氧化钛基复合薄膜的制备及光电转换性质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种半导体材料,TiO2具有良好的光电转换效应,且价格低廉、无污染,在太阳能电池方面有广阔的应用前景。
     本论文在溶胶凝胶法制备TiO2薄膜的基础上,利用溶液掺杂、电聚合掺杂等方法将单质硒、氧化石墨烯(GO)和聚苯胺(PANI)分别引入薄膜,采用扫描电子显微镜(SEM)、X-射线衍射仪(XRD)、紫外一可见光谱(UV-vis)等测试技术对所得到的Se/TiO2、Se/GO/TiO2和PANI/GO/TiO2复合薄膜进行表征,以氙灯作为光源,研究了所制备薄膜的光电转换性质,探讨了各种影响因素及薄膜中的电子转移机理。
     主要研究内容如下:
     1.Se/TiO2复合薄膜的制备及其光电转换性质研究
     首先,采用溶胶凝胶法制备氢氧化钛溶胶,以导电玻璃(ITO)为基底,经过浸渍-涂覆-煅烧过程,制备TiO2薄膜。然后采用电沉积技术将Se纳米粒子沉积在TiO2薄膜表面,制备Se/TiO2复合薄膜。通过优选电沉积Se的条件,提高Se/TiO2复合薄膜的性能。利用扫描电子显微镜(SEM)、X-射线衍射(XRD)、紫外可见光谱(UV-Vis)等测试技术对薄膜进行表征。结果表明,所得薄膜致密、均匀,具有锐钛矿相结构的TiO2颗粒粒径为20nm,薄膜中的Se颗粒粒径为60-80nm。光电转换实验结果表明,在Se的作用下,Se/TiO2复合薄膜对可见光有很好的光电转换效应。
     2. Se/GO/TiO2复合薄膜的制备及其光电转换性质研究
     首先,将氧化石墨烯(GO)加入氢氧化钛溶胶中,以导电玻璃(ITO)为基底,经过浸渍-涂覆-煅烧过程,制备GO/TiO2复合薄膜。然后采用电沉积技术将Se纳米粒子沉积在GO/TiO2薄膜表面,获得Se/GO/TiO2复合薄膜。利用扫描电子显微镜(SEM)、X-射线衍射(XRD)、紫外可见光谱(UV-Vis)等测试技术对薄膜进行表征。结果表明,薄膜中各种物质分布均匀,具有锐钛矿相结构的TiO2颗粒粒径为20nm,GO为分散的片层结构,与Ti02结合较好,薄膜中的Se颗粒粒径为60-80nm。光电转换实验结果表明,在Se和GO的共同作用下,Se/GO/TiO2复合薄膜对可见光有很好的光电转换效应。
     3. PANI/GO/TiO2复合薄膜的制备及光电转换性质研究
     首先,用溶胶凝胶法,将GO掺入氢氧化钛溶胶中,以导电玻璃(ITO)为基底,以浸渍一提拉的方式制成多孔GO/TiO2复合薄膜。然后,采用电沉积技术将苯胺原位聚合(形成聚苯胺)沉积在GO/TiO2薄膜表面,获得了PANI/GO/TiO2复合薄膜。利用SEM、XRD、UV-Vis等测试技术对各薄膜进行了表征。结果表明,制备的PANI/GO/TiO2复合薄膜较为均匀,TiO2粒径小于20nm,具有锐钛矿相结构,GO片层掺杂或附着在TiO2薄膜上,呈链状的PANI沉积在GO/TiO2薄膜上。经光电性质测试,结果表明,在PANI和GO的共同作用下,PANI/GO/TiO2复合薄膜具有较好的光电转换性质。
As a semiconductor material, TiO2has good photovoltaic effect, low cost and little pollution, and has broad application prospects in solar cells.
     In this paper, based on the TiO2film preperation by the sol-gel process, elemental Se, graphene oxide (GO) and Polyaniline (PANI) were respectively introduced by solution doping and electro-depositing doping. The Se/TiO2, Se/GO/TiO2and PANI/GO/TiO2composite films as-fabricated were characterized by Scanning Electron Microscope, X-ray Diffraction, Ultraviolet-visible Spectrophotometer. Using xenon lamp as light source, the photoelectric conversion property of composite films was studied. Various effect factors and the mechnism of photoelectric conversion of the composite films were discussed.
     Main work as follows:
     1. Preparation and photoelectric transformation of Se/TiO2composite film
     First, with the Ti(OH)4sol-gel solution via dip-coating and calcining technique, the TiO2film was prepared on the ITO glass plate. Then, the Se/TiO2composite film was fabricated by electro-depositing Se nanoparticles on the TiO2film. By optimizing the condition of electrodeposition, the property of the Se/TiO2composite film was improved. The films as-prepared were characterized by scanning electron microscopy, X-ray diffractometer and UV-Vis spectrometer. The results show that the films are uniform and compact. The TiO2nanoparticles with diameter20nm have anatase phase and Se nanoparticles with diameter60-80nm distributed in the TiO2film homogeneously. The photoelectric experiment results indicate that the Se/TiO2composite film has satisfactory photoelectric transformation property, due to the introduction of Se nanoparticles.
     2. Preparation and photoelectric transformation of Se/GO/TiO2composite film
     First, with the Ti(OH)4sol-gel solution containing the GO via dip-coating and calcining technique, the GO/TiO2composite film was prepared on the ITO glass plate. Then, the Se/GO/TiO2composite film was fabricated by electro-depositing Se nanoparticles on the GO/TiO2film. The composite films as-prepared were characterized by scanning electron microscopy, X-ray diffractometer and UV-Vis spectrometer. The results show that the components are uniformly distracted in film. The TiO2particles with diameter20nm have anatase phase, the GO sheets doped in or attached to TiO2film and the Se nanoparticles with diameter60-80nm distributed in the GO/TiO2film. The photoelectric experiment results indicate that the Se/GO/TiO2composite film has satisfactory photoelectric transformation property, by virtue of the co-function of Se and GO.
     3.Preparation and photoelectric transformation of PANI/GO/TiO2composite film
     First, with the Ti(OH)4sol-gel solution containing the GO via dip-coating and calcining technique, the GO/TiO2composite film was prepared on the ITO glass plate. Then, the PANI/GO/TiO2composite film was fabricated by electro-polymerizing and electro-depositing aniline (formed as Polyaniline) on the GO/TiO2film. The composite films as-prepared were characterized by scanning electron microscopy, X-ray diffractometer and UV-Vis spectrometer. The results show that the composite films are uniform. The TiO2particles with diameter20nm have anatase phase, the GO sheets doped in or attached to TiO2film and catcnoid PANI deposited in the GO/TiO2film. The photoelectric experiment results indicate that the PANI/GO/TiO2composite film has satisfactory photoelectric transformation property, due to the co-function of PANI and GO.
引文
[1]Chia-Yuan Chen, Mingkui Wang, Jheng-Ying Li, et al. Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells[J]. ACS Nano,2009,3(10):3103-3109.
    [2]Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting[J]. Chemical Society Reviews,2009,38:253-278.
    [3]Kamat, P. V. Meeting the Clean Energy Demand:Nanostructure Architectures For Solar Energy Conversion [J]. The Journal of Physical Chemistry C,2007,111(7): 2834-2860.
    [4]Hagfeldt, A.; Gratzel, M. Molecular and supermolecular surface modification of nanocryslalline TiO2 films:Charge-separatiny and charge-injecting devices[J]. Chemical Reviews,1995,95:49-63.
    [5]Rajeshwar, K.; de Tacconi, N. R.; Chenthamarakshan, C. R. Semiconductor-Based Composite Materials:Preparation,Properties,and Performance [J]. Chemistry of Materials,2001,13(9):2765-2782.
    [6]B Cheng, E T Samulski. Rapid, high yield, solution-mediated transformation of polycrystalline selenium powder into single-crystal nanowires[J]. Chemical Communications,2003,3(16):2024-2025.
    [7]Ji Ming Song, Jian Hua Zhu, Shu Hong Yu, Crystallization and shape evolution of single crystalline selenium nanorods at liquid-liquid interface:from monodisperse amorphous Se nanospheres toward Se nanorods[J]. The Journal of Physical Chemistry B 2006,110(47):23790-23795.
    [8]Jun Lu, Yi Xie, Fen Xu, et al. Study of the dissolution behavior of selenium and tellurium in different solvents-a novel route to Se, Te tubular bulk single crystals[J]. Journal of Materials Chemistry,2002,12(9):2755-2761.
    [9]Zheng Wei Pan, Zu Rong Dai, Zhong Lin Wang, Nanobelts of semiconducting oxides[J]. Science,2001,291(5510):1947-1949.
    [10]Ng, Y. H., Lightcap, I. V., Goodwin, K., et al. To What Extent Do Graphene Scaffolds Improve the Photovoltaic and Photocatalytic Response of TiO2 Nanostructured Films? [J]. The Journal of Physical Chemisty Letters,2010, 1(15):2222-2227.
    [11]Hyoung-il Kim, Gun-hee Moon, Damian Monllor-Satoca, Solar Photoconversion Using Graphene/TiO2 Composites:Nanographene Shell on TiO2 Core versus TiO2 Nanoparticles on Graphene Sheet[J]. The Journal of Physical Chemisty C 2012, 116(1):1535-1543.
    [12]Zhu Peining, A. Sreekumaran Nair, Peng Shengjie, et al. Facile Fabrication of TiO2-Graphene Composite with Enhanced Photovoltaic and Photocatalytic Properties by Electrospinning[J]. ACS Applied Materials & Interfaces,2012,4(2):581-585.
    [13]Yong-Bing Tang, Chun-Sing Lee, Jun Xu,et al. Incorporation of Graphenes in Nanostructured TiO2 Films via Molecular Grafting for Dye-Sensitized Solar Cell Application[J]. ACS Nano,2010,4(6):3482-3488.
    [14]Q.Wu, Y.Xu, Z. Yao, et al. Synthesis of Polyaniline Nanofibers by Nanofiber Seeding [J]. ACS Nano 2010,4:1963-1970.
    [15]K.Zhang, L. L.Zhang, X. S.Zhao, Rechargeable lithum batteries:going the extra mile[J]. J. Chem. Mater.2010,22:1392-1401.
    [16]Al-Mashat L., Shin K.; Kalantar-Zadeh K., et al. Graphene/Polyaniline Nanocomposite for Hydrogen Sensing [J]. The Journal of Physical Chemisty C 2010, 114(39):16168-16173.
    [17]H.Wang, Q.Hao, X.Yang, et al. Nanostructured electrode materials for electrochemical energy storage and conversion Energy Environ[J]. Electrochemistry Communications,2009,11:1158-1161.
    [18]M. D.Stoller, S.Park, Y.Zhu, et al. Size effects and nanostructured materials for energy applications [J]. Nano Letter,2008,8:3498-3502.
    [19]Hoffmann M. R., Martin B. T., Choi W. et al. Environmental Applications of Semiconductor Photocatalysis[J]. Chemical Reviews,1995,95(1):69-96.
    [20]Anpo, M.; Tacheuchi, M. The design and development of highly reactive titanium oxide photocatalysts operating under visible light[J]. Journal of Catalysis,2003, 216(1-2):505-516.
    [21]Thompson, T. L.; Yates, J. T. Surface science studies of the photoactivation of TiO2-new photochemical processes [J]. Chemical Reviews,2006,106(10): 4428-4453.
    [22]Xiao-Feng Wang, Osamu Kitao, Eiji Hosono. TiO2 and ZnO-based solar cells using a chlorophyll a derivative sensitizer for light-harvesting and energy conversion[J]. Journal of Photochemistry and Photobiology A Chemistry 2010,210:145-152.
    [23]Wang Y., Li J., Hou Y. et al. Hierarchical Tin Oxide Octahedra for Highly Efficient Dye-Sensitized Solar Cells[J]. Chemistry-A European Journal,2010,16: 8620-8625.
    [24]Wang X, Zhu H, Xu Y, et al. Aligned ZnO/CdTe Core-Shell Nanocable Arrays on Indium Tin Oxide:Synthesis and Photoelectrochemical Properties[J]. ACS nano, 2010,4(6):3302-3308.
    [25]Romeo N, Bosio A, Romeo A. An innovative process suitable to produce high-efficiency CdTe/CdS thin-film modules[J]. Solar Energy Materials and Solar Cells,2010,94(1):2-7.
    [26]Lin T, Huang F, Liang J, et al. A facile preparation route for boron-doped graphene, and its CdTe solar cell application[J]. Energy & Environmental Science, 2011,4(3):862-865.
    [27]Jin Young Kim, Sung Bum Choi, Jun Hong Noh. Synthesis of CdSe-TiO2 Nanocomposites and Their Applications to TiO2 Sensitized Solar Cells [J]. Langmuir,2009,25(9):5348-5351.
    [28]Zhenxiao Pan, Hua Zhang, Kan Cheng. Highly Efficient Inverted Type-I CdS/CdSe Core/Shell Structure QD-Sensitized Solar Cells[J]. ACS Nano,2012,6(5): 3982-3991.
    [29]Chen, J.; Lei, W.;Deng, W.Q. Reduced Charge Recombination in a Co-Sensitized QuantumQot Solar Cell with Two Different Sizes of CdSe Quantum Dot[J]. Nanoscale [J].2011,3:674-677.
    [30]Baker, D. R.; Kamat, P. V. Photosensitization of TiO2 Nanostructures with CdS Quantum Dots:Particulate versus Tubular Support Architectures [J]. Advanced Functional Materials,2009,19:805-811.
    [31]Hossain, M. A.; Jennings, J. R.; Koh, Z. Y.;et al. Carrier Generation and Collection in CdS/CdSe-Sensitized SnO2 Solar Cells Exhibiting Unprecedented Photocurrent Densities[J]. ACS Nano,2011,5:3172-3181.
    [32]B. K. Paul, C. L. Hires, Y.-W. Su. A Uniform Residence Time Flow Cell for the Microreactor-Assisted Solution Deposition of CdS on an FTO-Glass Substrate[J]. Crystal Growth & Design.2012,12:5320-5328.
    [33]Tamita Rakshit, Suvra P. Mondal, Indranil Manna. CdS-Decorated ZnO Nanorod Heterostructures for Improved Hybrid Photovoltaic Devices [J]. ACS Applied Materials & Interfaces,2012,4:6085-6095.
    [34]Krishna P. Acharya, Nishshanka N. Hewa-Kasakarage,Taiwo R. Alabi, et al. Hierarchically Ordered Macro-Mesoporous TiO2-Graphene Composite Films: Improved Mass Transfer, Reduced Charge Recombination, and Their Enhanced Photocatalytic Activities [J]. The Journal of Physical Chemistry C,2010. 114:12496-12504.
    [35]L.M. Peter, K.G.U. Wijayantha, D.J. Riley, J.P. Waggett. Band-Edge Tuning in Self-Assembled Layers of Bi2S3 Nanoparticles Used To Photosensitize Nanocrystalline TiO2[J]. The Journal of Physical Chemistry B.,2003,107: 8378-8381.
    [36]Jaesung Han, Jaseok Koo, Hosub Jung. Comparison of thin film properties and selenization behavior of CuGaIn precursors prepared by co-evaporation and co-sputtering[J]. Journal of Alloys and Compounds,2013,552:131-136.
    [37]R. Plass, S. Pelet, J. Krueger, et al. U. Bach. Quantum Dot Sensitization of Organic-Inorganic Hybrid Solar Cells[J]. The Journal of Physical Chemistry B,2002, 106:7578-7580.
    [38]Sybren ten Cate, Juleon M. Sclins, Laurens D. A. Siebbeles et al. Origin of Low Sensitizing Efficiency of Quantum Dots in Organic Solar Cells[J]. ACS Nano,2012, 6(10):8983-8988.
    [39]Jasieniak, J. Califano, M. Watkins, S. E. Size-Dependent Valence and Conduction Band-Edge Energies of Semiconductor Nanocrystals[J]. ACS Nano,2011, 5:5888-5902.
    [40]Taro Toyoda, Qing Shen. Quantum-Dot-Sensitized Solar Cells:Effect of Nanostructured TiO2 Morphologies on Photovoltaic Properties[J]. The Journal of Physical Chemistry Letters,2012,3:1885-1893.
    [41]Ruhle, S.; Shalom, M.; Zaban, A. Quantum-Dot-Sensitized Solar Cells[J]. ChemPhysChem.2010,11:2290-2304.
    [42]Ulugbek Shaislamov, Hyun Kim, Bee Lyong Yang. CdS-sensitized TiO2 photoelectrodes for quantum dots-based solar cells[J]. Journal of Materials Research, 2013,28, (3):497-501.
    [43]Underwood D F, Kippeny T, Rosenthal S J. Charge carrier dynamics in CdSe nanocrystals:implications for the use of quantum dots in novel photovoltaics[J]. The European Physical Journal D-Atomic, Molecular, Optical and Plasma Physics,2001, 16(1):241-244.
    [44]Attia S M, Jue W, Guangming W U, et al. Review on sol-gel derived coatings: Process, techniques and optical applications [J]材料科学技术学报:英文版,2009,18(3):211-218.
    [45]Yanming Sun, Jung Hwa Seo, Christopher J. Takacs et al. Inverted Polymer Solar Cells Integrated with a Low-Temperature-Annealed Sol-Gel-Derived ZnO Film as an Electron Transport Layer[J].Advanced Materials,2011,23(14):1679-1683.
    [46]Oh S M, Ishigaki T. Preparation of pure rutile and anatase TiO2 nanopowders using RF thermal plasma[J]. Thin Solid Films,2004,457(1):186-191.
    [47]Grujic-Brojcin M, Scepanovic M J, Dohcevic-Mitrovic Z D, et al. Infrared study of laser synthesized anatase TiO2 nanopowders [J]. Journal of Physics D:Applied Physics,2005,38(9):1415.
    [48]Takahashi T, Fukui N, Arakawa M, et al. An Automatic Modeling System of the Calculation Process of a CVD Film Deposition Simulator[J]. Journal of chemical engineering of Japan,2010,43(11):977-982.
    [49]张家明,王海燕,韩永刚,等.化学浴沉积法在氧化锌衬底上制备氧化锌微/纳米棒阵列,陶瓷,2011.
    [50]Chang C H, Lee Y L. Chemical bath deposition of CdS quantum dots onto mesoscopic TiO2 films for application in quantum-dot-sensitized solar cells[J]. Applied Physics Letters,2007,91:053503.
    [51]Lee W, Min S K, Dhas V, et al. Chemical bath deposition of CdS quantum dots on vertically aligned ZnO nanorods for quantum dots-sensitized solar cells[J]. Electrochemistry Communications,2009,11(1):103-106.
    [52]Yin Z, Wu S, Zhou X, et al. Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells[J]. Small,2010, 6(2):307-312.
    [53]Song Q, Xu Q, Xing C. Preparation of a gradient Ti-TiOC-carbon film by electro-deposition[J]. Electrochemistry Communications,2012,17:6-9.
    [54]Perret P G, Malenfant P R L, Bock C, et al. Electro-Deposition and Dissolution of MnO2 on a Graphene Composite Electrode for Its Utilization in an Aqueous Based Hybrid Supercapacitor[J]. Journal of The Electrochemical Society,2012, 159(9):A1554-A1561.
    [55]茅听辉,陈国平,陈公乃,等.直流磁控反应溅射沉积ITO透明导电膜的研究[J].光电子技术,1995,15(1):72-77.
    [56]韩丽.直流磁控溅射法在玻璃上沉积金属镍膜的研究[J].表面技术,2012,41(6):65-67.
    [57]Cai Z, Goodrich T L, Sun B, et al. Epitaxial growth of barium hexaferrite film on wide bandgap semiconductor 6H-SiC by molecular beam epitaxy[J]. Journal of Physics D:Applied Physics,2010,43(9):095002.
    [58]Weng B, Zhao F, Ma J, et al. Elimination of threading dislocations in as-grown PbSe film on patterned Si (111) substrate using molecular beam epitaxy [J]. Applied Physics Letters,2010,96(25):251911-251913.
    [59]HE Z, WEI X, CAI C, et al. PbTe thin film mid-infrared photoconductive detectors grown by molecular beam epitaxy [J]. Infrared and Laser Engineering,2010, 1:007.
    [60]赵俊卿,马瑾,李淑英.有机薄膜衬底ITO透明导电膜的结构和光电特性[J].半导体学报,1998,19(10):752-755.
    [61]Diamandescu L, Vasiliu F, Tarabasanu-Mihaila D, et al. Structural and photocatalytic properties of iron-and europium-doped TiO2 nanoparticles obtained under hydrothermal conditions[J]. Materials Chemistry and Physics,2008,112(1): 146-153.
    [62]Kolen'ko Y V, Maximov V D, Burukhin A A, et al. Synthesis of ZrO2 and TiO2 nanocrystalline powders by hydrothermal process[J]. Materials Science and Engineering:C,2003,23(6):1033-1038.
    [63]Jimmy C Y, Yu J, Ho W, et al. Preparation of highly photocatalytic active nano-sized TiO2 particles via ultrasonic irradiation[J]. Chemical Communications, 2001,19:1942-1943.
    [64]Ito S, Murakami T N, Comte P, et al. Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%[J]. Thin Solid Films,2008,516(14):4613-4619.
    [65]Ahn H Y, Kim J G, Gong M S. Preparation of flexible resistive humidity sensors with different electrode gaps by screen printing and their humidity-sensing properties [J]. Macromolecular Research,2012,20(2):174-180.
    [66]Zhao S, Roberge H, Yelon A, et al. New application of AAO template:A mold for nanoring and nanocone arrays [J]. Journal of the American Chemical Society, 2006,128(38):12352-12353.
    [67]Ali M K M, Ibrahim K, Mkawi E M. Ag-Al alloy thin film on plastic substrate by screen printing for solar cell back contact application[J]. Materials Science in Semiconductor Processing,2013.
    [68]Salvador A, Pascual-Marti M C, Adell J R, et al. Analytical methodologies for atomic spectrometric determination of metallic oxides in UV sunscreen creams[J]. Journal of pharmaceutical and biomedical analysis,2000,22(2):301-306.
    [69]Zallen R, Moret M P. The optical absorption edge of brookite TiO2[J]. Solid state communications,2006,137(3):154-157.
    [70]Braun J H, Baidins A, Marganski R E. TiO2 pigment technology:a review[J]. Progress in organic coatings,1992,20(2):105-138.
    [71]Zhang X T, Sato O, Taguchi M, et al. Self-cleaning particle coating with antireflection properties [J]. Chemistry of materials,2005,17(3):696-700.
    [72]Kasanen J, Suvanto M, Pakkanen T T. Self-cleaning, titanium dioxide based, multilayer coating fabricated on polymer and glass surfaces[J]. Journal of Applied Polymer Science,2009,111(5):2597-2606.
    [73]Fujishima A, Honda K. Photolysis-decomposition of water at the surface of an irradiated semiconductor[J]. Nature,1972,238(5385):37-38.
    [74]Fujishima A, Rao T N, Tryk D A. Titanium dioxide photocatalysis[J]. Journal of Photochemistry and Photobiology C:Photochemistry Reviews,2000,1(1):1-21.
    [75]Tryk D A, Fujishima A, Honda K. Recent topics in photoelectrochemistry: achievements and future prospects[J]. Electrochimica acta,2000,45(15): 2363-2376.
    [76]Gratzel M. Photoelectrochemical cells[J]. Nature,2001,414(6861):338-344.
    [77]Linsebigler A L, Lu G, Yates Jr J T. Photocatalysis on TiO2 surfaces:principles, mechanisms, and selected results[J]. Chemical Reviews,1995,95(3):735-758.
    [78]Garzella C, Comini E, Tempesti E, et al. TiO2 thin films by a novel sol-gel processing for gas sensor applications[J]. Sensors and Actuators B:Chemical,2000, 68(1):189-196.
    [79]Xiaosong Zhou, Feng Peng,Hongjuan Wang. Carbon nitride polymer sensitized TiO2 nanotube arrays with enhanced visible light photoelectrochemical and photocatalytic performance[J].Chemical Communications,2011,47:10323-10325
    [80]Manoj A. Lazar,and Walid A. Daoud. Achieving selectivity in TiO2-based photocatalysis[J].RSC Advances,2013,3:4130-4140.
    [81]Wenxi Guo, Xinyu Xue, Sihong Wang. An Integrated Power Pack of Dye-Sensitized Solar Cell and Li Battery Based on Double-Sided TiO2 Nanotube Arrays[J].Nano Letter,2012,12:2520-2523.
    [82]Herrmann J M. Heterogeneous photocatalysis:state of the art and present applications In honor of Pr. RL Burwell Jr.(1912-2003), Former Head of Ipatieff Laboratories, Northwestern University, Evanston (Ill)[J]. Topics in Catalysis,2005, 34(1-4):49-65.
    [83]Bhatkhande D S, Pangarkar V G, Beenackers A A. Photocatalytic degradation for environmental applications-a review[J]. Journal of Chemical Technology and Biotechnology,2002,77(1):102-116.
    [84]Hoffmann M R, Martin S T, Choi W, et al. Environmental applications of semiconductor photocatalysis[J]. Chemical Reviews,1995,95(1):69-96.
    [85]Lee Y, Chae J, Kang M. Comparison of the photovoltaic efficiency on DSSC for nanometer sized TiO2 using a conventional sol-gel and solvothermal methods[J]. Journal of Industrial and Engineering Chemistry,2010,16(4):609-614.
    [86]Etgar L, Moehl T, Gabriel S, et al. Light energy conversion by mesoscopic PbS quantum dots/TiO2 heterojunction solar cells[J]. ACS nano,2012,6(4):3092-3099.
    [1]O'Regan, B.; Gratzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J]. Nature,1991,353 (6340):737-740.
    [2]Xu A W, Gao Y, Liu H Q. The Preparation, Characterization, and their Photocatalytic Activities of Rare-Earth-Doped TiO2 Nanoparticles[J]. Journal of Catalysis,2002,207(2):151-157.
    [3]Ohno T, Akiyoshi M, Umebayashi T, et al. Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light[J]. Applied Catalysis A:General,2004,265(1):115-121.
    [4]Hashimoto K, Irie H, Fujishima A. TiO2 Photocatalysis:A Historical Overview and Future Prospects[J]. Journal of Applied Physics,2005,44(12):8269.
    [5]Mor G K, Varghese O K, Paulose M, et al. A review on highly ordered, vertically oriented TiO2 nanotube arrays:Fabrication, material properties, and solar energy applications[J]. Solar Energy Materials and Solar Cells,2006,90(14):2011-2075.
    [6]Adams L K, Lyon D Y, Alvarez P J J. Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions[J]. Water research,2006,40(19): 3527-3532.
    [7]Xiangnan Dang, Jifa Qi, Matthew T. Klug. Tunable Localized Surface Plasmon-Enabled Broadband Light-Harvesting Enhancement for High-Efficiency Panchromatic Dye-Sensitized Solar Cells[J]. Nano Letter,2013,13:637-642.
    [8]Diebold, U. Ruzycki, N. Herman, G. S. er al. One step towards bridging the materials gap:surface studies of TiO2 anatase[J]. Catalysis today,2003,85 (2): 93-100.
    [9]Barnard A S, Xu H. An environmentally sensitive phase map of titania nanocrystals[J]. ACS nano,2008,2(11):2237-2242.
    [10]Jiu J, Isoda S, Wang F, et al. Dye-sensitized solar cells based on a single-crystalline TiO2 nanorod film[J]. The Journal of Physical Chemistry B,2006, 110(5):2087-2092.
    [11]Park K, Zhang Q, Garcia B B, et al. Effect of an Ultrathin TiO2 Layer Coated on Submicrometer-Sized ZnO Nanocrystallite Aggregates by Atomic Layer Deposition on the Performance of Dye-Sensitized Solar Cells[J]. Advanced Materials,2010,22(21):2329-2332.
    [12]Haihan Chen,Charith E. Nanayakkara, Vicki H. Grassian.Titanium Dioxide Photocatalysis in Atmospheric Chemistry[J]. Chemical Reviews,2012,112: 5919-5948.
    [13]Anna Kubacka, Marcos Fern a ndez-Garcia, Gerardo Colon. Advanced Nanoarchitectures for Solar Photocatalytic Applications[J]. Chemical Reviews,2012, 112:1555-1614.
    [14]Lv T, Zhu G, Pan L, et al. Enhanced Performance of CdS Quantum Dot Sensitized Solar Cells by Low Temperature Vacuum Annealing[J]. Nanoscience and Nanotechnology Letters,2013,5(2):277-281.
    [15]Kalanur S S, Hwang Y J, Joo O S. Construction of efficient CdS-TiO2 heteroj unction for enhanced photocurrent, photostability, and photoelectron lifetimes [J]. Journal of Colloid and Interface Science,2013.
    [16]Shaislamov U, Kim H, Yang B L. CdS-sensitized TiO2 photoelectrodes for quantum dots-based solar cells[J]. Journal of Materials Research,2013,28(03): 497-501.
    [17]Xue J B, Liang W, Yang F. Preparation of CdSe-TiO2 Nanotube Array Films and their Photoelectric Properties under Visible Light[J]. Materials Science Forum. 2013,743:932-936.
    [18]Chen J, Wu J, Li C, et al. Influence of Different Bifunctional Linkers Modified TiO2 in Quantum Dot Sensitized Solar Cell[J]. Nanoscience and Nanotechnology Letters,2013,5(2):178-181.
    [19]Li Y, Wei L, Chen X, et al. Efficient PbS/CdS co-sensitized solar cells based on TiO2 nanorod arrays[J]. Nanoscale research letters,2013,8(1):67.
    [20]Lee J W, Son D Y, Ahn T K, et al. Quantum-Dot-Sensitized Solar Cell with Unprecedentedly High Photocurrent[J]. Scientific reports,2013,3.
    [21]Cheng B, Samulskie T, Rapid, high yield, solution-mediated transformation of polycrystalline selenium powder into single-crystal nanowires[J].Chemical Communications,2003,3(16):2024-2025.
    [22]Ji Ming Song, Jian Hua Zhu, Shu Hong Yu. Crystallization and shape evolution of single crystalline selenium nanorods at liquid-liquid interface:from monodisperse amorphous Se nanospheres toward Se nanorods[J]. The Journal of Physical Chemistry B,2006,110(47):23790-23795.
    [23]Jun Lu, Yi Xie, Fen Xu et al. Study of the dissolution behavior of selenium and tellurium in different solvents a novel route to Se, Te tubular bulk single crystals[J]. Journal of Materials Chemistry,2002,12(9):2755-2761.
    [24]Zheng Wei Pan, Zu Rong Dai, Zhong Lin Wang. Nanobelts of semiconducting oxides[J]. Science,2001,291(5510):1947-1949.
    [25]Nai Liang Yang, Jin Zhai, Dan Wang, et al. Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells[J]. ACS Nano,2010,4(2):887-894.
    [1]Hoffmann M R, Martin S T, Choi W, et al. Environmental applications of semiconductor photocatalysis[J]. Chemial Reviews,1995,95 (1):69-96.
    [2]Jia Guo Yu, Gaopeng Dai, Quan Jun Xiang, et al. Fabrication and enhanced visible-light photocatalytic activity of carbon self-doped TiO2 sheets with exposed {001} facets[J]. Journal of Materials Chemistry,2011,21(4):1049-1057.
    [3]Berger T, Sterrer M, Diwald O, et al. Light-Induced charge separation in anatase TiO2 particles[J].The Journal of Physical Chemistry B,2005,109(13):6061-6068.
    [4]Jing Chen, Feng Xu, Jun Wu, et al. Flexible photovoltaic cells based on a graphene-CdSe quantum dot nanocomposite[J]. Nanoscale,2012,4(2):441-443.
    [5]Zhen Zhen Lu, Jun Xu, Xing Xie, et al. CdS/CdSe double-sensitized ZnO nanocable arrays synthesized by chemical solution method and their photovoltaic applications[J]. The Journal of Physical Chemistry C,2012,116(4):2656-2661.
    [6]Wang Y, Wang L, Waldeck D H. Electrochemically guided photovoltaic devices: a photocurrent study of the charge transfer directionality between CdTe and CdSe nanoparticles[J]. The Journal of Physical Chemistry C,2011,115(37):18136-18141.
    [7]Salant A, Shalom M, Tachan Z, et al. Quantum rod-sensitized solar cell:nanocrystal shape effect on the potovoltaic properties[J]. Nano Letter,2012, 12(4):2095-2100.
    [8]Balis N, Dracopoulos V, Stathatos E, et al. A solid-state hybrid solar cell made of nc-TiO2, CdS quantum dots, and P3HT with 2-Amino-l-methylbenzimidazole as an interface modifier [J]. The Journal of Physical Chemistry C,2011,115(21): 10911-10916.
    [9]Kim H S, Jeong N C, Yoon K B. Photovoltaic effects of CdS and PbS quantum dots encapsulated in zeolite Y[J]. Langmuir 2011,27(23):14678-14688.
    [10]Hai Ning Chen, Wei Ping Li, Hui Cong Liu, et al. Performance enhancement of CdS-sensitized TiO2 mesoporous electrode with two different sizes of CdS nanoparticles [J]. Microporous and Mesoporous Materials,2011,138(1-3):235-238.
    [11]Bei Bei Ma, Li Duo Wang, Hao Peng Dong, et al. Photocatalysis of PbS quantum dots in a quantum dot-sensitized solar cell:photovoltaic performance and characteristics[J]. Physical Chemisry Chemical Physics,2011,13(3):2656-2658.
    [12]Freitag M, Graphene:nanoelectronics goes flat out[J]. Nat Nanotechnology,2008, 3(8):455-457.
    [13]Gai Li, Teng Wang, Yi Zhu, et al. Preparation and photoelectrochemical performance of Ag/graphene/TiO2 composite film[J]. Applied Surface Science,2011, 257(15):6568-6573.
    [14]Yu Ying Lee, Kun Hua Tu, Yu Chen Chieh, et al. Top laminated graphene electrode in a semitransparent polymer solar cell by simultaneous thermal annealing releasing method[J]. ACS nano,2011,5(8):6564-6570.
    [15]Zhi Ke Liu, Jin Hua Li, Zhen Hua Sun, et al. The application of highly doped single-layer graphene as the top electrodes of semitransparent organic solar cells[J]. ACS Nano,2011,6 (1):810-818.
    [16]Cheng B, Samulski E T. Rapid, high yield, solution-mediated transformation of polycrystalline selenium powder into single-crystal nanowires[J].Chemical Communications,2003,3(16):2024-2025.
    [17]Ji Ming Song, Jian Hua Zhu, Shu Hong Yu. Crystallization and shape evolution of single crystalline selenium nanorods at liquid-liquid interface:from monodisperse amorphous Se nanospheres toward Se nanorods [J]. The Journal of Physical Chemistry B,2006,110(47):23790-23795.
    [18]Jun Lu, Yi Xie, Fen Xu et al. Study of the dissolution behavior of selenium and tellurium in different solvents-a novel route to Se, Te tubular bulk single crystals [J]. Journal of Materials Chemistry,2002,12(9):2755-2761.
    [19]Zheng Wei Pan, Zu Rong Dai, Wang Zhong Lin. Nanobelts of semiconducting oxides[J]. Science,2001,291(5510):1947-1949.
    [20]Hummers W S, Offeman R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society,1958,80(11):1339.
    [21]Xin Ran Wang, Xiao Lin Li, Li Zhang, et al. N-doping of graphene through electrothermal reactions with ammonia[J]. Science,2009,324(5928):768-771.
    [22]Nai Liang Yang, Jin Zhai, Dan Wang, et al. Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells[J]. ACS Nano, 2010,4(2):887-894.
    [23]Tacconi N R, Chenthamarakshan C R, Rajeshwar K. Selenium-modified titanium dioxide photochemical diode/electrolyte junctions:photocatalytic and electrochemical preparation, characterization, and model simulations[J]. The Journal of Physical Chemistry B,2005,109(24):11953-11960.
    [24]Yong Bing Tang, Chun Sing Lee, Jun Xu, et al. Incorporation of graphenes in nanostructured TiO2 films via molecular grafting for dye-sensitized solar cell application[J]. ACS Nano,2010,4(6):3482-3488.
    [25]Hong Bin Yang, Guan Hong Guai, Chun Xian Guo, et al. NiO/graphene composite for enhanced charge separation and collection in p-type dye sensitized solar cell[J]. The Journal of Physical Chemistry C,2011,115(24):12209-12215.
    [1]Mayer A C, Scully S R, Hardin B E, et al. Polymer-based solar cells[J]. Materials today,2007,10(11):28-33.
    [2]Golnaz Sadoughi, Raheleh Mohammadpour, Azam Irajizad, et al. Improved charge collection efficiency of hollow sphere/nanoparticle composite TiO2 electrodes for solid state dye sensitized solar cells[J]. Current Applied Physics. 2013,13:371-376.
    [3]Kubo W, Murakoshi K, Kitamura T, et al. Quasi-solid-state dye-sensitized TiO2 solar cells:effective charge transport in mesoporous space filled with gel electrolytes containing iodide and iodine[J]. The Journal of Physical Chemistry B,2001,105(51): 12809-12815.
    [4]Li B, Wang L, Kang B, et al. Review of recent progress in solid-state dye-sensitized solar cells[J]. Solar Energy Materials and Solar Cells,2006,90(5): 549-573.
    [5]Gunes S, Sariciftci N S. Hybrid solar cells[J]. Inorganica Chimica Acta,2008, 361(3):581-588.
    [6]Yanagida S, Yu Y, Manseki K. Iodine/iodide-free dye-sensitized solar cells [J]. Accounts of chemical research,2009,42(11):1827-1838.
    [7]Jiang K J, Manseki K, Yu Y H, et al. Photovoltaics Based on Hybridization of Effective Dye-Sensitized Titanium Oxide and Hole-Conductive Polymer P3HT[J]. Advanced Functional Materials,2009,19(15):2481-2485.
    [8]Liu X, Zhang W, Uchida S, et al. An Efficient Organic-Dye-Sensitized Solar Cell with in situ Polymerized Poly (3,4-ethylenedioxythiophene) as a Hole-Transporting Material [J]. Advanced Materials,2010,22(20):E150-E155.
    [9]Liu Z, Zhou J, Xue H, et al. Polyaniline/TiO2 solar cells[J]. Synthetic metals, 2006,156(9):721-723.
    [10]Seong-Min Cho, Jin-Hyuk Bae, Eunje Jang, et al. Solvent effect of the fibrillar morphology on the power conversion efficiency of a polymer photovoltaic cell in a diffusive heterojunction [J]. Semiconductor Science Technology,2012,27(12):125018 -125025.
    [11]Ryu J, Park CB. Synthesis of diphenylalanine/polyaniline core/shell conducting nano wires by peptide self-assembly [J]. Angewandte Chemie International Edition, 2009,48(26):4820-4823.
    [12]Kuila BK, Malik S, Batabyal SK,et al. In-situ synthesis of soluble poly(3-hexylthiophene)/multiwalled carbonnanotube composite:morphology, structure, and conductivity [J]. Macromolecules 2007,40(2):278-287.
    [13]Meng C, Liu C, Fan SA. Promising approach to enhanced thermoelectric properties using carbon nanotube networks[J]. Advanced Materials, 2010,22:535-539.
    [14]Chatterjee S, Garai A, Nandi AK. Mechanism of polypyrrole and silver nanorod formation in lauric acid-cetyl trimethyl ammonium bromide coacervate gel template: physical and conductivity properties [J]. Synthetic Metals,2011,161(1):62-71.
    [15]Wnek G E, Skotheim T A. Handbook of Conducting Polymers[J]. Marcel Dekker,1986(1):205-212.
    [16]MacDiarmid A G. "Synthetic metals":A novel role for organic polymers (Nobel lecture)[J]. Angewandte Chemie International Edition,2001,40(14):2581-2590.
    [17]Qiao Y, Li C M, Bao S J, et al. Carbon nanotube/polyaniline composite as anode material for microbial fuel cells[J]. Journal of Power Sources,2007,170(1):79-84.
    [18]Shreyam Chatterjee, Rama K. Layek, Arun K. Nandi. Changing the morphology of polyaniline from a nanotube to a flat rectangular nanopipe by polymerizing in the presence of amino-functionalized reduced graphene oxide and its resulting increase in photocurrent[J]. Carbon,2013,52:509-519.
    [19]Kumar LA, Choi H-J, Shin YR, et al. Polyaniline-grafted reduced graphene oxide for efficient electrochemical supercapacitors[J]. ACS Nano 2012,6:1715-1723.
    [20]Valles C, Jimenez P, Munoz E, et al. Simultaneous reduction of graphene oxide and polyaniline:doping-assisted formation of a solid-state charge-transfer complex[J]. The Journal of Physical Chemistry C,2011,115(21):10468-10474.
    [21]Zhang K, Zhang LL, Zhao XS, Wu J. Graphene/polyaniline nanofiber composites as supercapacitor electrodes[J]. Chemistry of Materials,2010,22(2):1392-1401.
    [22]Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. science,2008,321(5887):385-388.
    [23]Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Communications,2008,146(9):351-355.
    [24]Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano letters,2008,8(3):902-907.
    [25]McAllister M J, Li J L, Adamson D H, et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite[J]. Chemistry of Materials,2007, 19(18):4396-4404.
    [26]Tang Y B, Lee C S, Xu J, et al. Incorporation of graphenes in nanostructured TiO2 films via molecular grafting for dye-sensitized solar cell application [J]. ACS Nano,2010,4(6):3482-3488.
    [27]Yang N, Zhai J, Wang D, et al. Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells[J]. ACS Nano,2010,4(2): 887-894.
    [28]Sun S, Gao L, Liu Y. Enhanced dye-sensitized solar cell using graphene-TiO2 photoanode prepared by heterogeneous coagulation[J]. Applied Physics Letters, 2010,96:083113.
    [29]Ng Y H, Lightcap I V, Goodwin K, et al. To What Extent Do Graphene Scaffolds Improve the Photovoltaic and Photocatalytic Response of TiO2 Nanostructured Films?[J]. The Journal of Physical Chemistry Letters,2010,1(15): 2222-2227.
    [30]Peining Z, Nair A S, Shengjie P, et al. Facile Fabrication of TiO2-Graphene Composite with Enhanced Photovoltaic and Photocatalytic Properties by Electrospinning[J]. ACS Applied Materials & Interfaces,2012,4(2):581-585.
    [31]Junxian Hou, Zhongliang Liu, Peiyuan Zhang. A new method for fabrication of graphene/polyaniline nanocomplex modified microbial fuel cell anodes [J]. Journal of Power Sources 2013,224:139-144.
    [32]Miao X, Tongay S, Petterson M K, et al. High efficiency graphene solar cells by chemical doping[J]. Nano letters,2012,12(6):2745-2750.
    [33]Nai Liang Yang, Jin Zhai, Dan Wang, et al. Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells[J]. ACS Nano, 2010,4(2):887-894.
    [34]Tacconi N R, Chenthamarakshan C R, Rajeshwar K. Selenium-modified titanium dioxide photochemical diode/electrolyte junctions:photocatalytic and electrochemical preparation, characterization, and model simulations[J]. The Journal of Physical Chemistry B,2005,109(24):11953-11960.
    [35]Yong Bing Tang, Chun Sing Lee, Jun Xu, et al. Incorporation of graphenes in nanostructured TiO2 films via molecular grafting for dye-sensitized solar cell application[J]. ACS Nano,2010,4(6):3482-3488.
    [36]Hong Bin Yang, Guan Hong Guai, Chun Xian Guo, et al. NiO/graphene composite for enhanced charge separation and collection in p-type dye sensitized solar cell[J]. The Journal of Physical Chemistry C,2011,115(24):12209-12215.
    [37]Hummers W S, Offeman R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society,1958,80(11):1339.
    [38]Xin Ran Wang, Xiao Lin Li, Li Zhang, et al. N-doping of graphene through electrothermal reactions with ammonia[J]. Science,2009,324(5928):768-771.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.