006, 8(9): 1468-1474
    [135] Huang H Z, Qiang Y, Yang X R. Morphology study of gold-chitosan nanocomposites. J. Colloid. Interf. Sci., 2005, 282(1): 26-31
    [136] Huang H Z, Yuan Q, Yang X R. Preparation and characterization of metal-chitosan nanocomposites. Colloid. Surface. B, 2004, 39(1-2): 31-37
    [137] Wang R H, Hu Z G, Liu Y Y, Lu H F, Fei B, Szeto Y S, Chan W L, Tao X M, Xin J H. Self-assembled gold nanoshells on biodegradable chitosan fibers. Biomacromolecules, 2006, 7(10): 2719-2721
    [138] 谈勇,钱卫平.金纳米壳球体的光学特性及其应用研究进展.科学通报,2005,50(6):505-511
    [139] Miyama T, Yonezawa Y. Aggregation of photolytic gold nanoparticles at the surface of chitosan films. Langmuir, 2004, 20(14): 5918-5923
    [140] Esumi K, Takei N, Yoshimura T. Antioxidant-potentiality of gold-chitosan nanocomposites. Colloid. Surface. B, 2003, 32(2): 117-123
    [141] Sugunan A, Thanachayanont C, Dutta J, Hilborn J G. Heavy-metal ion sensors using chitosan-capped gold nanoparticles. Sci. Technol. Adv. Mater., 2005, 6(3-4): 335-340
    [142] Wu Z G, Lin H B, Feng W. Carbon nanotubes/chitosan composites. Prog. Chem., 2006, 18(9): 1200-1207
    [143] Spinks G M, Shin S R, Wallace G G, Whitten P G, Kim S I, Kim S J. Mechanical properties of chitosan/CNT microfibers obtained with improved dispersion. Sensor Actuat. B-Chemical, 2006, 115(2): 678-684
    [144] Tkac J, Ruzgas T. Dispersion of single walled, carbon nanotubes. Comparison of different dispersing strategies for preparation of modified electrodes toward hydrogen peroxide detection. Electrochem. Commun., 2006, 8 (5): 899-903
    [145] Jiang L Y, Wang R X, Li X M, Jiang L P, Lu G H. Electrochemical oxidation behavior of nitrite on a chitosan-carboxylated multiwall carbon nanotube modified electrode. Electrochem. Commun., 2005, 7(6): 597-601
    [146] Lu G H, Jiang L Y, Song F, Liu C Y, Jiang L P. Determination of uric acid and norepinephrine by chitosan-multiwall carbon nanotube modified electrode. Electroanal., 2005, 17(10): 901-905
    [147] Qian L, Yang X R. Composite film of carbon nanotubes and chitosan for preparation of amperometric hydrogen peroxide biosensor. Talanta, 2006, 68(3): 721-727
    
    [148] Du D, Huang X , Cai J, Zhang A D, Ding J W, Chen S Z. An amperometric acetylthiocholine sensor based on immobilization of acetylcholinesterase on a multiwall carbon nanotube-cross-linked chitosan composite. Anal. Bioanal. Chem., 2007, 387(3): 1059-1065
    [149] Kandimalla V B, Ju H X. Binding of acetylcholinesterase to a multiwall carbon nanotube-cross-linked chitosan composite for flow-injection amperometric detection of an organophosphorous insecticide. Chem.-Eur. J., 2006, 12(4): 1074-1080
    [150] Liu Y, Wang M K, Zhao F, Xu Z A, Dong S J. The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix. Biosens. Bioelectron., 2005, 21(6): 984-988
    [151] Li J, Liu Q, Liu Y J, Liu S C, Yao S Z. DNA biosensor based on chitosan film doped with carbon nanotubes. Anal. Biochem., 2005, 346(1): 107-114
    [152] Luo X L, Xu J J, Wang J L, Chen H Y. Electrochemically deposited nanocomposite of chitosan and carbon nanotubes for biosensor application. Chem. Commun., 2005, 5(16): 2169-2171
    [153] Zhang M G, Smith A, Gorski W. Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes. Anal. Chem., 2004, 76(17): 5045-5050
    [154] Jiang L Y, Liu C Y, Jiang L P, Peng Z, Lu G H. A chitosan-multiwall carbon nanotube modified electrode for simultaneous detection of dopamine and ascorbic acid. Anal. Sci., 2004, 20(7): 1055-1059
    [155] Liu Y, Qu X H, Guo H W, Chen H J, Liu B F, Dong S J. Facile preparation of amperometric laccase biosensor with multifunction based on the matrix of carbon nanotubes-chitosan composite. Biosens. Bioelectron., 2006, 21(12): 2195-2201
    [156] 陈功,殷珺.磁性纳米材料在生物医学领域的应用.中国医学装备,2006,8(3):30-32
    [157] 杨百全,李晨旭,鲍玉庆,杨文胜.磁性纳米复合材料在法医学领域中的应用展望.刑事技术,2006,6(1):13-15
    [158] 李享,杨海.纳米Fe_3O_4磁性颗粒的制备进展.材料导报,2006,20(5):145-148
    [159] Wang S F, Tan Y M. A novel amperometric immunosensor based on Fe_3O_4 magnetic nanoparticles/chitosan composite film for determination of ferritin. Anal. Bioanal. Chem., 2007, 387(2): 703-708
    [160] Ding Y, Hu Y, Zhang L Y, Chen Y, Jiang X Q. Synthesis and magnetic properties of biocompatible hybrid hollow spheres. Biomacromolecules, 2006, 7(6): 1766-1772
    [161] Zhao G, Xu J J, Chen H Y. Fabrication, characterization of Fe_3O_4 multilayer film and its application in promoting direct electron transfer of hemoglobin. Electrochem. Commun., 2006, 8(1): 148-154
    [162] Zhang J, Zhang S T, Wang Y P, Gao S F. Synthesis and characterization of composite magnetic microspheres of artemisia seed gum and chitosan. J. Appl. polym. Sci., 2007, 103(5): 3045-3049
    [163] Zhi J, Wang Y J, Lu Y C, Ma J Y, Luo G S. In situ preparation of magnetic chitosan/Fe_3O_4 composite nanoparticles in tiny pools of water-in-oil microemulsion. React. Funct. Polym., 2006, 66(12): 1552-1558
    [164] Chang Y C, Chen D H. Recovery of gold(Ⅲ) ions by a chitosan-coated magnetic nano-adsorbent. Gold Bull., 2006, 39(3): 98-102
    [165] Chang Y C, Chen D H. Preparation and adsorption properties of monodisperse chitosan-bound Fe_3O_4 magnetic nanoparticles for removal of Cu(Ⅱ) ions. J. Colloid. Interf. Sci., 2005, 283(2): 446-451
    [166] Denkbas E B, Kilicay E, Birlikseven C, Ozturk E. Magnetic chitosan microspheres: preparation and characterization. React. Funct. Polym., 2002, 50(3): 225-232
    [167] 马雄华,韩颖超,李世善.纳米羟基磷灰石复合材料研究进展.生物骨科材料与临床研究,2006,3(3):50-53
    [168] 王新,刘玲蓉,张其清.纳米羟基磷灰石-CS 骨组织工程支架的研究.中国重建修复外科杂志,2007,21(2):120-124
    [169] Kong L J, Gao Y, Lu G Y, Gong Y D, Zhao N M, Zhang X F. A study on the bioactivity of chitosan/nano-hydroxyapatite composite scaffolds for bone tissue engineering. Eur. Polym. J., 2006, 42(12): 3171-3179
    [170] Oliveira J M, Rodrigues M T, Silva S S, Malafaya P B, Gomes M E, Viegas C A, Dias I R, Azevedo J T, Mano J F, Reis R L. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Biomaterials, 2006, 27 (36): 6123-6137
    [171] Sailaja G S, Ramesh P, Kumary T V, Varma H K. Human osteosarcoma cell adhesion behaviour on hydroxyapatite integrated chitosan-poly(acrylic acid) polyelectrolyte complex. Acta Biomater., 2006, 2(6): 651-657
    [172] Pena J, Izquierdo-Barba I, Garcia M A, Vallet-Regi M. Room temperature synthesis of chitosan/apatite powders and coatings. J. Eur. Ceram. Soc., 2006, 26(16): 3631-3638
    [173] Im H H, Park J H, Kim K N, Kim K M, Choi S H, Kim C K, Lee Y K. Organic-inorganic hybrids of hydroxyapatite with chitosan. Key Eng. Mater., 2005, 284-286: 729-732
    [174] Hu R, Hu H B, Lin C J. Preparation and characterization for a co-deposited hybrid coating of calcium phosphate/chitosan on Ti alloy surface. Chem. J. Chinese Unvi., 2002, 23 (11): 2142-2146
    [175] Yin Y J, Luo X Y, Cui J F, Wang C Y, Guo X M, Yao K D. A study on biomineralization behavior of N-methylene phosphochitosan scaffolds. Macromol. B iosci., 2004, 4(10): 971-977
    [176] Rusu V M, Ng C H, Wilke M, Tiersch B, Fratzl P, Peter M G. Size-controlled hydroxyapatite nanoparticles as self-organized organic-in organic composite materials. Biomaterials, 2005, 26(26): 5414-5426
    [177] Liu H, Li H, Cheng W J, Yang Y, Zhu M Y, Zhou C R. Novel injectable calcium phosphate/chitosan composites for bone substitute materials. Acta Biomater., 2006, 2(5): 557-565
    [178] Pena J, Izquierdo-Barba I, Martinez A, Vallet-Regi M. New method to obtain chitosan/apatite materials at room temperature. Solid State Sci., 2006, 8(5): 513-519
    [179] Rusu V M, Ng C H, Wilke M, Tiersch B, Fratzl P, Peter M G. Size-controlled hydroxyapatite nanoparticles as self-organized organic-in organic composite materials. Biomaterials, 2005, 26(26): 5414-5426
    [180] Kong L J, Gao Y, Cao W L, Gong Y D, Zhao N M, Zhang X F. Preparation and characterization of nano-hydroxyapatite/chitosan composite scaffolds. J. Biomed. Mater. Res. A, 2005, 75A(2): 275-282
    [181] Kumar R, Prakash K H, Lim K G, Kiat N H, Yennie K, Cheang P, Khor K A. Hydroxyapatite-chitosan hybrid nano-materials. Key Eng. Mater., 2005, 284-286: 721-724
    [182] Yoshida A, Miyazaki T, Ishida E, Ashizuka M. Preparation of bioactive chitosan-hydroxyapatite nanocomposites for bone repair through mechanochemical reaction. Mater. Trans., 2004, 45(4): 994-998
    [183] Granja P L, Silva A I N, Borges J P, Barrias C C, Amaral I F. Preparation and characterization of injectable chitosan-hydroxyapatite microspheres. Key Eng. Mater., 2004, 254-2: 573-576
    [184] Hu Q L, Li B Q, Wang M, Shen J C. Preparation and characterization of biodegradable chitosan/hydroxyapatite nanocomposite rods via in situ hybridization: A potential material as internal fixation of bone fracture. Biomaterials, 2004, 25(5): 779-785
    [185] Kong L J, Gao Y, Cao W L, Gong Y D, Zhao N M, Zhang X F. Preparation and characterization of nano-hydroxyapatite/chitosan composite scaffolds. J. Biomed. Mater. Res. A, 2005, 75A(2): 275-282
    [186] Li B Q, Hu Q L, Qian X Z, Fang Z P, Shen J C. Bioabsorbable chitosan/hydroxyapatite composite rod prepared by in-situ precipitation for internal fixation of bone fracture. Acta. Polym. Sin., 2002, (6): 828-833
    [187] Chen F, Wang Z C, Lin C J. Preparation and characterization of nano-sized hydroxyapatite particles and hydroxyapatite/chitosan nano-composite for use in biomedical materials. Mater. Lett., 2002, 57(4): 858-861
    [188] Yamaguchi I, Tokuchi K, Fukuzaki H, Koyama Y, Takakuda K, Monma H, Tanaka T. Preparation and microstructure analysis of chitosan/hydroxyapatite nanocomposites. J. Biomed. Mater. Res., 2001, 55(1): 20-27
    [189] Li B Q, Hu Q L, Wang M, Shen J C. Preparation of chitosan/hydroxyapatite nanocomposite with layered structure via in-situ compositing. Chem. J. Chinese Univ., 2004,25(10): 1949-1952
    [190] Yang L, Wei W Z, Gao X H, Xia J J, Tao H. A new antibody immobilization strategy based on electrodeposition of nanometer-sized hydroxyapatite for label-free capacitive immunosensor. Talanta, 2005, 68(1): 40-46
    [191] Pang X, Zhitomirsky I. Electrodeposition of composite hydroxyapatite-chitosan films. Mater. Chem. Phys., 2005, 94(2-3): 245-251
    [192] Matsuda A, Ukoma T, Kobayashi H, Tanaka J. Preparation and mechanical property of core-shell type chitosan/calcium phosphate composite fiber. Mat. Sci. Eng. C-Bio. S., 2004, 24(6-8): 723-728
    [193] Liu H, Li H, Cheng W J, Yang Y, Zhu M Y, Zhou C R. Novel injectable calcium phosphate/chitosan composites for bone substitute materials. Acta Biomater., 2006, 2(5): 557-565
    [194] Singh R, Martin C, Habinshuti A S, Brocchini S, Somavarapu S. Microencapsulated calcium-phosphate and chitosan nanoparticles for pulmonary delivery of DNA. J. Pharm. Pharmacol., 2006, 58: A71-A71
    [195] Bajpai S K, Tankhiwale R. Investigation of water uptake behavior and stability of calcium alginate/chitosan bi-polymeric beads: Part-1. React. Funct. Polym., 2006, 66(6): 645-658
    [196] Weir M D, Xu H H K, Simon C G. Strong calcium phosphate cement-chitosan-mesh construct containing cell-encapsulating hydrogel beads for bone tissue engineering. J. Biomed. Mater. Res. A , 2006, 77A(3): 487-496
    [197] Wang J W, van Apeldoorn A, de Groot K. Electrolytic deposition of calcium phosphate/chitosan coating on titanium alloy: Growth kinetics and influence of current density, acetic acid, and chitosan. J. Biomed. Mater. Res. A , 2006,76A(3): 503-511
    [198] Xu H H K, Simon C G. Fast setting calcium phosphate-chitosan scaffold: mechanical properties and biocompatibility. Biomaterials, 2005, 26(12): 1337-1348
    [199] Takagi S, Chow L C, Hirayama S, Eichmiller F C. Properties of elastomeric calcium phosphate cement-chitosan composites. Dent. Mater., 2003, 19(8): 797-804
    [200] Zhang Y, Ni M, Zhang M Q, Ratner B. Calcium phosphate-chitosan composite scaffolds for bone tissue engineering. Tissue Eng., 2003, 9(2): 337-345
    [201] Zhang Y, Zhang M Q. Calcium phosphate/chitosan composite scaffolds for controlled in vitro antibiotic drug release. J. Biomed. Mater. Res., 2002, 62(3): 378-386
    [202] Zhang Y, Zhang M Q. Synthesis and characterization of macroporous chitosan/calcium phosphate composite scaffolds for tissue engineering. J. Biomed. Mater. Res., 2001, 55(3): 304-312
    [203] Yokogawa Y, Nishizawa K, Nagata F, Kameyama T. Bioactive properties of chitin/chitosan-calcium phosphate composite materials. J. Sol-Gel Sci. Techn., 2001, 21(1-2): 105-113
    [204] Sun L M, Xu H H K, Takagi S, Chow L C. Fast setting calcium phosphate cement-chitosan composite: Mechanical properties and dissolution rates. J. Biomater. Appl., 2007,21(3): 299-315
    [205] Sun L M, Xu H H K, Takagi S, Chow L C. Fast setting calcium phosphate cement-chitosan composite: Mechanical properties and dissolution rates. J. Biomater. Appl., 2007, 21(3): 299-315
    [206] Leveque I, Rhodes K H, Mann S. Biomineral-inspired fabrication of semi-permeable calcium phosphate-polysaccharide microcapsules. J. Mater. Chem., 2002,12(8): 2178-2180
    [207] Chao A, Yu S, Chuang G. Using NaCl particles as porogen to prepare a highly adsorbent chitosan membranes. J. Membrane Sci., 2006, 280(1-2): 163-174
    [208] Zeng M, Fang Z. Preparation of sub-micrometer porous membrane from chitosan/polyethylene glycol semi-IPN. J. Membrane Sci., 2004,245 (1-2): 95-102
    [209] Yang L, Hsiao W W, Chen P. Chitosan-cellulose composite membrane for affinity purification of biopolymers and immunoadsorption. J. Membrane Sci., 2002, 197 (1-2): 185-197
    [210] Mi F, Shyu S, Chen C, Schoung J. Porous chitosan microsphere for controlling the antigen release of Newcastle disease vaccine: preparation of antigen-adsorbed microsphere and in vitro release. Biomaterials, 1999, 20 (17) 1603-1612
    [211] Clasen C, Wilhelms T, Rulicke W M. Formation and characterization of chitosan membranes. Biomacromolecules, 2006, 7(11): 3210-3222
    [212] Gumusderelioglu M, Agi P. Adsorption of concanavalin A on the well-characterized macroporous chitosan and chitin membranes. React. Funct. Polym., 2004, 61 (2): 211-220
    [213] Machado R L, Arruda E J A, Santana C C, Bueno S M A. Evaluation of a chitosan membrane for removal of endotoxin from human IgG solutions. Process Biochem., 2006, 41 (11): 2252-2257
    [214] Freitas S S, Machado R L, Arruda E J, Santana C C, Bueno S M A. Endotoxin removal from solutions of F(ab')2 fragments of equine antibodies against snake venom using macroporous chitosan membrane. J. Membrane Sci., 2004,234 (1-2): 67-73
    [215] Falk B, Garramone S, Shivkumar S. Diffusion coefficient of paracetamol in a chitosan hydrogel. Mater. Lett., 2004, 58 (26): 3261-3265
    [216] Mao J S, Zhao L G, Yin Y J, Yao K D. Structure and properties of bilayer chitosan-gelatin scaffolds. Biomaterials, 2003,24 (6):1067-1074
    [217] Zhang Y, Zhang M. Microstructural and mechanical characterization of chitosan scaffolds reinforced by calcium phosphates. J. Non-Cryst. Solids., 2001, 282(2-3): 159-164
    [218] Madihally S V, Matthew H W T. Porous chitosan scaffolds for tissue engineering. Biomaterials, 1999,20(12): 1133-1142
    [219] Liu Y Y, Tang J, Chen X J, Xin J H. A templating route to nanoporous chitosan materials. Carbohyd. Res., 2005, 340(18): 2816-2820
    [220] Peng X H, Zhang L N. Surface fabrication of hollow microspheres from N-methylated chitosan cross-linked with gultaraldehyde. Langmuir, 2005,21(3): 1091-1095
    [221] Chow K S, Khor E. Novel fabrication of open-pore chitin matrixes. Biomacromolecules, 2000, 1(1): 61-67
    [222] Angelova N, Hunkeler D. Permeability and stability of chitosan-based capsules: effect of preparation. Int. J. Pharm., 2002,242 (1-2): 229-232
    [1] Shi Q H, Tian Y, Dong X Y, Bai S, Sun Y. Chitosan-coated silica beads as immobilized metal affinity support for protein adsorption. Biochem. Eng. J., 2003, 16(3): 317-322
    [2] Sardinha J P M, Gil M H, Mercader J V, Montoya A. Enzyme-linked immunofiltration assay used in the screening of solid supports and immunoreagents for the development of an azinphos-methyl flow immunosensor. J. Immunol. Methods., 2002, 260(1-2): 173-182
    [3] Li F, Li X M, Zhang S S. One-pot preparation of silica-supported hybrid immobilized metal affinity adsorbent with macroporous surface based on surface imprinting coating technique combined with polysaccharide incorporated sol-gel process. J. Chromatogr. A., 2006, 1129(2): 223-230
    [4] Kubota M, Matsui M, Chiku H, Kasashima N, Shimojoh M, Sakaguchi K. Cell adsorption and selective desorption for separation of microbial cells by using chitosan-immobilized silica. Appl. Environ. Microb., 2005, 71(12): 8895-8902
    [5] Kumar M N V Ravi, Muzzarelli R A A, Muzzarelli C, Sashiwa H, Domb A J. Chitosan Chemistry and Pharmaceutical Perspectives. Chem. Rev., 2004, 104(12): 6017-6084
    [6] Yi H, Wu L Q, Bentley W E, Ghodssi R, RubloffG W, Culver J N, Payne G F. Biofabrication with chitosan. Biomacromolecules, 2005, 6(6): 2881-2894
    [7] Khor E, Lim L Y. Implantable applications of chitin and chitosan. Biomaterials, 2003, 24(13): 2339-2349
    [8] Zhang Y, Zhang M Q. Synthesis and characterization of macroporous chitosan/calcium phosphate composite scaffolds for tissue engineering. J. Biomed. Mater. Res., 2001, 55(3), 304-312
    [9] 聂莉,吴晓芳,伊萍,曲宁,李敏,徐伟.黄毓礼.CS中脱乙酰度测定方法的探讨.中国卫生检验杂志,2005,15(3):328-330
    [10] 孙万成.优质CS的制备及脱乙酰度的测定方法比较.现代食品科技,2006,22(3):105-107
    [11] 刘羿君,蒋英,封云芳,韩冬林.用GPC研究CS氧化降解过程中的分子量及其分布.功能高分子学报,2004,17(4):671-674
    [12] Yang L, Hsiao W W, Chen P. Chitosan-cellulose composite membrane for affinity purification of biopolymers and immunoadsorption. J. Membr. Sci., 2002, 197(1-2): 185-197
    [13] 邬建敏.光度法测定甲壳低聚糖的平均相对分子质量.化学世界,2001,6:293-295
    [14] Zeng M, Fang Z. Preparation of sub-micrometer porous membrane from chitosan/polyethylene glycol semi-IPN. J. Membrane Sci., 2004, 245 (1-2): 95-102
    [15] Zeng M F, Fang Z P, Xu C W. Effect of compatibility on the structure of the microporous membrane prepared by selective dissolution of chitosan/synthetic polymer blend membrane. J. Membrane Sci., 2004, 230(1-2): 175-181
    [16] Clasen C, Wilhelms T, Kulicke W M. Formation and characterization of chitosan membranes. Biomacromolecules, 2006, 7(11): 3210-3222
    [17] Rezwan K, Meier L P, Gauckler L J. Lysozyme and bovine serum albumin adsorption on uncoated silica and AlOOH-coated silica particles: the influence of positively and negatively charged oxide surface coatings. Biomaterials, 2005, 26(21): 4351-4357
    [18] Joshi O, Lee H J, McGuire J, Finneran P, Bird K E. Protein concentration and adsorption time effects on fibrinogen adsorption at heparinized silica interfaces. Colloids Surface. B., 2006, 50(1): 26-35
    [19] Kamyshny A, Feldman A, Baszkin A, Boissonnade MM, Rosilio V, Magdassi S. Chemically modified glucose oxidase with enhanced hydrophobicity: Adsorption at polystyrene, silica, and silica coated by lipid monolayers. J. Colloid Interf. Sci., 1999,218(1): 300-308
    [20] Lord M S, Cousins B G, Doherty P J, Whitelock J M, Simmons A, Williams R L, Milthorpe B K.The effect of silica nanoparticulate coatings on serum protein adsorption and cellular response. Biomaterials, 2006, 27(28): 4856-4862
    [21] Kamyshny A, Toledano O, Magdassi S. Adsorption of hydrophobized IgG and gelatin onto phosphatidyl choline-coated silica. Colloid. Surface. B., 1999,13(4): 187-194
    [22] Alcantar N A, Aydil E S, Israelachvili J N. Polyethylene glycol-coated biocompatible surfaces. J. Biomed. Mater. Res., 2000,51(3): 343-351
    [23] Xu H, Yan F, Monson E E, Kopelman R. Room-temperature preparation and characterization of poly (ethylene glycol)-coated silica nanoparticles for biomedical applications. J. Biomed. Mater. Res. A, 2003, 66A(4): 870-879
    [24] Millot M C, Taleb N L, Sebille B. Binding of human serum albumin to silica particles by means of polymers: a liquid chromatographic study of the selectivity of resulting chiral stationary phases. J. Chromatogr. B, 2002, 768(1): 157-166
    [25] Millot M C, Sebille B, Mangin C. Enantiomeric properties of human albumin immobilized on porous silica supports coated with polymethacryloyl chloride. J. Chromatogr. A, 1997, 776(1): 37-44
    [26] Godjevargova T, Nenkova R, Konsulov V. Immobilization of glucose oxidase by acrylonitrile copolymer coated silica supports. J. Mol. Catal. B-Enzym., 2006,38(2): 59-64
    [27] Loidl-Stahlhofen A, Schmitt J, Noller J, Hartmann T, Brodowsky H, Schmitt W, Keldenich J. Solid-supported biomolecules on modified silica surfaces - A tool for fast physicochemical characterization and high-throughput screening. Adv. Mater., 2001,13(23): 1829-1834
    [28] Lu J R, Murphy E F, Su T J, Lewis A L, Stratford P W, Satija S K. Reduced protein adsorption on the surface of a chemically grafted Phospholipid monolayer. Langmuir, 2001, 17(11): 3382-3389
    [29] Matthijs G, Schacht E. Dextran-coated silica and its behavior in high-performance size-exclusion chromatography. J. Chromatogr. A, 1996, 755(1): 1-10
    [30] Wei W, Ju H X. Application of dodecyldimethyl (2-hydroxy-3-sulfopropyl) ammonium in wall modification for capillary electrophoresis separation of proteins. Electrophoresis, 2005, 26(3): 586-592
    [31] Gotti R, Calleri E, Massolini G, Furlanetto S, Cavrini V. Penicillin G acylase as chiral selector in CE using a pullulan-coated capillary. Electrophoresis, 2006, 27(23): 4746-4754
    
    [32] Hsieh Y L, Chen T H, Liu C Y. Capillary electrochromatographic separation of proteins on a column coated with titanium dioxide nanoparticles. Electrophoresis, 2006, 27(21): 4288-4294
    [33] Sui X H, Cruz-Aguado J A, Chen Y, Zhang Z, Brook M A, Brennan J D. Properties of human serum albumin entrapped in sol-gel-derived silica bearing covalently tethered sugars. Chem. Mater., 2005, 17(5): 1174-1182
    [1] Villalonga R, Villalong ML, Gomez V. Preparation and functional properties of trypsin modified by carboxymethylcellulose. J. Mol. Catal. B-Enzym., 2000, 10(5): 483-490
    [2] Zhang Z, He Z, He M. Stabilization mechanism of MPEG modified trypsin based on thermal inactivation kinetic analysis and molecular modeling computation. J. Mol. Catal. B-Enzym., 2001, 14(4-6): 85-94
    [3] Ruckenstein E, Guo W. Cross-linking mercerized cellulose membranes and their application to membrane chromatography. J. Membrane Sci., 2001, 187(1-2): 277-286
    [4] Martin M, Anders L. Immobilization of trypsin on porous glycidyl methacrylate beads: effects of polymer hydrophilization. Colloid. Surface. B, 2000, 18(3-4): 277-284
    [5] El-Masry M M, Maio A D, Martelli P L. Influence of the immobilization process on the activity of β-galactosidase bound to nylon membranes grafted with glycidyl methacrylate part 1. Isothermal behavior. J. Mol. Catal. B-Enzym., 2001, 16(3-4): 175-189
    [6] Buijs J, Lichtenbelt J W T, Norde W, Lyklema J. Adsorption of monoclonal IgGs and their F(ab)_2 fragments onto polymeric surfaces. Colloid. Surface. B, 1995, 5(1-2): 11-23
    [7] Kumar M N V Ravi, Muzzarelli R A A, Muzzarelli C, Sashiwa H, Domb A J. Chitosan chemistry and pharmaceutical perspectives. Chem. Rev., 2004, 104(12): 6017-6084
    [8] Yi H, Wu L Q, Bentley W E, Ghodssi R, Rubloff G W, Culver J N, Payne G F. Biofabrication with chitosan. Biomacromolecules, 2005, 6(6): 2881-2894
    [9] Singh D K, Ray A R. Characterization of grafted chitosan films. Carbohydr. Polym., 1998, 36(2-3): 251-255
    [10] Yang L, Hsiao W W, Chen P. Chitosan-cellulose composite membrane for affinity purification of biopolymers and immunoadsorption. J. Membrane Sci., 2001, 5084(1-2): 185-197
    [11] Nouaimi M, Moschel K, Bisswanger H. Immobilization of trypsin on polyester fleece via different spacer. Enzyme Microb. Tech., 2001, 29(8-9):567-574
    [12] Kumar A, Gupta M N. Immobilization of trypsin on an enteric polymer Eudragit S-100 for the biocatalysis of macromolecular substrate. J. Mol. Catal. B-Enzym., 1998, 5(1-4): 289-294
    [13] Krogh T N, Berg T, Hojrup P. Protein analysis using enzymes immobilized to paramagnetic beads. Anal. Biochem., 1999,274(2):153-162
    [14] Lafuente R F, Cowan D A, Wood AN P. Hyperstabilization of a thermophilic esterase by multipoint covalent attachment. Enzyme Microb. Tech., 1995,17(4): 366-372
    [15] Panisman T, Tan S, Kacar Y. Covalent immobilization of invertase on microporous PHEMA-GMA membrane. Food Chem., 2004, 85(3): 461-466
    [16] Wilhem T, Frankw T; Frankw. Immobilized enzymes: methods and applications. Top Curr. Chem., 1999,200:95-126
    [17] Turkora J. Oriented immobilization of biologically active proteins as a tool for revealing protein interactions and function. J. Chromatogr. B, 1999, 722(1-2): 11-31
    [18] Tomomi K, Kyoichi S, William L. Protein binding to polymer brush, based on ion-exchange, hydrophobic and affinity interactions. J. Chromatogr. B, 2003, 790(1-2): 131-142
    [19] Nisnevitch M, Firer MA. The solid phase in affinity chromatography: strategies for antibody attachment. J. Biochem. Bioph. Meth., 2001,49(1-3): 467-480
    [20] Wu J M, Chen Z X, Ran D L. Cross-linking chitosan immobilized on silica gel as a matrix for preparation of affinity chromatographic material. Chinese J. Anal. Chem., 2002, 30(9): 1063-1067
    [21] Karlsson M, Ekeroth J, Elwing H, Carlsson U. Reduction of irreversible protein adsorption on solid surfaces by protein engineering for increased stability. J. Biol. Chem., 2005,280(27): 25558-25564
    [22] Mcnay J L, Fernandez E J. How does a protein unfold on a reversed-phase liquid chromatography surface. J. Chromatogr. A, 1999, 849(1):135-148
    [23] Herbold C W, Miller J H, Coheen S C. Cytochrome c unfolding on an anionic surface. J. Chromatogr. A, 1999, 863(2): 137-146
    [24] Otzen D E, Oliveberg M, Hook F. Adsorption of a small protein to a methyl-terminated hydrophobic surfaces: effect of protein-folding thermodynamics and kinetics. Colloid. Surface. B, 2003, 29(1): 67-73
    [25] Sethuraman A, Han M, Kane R S, Belfort G. Effect of surface wettability on the adhesion of proteins. Langmuir, 2004, 20(18): 7779-7788
    [1] Potter O G, Breadmore M C, Hilder E F. Boronate functionalised polymer monoliths for microscale affinity chromatography. Analyst, 2006, 131(10): 1094-1096
    [2] Hancock W S, Hincapie M, Plavina T. The development of a platform for clinical proteomics using multi-lectin affinity chromatography (M-LAC) with a focus on glycoproteins. Mol. Cell. Proteemics, 2006, 5(10): S348-S348
    [3] Sun X S, Chiu J F, He Q Y. Application of immobilized metal affinity chromatography in proteomics. Expert Rev. Proteomic., 2005, 2(5): 649-657
    [4] Feng S, Pan C S, Jiang X G, Xu S Y, Zhou H J, Ye M L, Zou H F. Fe~(3+) immobilized metal affinity chromatography with silica monolithic capillary column for phosphoproteome analysis. Proteomics, 2007, 7(3): 351-360
    [5] Qiu R Q, Zhang X, Regnier F E. A method for the identification of glycoproteins from human serum by a combination of lectin affinity chromatography along with anion exchange and Cu-IMAC selection of tryptic peptides. J. Chromatogr. B, 2007, 845(1): 143-150
    [6] Imanishi S Y, Kochin V, Eriksson J E. Optimization of phosphopeptide elution conditions in immobilized Fe(Ⅲ) affinity chromatography. Proteomics, 2007(2): 174-176
    [7] Robert R, Clofent-Sanchez G, Hocquellet A, Jacobin-Valat M J, Daret D, Noubhani A M, Santarelli X. Large-scale production, bacterial localization assessment and immobilized metal affinity chromatography purification of a human single-chain Fv antibody against alphaIIb-beta3 integrin. Int. J. Biol. Macromol., 2006, 39(1-3): 51-59
    [8] Jiang C P, Glorioso J C, Ataai M. Presence of imidazole in loading buffer prevents formation of free radical in immobilized metal affinity chromatography and dramatically improves the recovery of herpes simplex virus type 1 gene therapy vectors. J. Chromatogr. A, 2006, 1121(1): 40-45
    [9] Ndassa Y M, Orsi C, Marto J A, Chen S, Ross M M. Improved immobilized metal affinity chromatography for large-scale phosphoproteomics applications. J. Proteome Res., 2006, 5(10): 2789-2799
    [10] Vega R A, Maspoch D, Shen C K F, Kakkassery J J, Chen B J, Lamb R A, Mirkin C A. Functional antibody arrays through metal ion-affinity templates. Chembiochem, 2006, 7(11): 1653+
    [11] Shi Q H, Tian Y, Dong X Y, Bai S, Sun Y. Chitosan-coated silica beads as immobilized metal affinity support for protein adsorption. Biochem. Eng. J., 2003, 16(3): 317-322
    [12] Ruckenstein E, Guo W. Crosslinked mercerized cellulose membranes and their application to membrane affinity chromatography. J. Membrane Sci., 2001, 187(1-2): 277-286
    [13] Prikryl P, Horak D, Ticha M, Kuderova Z. Magnetic IDA-modified hydrophilic methacrylate-based polymer microspheres for IMAC protein separation. J. Sep. Sci., 29(16): 2541-2549
    [14] Vancan S, Miranda E A, Bueno S M A. IMAC of human IgG: studies with IDA-immobilized copper, nickel, zinc, and cobalt ions and different buffer systems. Process Biochem., 2002, 37(6) 573-579
    [15] Gaberc-Porekar V, Menart V. Perspectives of immobilized-metal affinity chromatography. J. Biochem. Biophys. Methods, 2001, 49(1-3) 335-360
    [16] Kumar M N V Ravi, Muzzarelli R A A, Muzzarelli C, Sashiwa H, Domb A J. Chitosan Chemistry and Pharmaceutical Perspectives. Chem. Rev., 2004, 104(12), 6017-6084
    [17] Yi H, Wu L Q, Bentley W E, Ghodssi R, Rubloff G W, Culver J N, Payne G F. Biofabrication with chitosan. Biomacromolecules, 2005, 6(6): 2881-2894
    [18] Khor E, Lim L Y. Implantable applications of chitin and chitosan. Biomaterials, 2003, 24(13): 2339-2349
    [19] El-Masry MM, Maio AD, Martelli PL. Influence of the immobilization process on the activity of β-galactosidase bound to nylon membranes grafted with glycidyl methacrylate part 1. Isothermal behavior. J. Mol. Catal. B, 2001; 16(3-4): 175-189
    [20] Yang Y M, Wang J W, Tan R X. Immobilization of glucose oxidase on chitosan-SiO_2 gel. Enzyme Microb. Tech. 2004, 34(2): 126-131
    [21] Ibrahim B S, Pattabhi V. Crystal structure of trypsin-turkey egg white inhibitor complex. Biochem. Bioph. Res. Co., 2004, 313 (1) 8-16
    [1] Coradin T, Allouche J, Boissiere M, Livage J. Sol-gel biopolymer/silica nanocomposites in biotechnology. Curr. Nanosci., 2006, 2(3): 219-230
    [2] Franco P, Senso A, Oliveros L, Minguillon C. Covalently bonded polysaccharide derivatives as chiral stationary phases in high-performance liquid chromatography. J. Chromatogr. A., 2001, 906 (1-2): 155-170
    [3] Liu Y, Zou H, Haginaka J. Preparation and evaluation of a novel chiral stationary phase based on covalently bonded chitosan for ligand-exchange chromatography. J. Sep. Sci., 2006, 29(10): 1440-1446
    [4] Liu Y L, Su Y H, Lai J Y. In situ crosslinking of chitosan and formation of chitosan-silica composite membranes with using γ-glycidoxypropyltrimethoxysilane as a crosslinking agent. Polymer, 2004, 45(20): 6831-6837
    [5] Shirosaki Y, Tsuru K, Hayakawa S, Osaka A, Lopes M A, Santos J D, Fernandes M H. In vitro cytocompatibility of MG63 cells on chitosan-organosiloxane composite membranes, Biomaterials, 2005, 26(5): 485-493
    [6] Tsuru K, Shirosaki Y, Hayakawa S, Osaka A, Lopes M A, Santos J D, Fernandes M H. In vitro biodegradability of chitosan-organosiloxane composite membrane. Key Eng. Mater., 2005, 284-286: 823-826
    [7] Jiang Z Y, Yu Y X, Wu H. Preparation of CS/GPTMS composite molecularly imprinted membrane for efficient chiral resolution of phenylalanine isomers. J. Membrane Sci., 2006, 280(1-2): 876-882
    [8] Coradin T, Allouche J, Boissiere M, Livage J. Sol-gel biopolymer/silica nanocomposites in biotechnology. Curr. Nanosci., 2006, 2(3): 219-230
    [9] Gabelman A, Hwang S T, Hollow fiber membrane contactors. J. Membrane Sci., 1999, 159(1-2): 61-106
    [10] Xu J, Wang Y J, Hu Y, Luo G S, Dai Y Y. Candida rugosa lipase immobilized by a specially designed microstructure in the PVA/PTFE composite membrane. J. Membrane Sci., 2006, 281(1-2): 410-416
    [11] Mao X P, Guo G J, Huang J F, Du Z Y, Huang Z S, Ma L, Li P, Gu L Q. A novel method to prepare chitosan powder and its application in cellulase immobilization. J. Chem. Technol. Biot., 2006, 81(2): 189-195
    [12] Sanjay G, Sugunan S. Enhanced pH and thermal stabilities of invertase immobilized on montmorillonite K-10. Food Chem., 2006, 94 (4): 573-579
    [13] Xia B L, Zhang G L, Zhang F B. Bilirubin removal by Cibacron Blue F3GA attached nylon-based hydrophilic affinity membrane. J. Membrane Sci., 2003, 226(1-2): 9-20
    [14] Shi W, Zhang F B, Zhang G L. Adsorption of bilirubin with polylysine carrying chitosan-coated nylon affinity membranes. J. Chromatogr. B, 2005, 819(2) 301-306
    [15] Zeng M F, Fang Z P, Xu C W. Effect of compatibility on the structure of the microporous membrane prepared by selective dissolution of chitosan/synthetic polymer blend membrane. J. Membrane Sci., 2004, 230(1-2): 175-181
    [16] Zhang M, Li X H, Gong Y D, Zhao N M, Zhang X F. Properties and biocompatibility of chitosan films modified by blending with PEG. Biomaterials, 2002, 23(13): 2641-2648
    [17] 邬建敏.光度法测定甲壳低聚糖的平均相对分子质量.化学世界,2001,6:293-295
    [18] Li J L, Pan J L, Zhang L G, Zhao Y T. Culture of hepatocytes on fructose-modified chitosan scaffolds. Biomaterials, 2003, 24(13): 2317-2322
    [19] Shchipunov Y A, Karpenko T Y. Composite polysaccharide-silica nanocomposites prepared by the sol-gel technique. Langmuir, 2004, 20(10): 3882-3887
    [20] Shchipunov Y A, Kojima A, Imae T. Polysaccharides as a template for silicate generated by sol-gel processes. J. Colloid Interf. Sci., 2005, 285(2): 574-580
    [21] K. Kajihara, T. Yao, J. Sol-Gel Sci. Technol. 17 (2000) 173
    [22] Tanaka N, Kobayashi H, Ishizuka N, Minakuchi H, Nakanishi K, Hosoya K, Ikegami T. Monolithic silica columns for high-efficiency chromatographic separations. J. Chromatogr. A, 2002, 965(1-2): 35-49
    [23] Minakuchi H, Nakanishi K, Soga N, Ishizuka N, Tanaka N. Effect of skeleton size on the performance of octadecylsilylated continuous porous silica columns in reversed-phase liquid chromatography. J. Chromatogr. A, 1997, 762(1-2): 135-146
    [24] Nagarale R K, Gohil G S, Shahi V, Rangarajan R. Organic-inorganic composite membrane: Thermally stable cation-exchange membrane prepared by the sol-gel method. Macromolecules, 2004, 37(26): 10023-10030
    [25] Molvinger K, Quignard F, Brunel D, Boissiere M, Devoisselle J M. Porous chitosan-silica composite microspheres as a potential catalyst. Chem. Mater., 2004, 16(17): 3367-3372
    [26] Zeng M F, Fang Z P, Xu C W. Novel method of preparing microporous membrane by selective dissolution of chitosan/polyethylene glycol blend membrane. J. Appl. Polym. Sci., 2004, 91(5): 2840-2847
    [27] Zhao L, Yu J G. Controlled synthesis of highly dispersed TiO_2 nanoparticles using SBA-15 as hard template. J. Colloid Interf. Sci., 2006,304(1): 84-91
    [28] Kim J H, Lee Y M. Synthesis and properties of diethylaminoethyl chitosan. Polymer, 1993, 34(1993): 1952-1952
    [29] Hanora A, Bernaudat F, Plieva F M, Dainiak M B, Bulow L, Galaev I Y, Mattiasson B. Screening of peptide affinity tags using immobilised metal affinity chromatography in 96-well plate format. J. Chromatogr. A, 2005,1087 (1-2): 38-44
    [30] Liu X D, Tokura S, Haruki M, Nishi N, Sakairi N. Surface modification of nonporous glass beads with chitosan and their adsorption property for transition metal ions. Carbohyd. Polym., 2002, 49(2): 103-108
    [31] Airoldi C, Monteiro O A C. Chitosan-organosilane composites-Syntheses, characterization, copper adsorption, and enzyme immobilization. J. Appl. Polym. Sci., 2000,77(4): 797-804
    [32] Airoldi C, Monteiro O A C. Copper adsorption and enzyme immobilization on organosilane-glutaraldehyde composites as support. Polym. Bull., 2003, 50(1-2): 61-68
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.