脊髓星形胶质细胞参与神经病理性疼痛调制的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分脊髓星形胶质细胞和促炎性细胞因子在神经病理性疼痛中的作用机制研究
     实验一神经病理性疼痛大鼠脊髓星形胶质细胞增殖活化的动态变化
     目的观察大鼠坐骨神经慢性压迫性损伤(CCI)模型中脊髓星形胶质细胞形态和功能特征的时间变化规律。
     方法雄性SD大鼠48只,随机分为2组:手术(CCI手术)组和假手术组。于手术前1d、手术后1d、4d、7d、14d和28d动态观察其机械性痛敏和热痛敏的变化。并于相应时段将大鼠处死,免疫组化方法观察脊髓星形胶质细胞在疼痛刺激下形态的转化。
     结果手术组机械性痛阈在术后第1d开始出现下降(P<0.05),术后7d痛阈下降达到最低(P<0.01),以后逐渐恢复,但至28d仍处于较低水平(P<0.05)。热痛阈在手术组从术后第1d开始出现热痛阈下降(P<0.05),术后4d痛阈下降达到最低(P<0.01),以后逐渐恢复,但至28d仍处于较低水平(P<0.05)。免疫组化结果表明假手术组和手术组大鼠健侧腰脊髓后角没有观察到明显的星形胶质细胞增殖活化现象。手术组术侧脊髓后角星形胶质细胞免疫阳性细胞在术后1d没有明显的变化,术后4d开始增加,术后7d达到高峰,至术后28d虽有下降,但始终维持于高水平(P<0.05)。
     结论大鼠坐骨神经慢性压迫性损伤可以导致神经病理性疼痛的发生,并且诱发损伤侧脊髓背角星形胶质细胞增殖活化。星形胶质细胞的增殖活化可能是神经病理性疼痛的机制之一。
     实验二鞘内注射氟代柠檬酸对CCI大鼠的镇痛作用以及脊髓促炎性细胞因子的影响
     目的观察鞘内注射星形胶质细胞特异性抑制剂氟代柠檬酸(FC)对神经病理性疼痛大鼠的镇痛作用以及脊髓促炎性细胞因子肿瘤坏死因子-α(TNF-α)和白细胞介素-6(IL-6)的变化。
     方法雄性SD大鼠32只,随机分为4组:A组(CCI手术,鞘内注射不含FC的配制溶液);B组(CCI手术,鞘内注射FC);C组(假手术,鞘内注射不含FC的配制溶液);D组(假手术,鞘内注射FC)。采用大鼠坐骨神经慢性压迫性损伤(CCI)模型,鞘内注射剂量为1nmol/1μl,1次/d,连续6d。分别于手术前1d,手术后1d,3d,5d,7d观察大鼠机械痛阈和热痛阈的变化,并于手术后7d处死动物,应用RT-PCR和免疫组化技术从基因和蛋白水平观察脊髓TNF-α和IL-6的改变。
     结果手术前1d各组大鼠机械痛阈和热痛阈无显著性差异(P>0.05)。与C组相比,A组大鼠CCI手术后大鼠机械痛阈和热痛阈明显降低(P<0.05),TNF-α和IL-6mRNA (P<0.01)和免疫阳性细胞平均光密度值(P<0.05)明显增加。B组大鼠鞘内注射FC后与A组相比, CCI大鼠的痛敏状态显著减轻(P<0.05) ,并且TNF-α和IL-6mRNA和蛋白的表达明显抑制(P<0.05)。而D组大鼠鞘内注射FC后对大鼠的痛敏状态和TNF-α和IL-6mRNA和蛋白的表达没有明显的抑制作用。
     结论鞘内注射FC对大鼠神经病理性疼痛有镇痛作用,其机制可能是与抑制脊髓星星胶质细胞的活性和下调促炎性细胞因子TNF-α和IL-6的表达有关。
     第二部分脊髓星形胶质细胞NF-κB信号转导通路在神经病理性疼痛中的作用机制研究
     实验一大鼠神经病理性疼痛模型中脊髓背角GFAP和NF-κBp65的共同表达
     目的观察大鼠坐骨神经慢性压迫性损伤(CCI)模型脊髓背角GFAP和NF-κB表达间的关系,以研究星形胶质细胞内可能的信号转导通路机制。
     方法雄性SD大鼠16只,随机分为2组:手术(CCI手术)组和假手术组。于手术前1d和手术后7d观察其机械性痛敏和热痛敏的变化。并应用免疫细胞化学技术,观察大鼠脊髓腰段背角GFAP和NF-κB p65的表达及二者的共存情况。
     结果与假手术组相比,手术组大鼠手术后7d机械性痛阈和热痛阈均明显降低(P<0.05)。假手术组手术侧背角表层中GFAP和NF-κBp65免疫阳性细胞以及双标细胞表达较少。而手术组手术侧背角表层中GFAP(P<0.05)和NF-κBp65(P<0.01)表达均明显增加。并且NF-κBp65与GFAP均阳性表达的双标细胞高达27.47±4.18,与假手术组(8.39±2.06)相比有显著性差异(P<0.01)。
     结论脊髓背角星形胶质细胞内NF-κB信号转导通路可能与神经病理性疼痛的调制有关。
     实验二鞘内注射NF-κBp65反义寡核苷酸治疗CCI大鼠神经病理性疼痛的实验研究
     目的观察鞘内注射NF-κBp65反义寡核苷酸对CCI大鼠痛敏状态以及促炎性细胞因子TNF-α和IL-6mRNA的影响。
     方法大鼠随机分为4组(n=8):假手术组,行假手术,鞘内注射生理盐水10μl;手术组,行CCI手术,鞘内注射生理盐水10μl;错义寡核苷酸组,CCI手术,鞘内注射错义寡核苷酸20μg/10μl;反义寡核苷酸组,CCI组,鞘内注射反义寡核苷酸20μg/10μl。鞘内注射从CCI手术后1天开始,每日给药1次,连续5天。于CCI手术前1d,手术后1d、3d、5d、7d、14d测定机械痛阈和热痛阈,连续观察鞘内注射寡核苷酸对大鼠热痛敏和机械性痛敏状态的影响。在手术后14d处死动物,应用RT-PCR、Western blot技术对大鼠脊髓TNF-αmRNA、IL-6 mRNA和NF-κBp65蛋白表达的变化进行检测。
     结果术前各组机械痛阈和热痛阈无显著性差异。假手术组整个观察期间手术侧机械痛阈和热痛阈无明显改变。手术组从CCI术后第1d开始出现机械痛阈和热痛阈下降,并且持续到14天。CCI手术后鞘内注射反义寡核苷酸后大鼠机械痛阈和热痛阈有明显增加,但是CCI手术后鞘内注射错义寡核苷酸机械痛阈和热痛阈增加不明显。Western blot结果显示CCI手术后NF-κB p65表达量较假手术组有显著升高(p<0.01)。与鞘内注射错义寡核苷酸和生理盐水相比,CCI手术后鞘内注射反义寡核苷酸后NF-κB p65表达量显著降低(P<0.05)。RT-PCR结果显示CCI术后14d TNF-α和IL-6 mRNA与假手术组相比有显著增加(P<0.01)。而CCI手术后鞘内注射反义寡核苷酸后TNF-α和IL-6 mRNA表达量则显著降低(P<0.05)。
     结论鞘内NF-κB p65反义寡核苷酸后可显著抑制神经病理性疼痛,降低脊髓促炎性细胞因子TNF-α和IL-6 mRNA的表达,提示NF-κB信号通路及其下游促炎性细胞因子可能参与神经病理性疼痛的调节。
Part 1 The altervation of spinal astrocyte and pro-inflammatory cytokine in chronic constriction injury model of rats
     Study 1 Dynamic altervation of spinal astrocyte reaction in chronic constriction injury model of rats
     Objective To observe the response of astrocytes in lumber spinal cord in chronic constriction injury (CCI) model of rats.
     Methods Sprague -Dawley rats were randomly divided into 2 groups, which received right sciatic nerve ligation (chronic constriction injury, CCI group) and sham-operation (Sham group) respectively. The mechanical and thermal pain threshold were measured at 1d before the operation and at 1d, 4d, 7d, 14d and 28d after the operation. The expression of GFAP was also assessed by immunohistochemical analysis at the same time point.
     Results CCI, and not sham surgery, produced significant mechanical allodynia and thermal hyperalgesia. The mechanical threshold began to decrease at 1d after the operation, peaked at 7d and lasted throughout the experiment. The thermal threshold began to decrease at 1d after the operation, peaked at 4d and lasted throughout the experiment. Immunoreactive(IR)-like GFAP protein in the ipsilateral spinal dorsal horn to the injury did not significantly increase until postoperative day 4, reached a peak level on postoperative day 7 and lasted over the duration of the study. Few positive astrocytes were distributed in the contralateral spinal cord or spinal cord of sham group.
     Conclusion The activation of lumber spinal astrocyte may be involved in the modulation of neuropathic pain arised from chronic constriction injury to the sciatic nerve.
     Study 2 Downregulation of TNF-alpha, IL-6 mRNA and protein expression in CCI model of rats after intrathecal administration of fluorocitrate
     Objective To investigate the effect of intrathecal administration of fluorocitrate (FC), an selective astrocyte metabolic inhibitor, on tumor necrosis factorα(TNF-α) and interleukin-6(IL-6) mRNA and protein expression in neuropathic pain model of rats.
     Methods The CCI model was established and FC was administrated intrathecally (1nmol/1μl) once daily for 6 consecutive days. Negative control for CCI was sham operation and that for FC was the vehicle. The mechanical and thermal pain threshold were measured at 1d before operation and at 1d, 3d, 5d, 7d after the operation. The expression of TNF-αand IL-6 mRNA was measured by reverse transcription polymerse chain reaction (RT-PCR) and the expression of TNF-αand IL-6 protein was measured by immunohistochemistry.
     Results CCI, not the sham operation, significantly induced the mechanical allodynia and thermal hyperalgesia, and markedly increased the expressions of TNF-αand IL-6 mRNA and immunoreactive(IR)-like TNF-α/IL-6 protein in the ipsilateral spinal dorsal horn to the injury. Intrathecal injection of FC suppressed the increased expressions of TNF-αand IL-6 induced by CCI in the spinal cord, and significantly attenuated CCI-induced mechanical allodynia and thermal hyperalgesia. There were no effects on the mechanical allodynia and thermal hyperalgesia and the expressions of TNF-αand IL-6 by intrathecal FC on the sham operation group.
     Conclusion Fluorocitrate has the effect of analgesia on neuropathic pain. The activation of astrocyte and upregulation of the expression of TNF-αand IL-6 in the spinal cord may be involved in the modulation of neuropathic pain.
     Part 2 Study of NF-κB pathway in spinal astrocyte in neuropathic pain
     Syudy 1 Co-expressions of GFAP and NF-κB in spinal cord of CCI model of rats
     Objective To determine the possible intracellular signal transduction pathway associated with astrocyte, which have been activated by CCI and clarify the relationship of expression or activation of GFAP and NF-κB in the lumber spinal cord.
     Methods Sixteen male Sprague-Dawley rats were randomly divided into two groups: the CCI group which received the chronic constriction injury and the sham group which received the sham operation as control. The mechanical and thermal nociceptive thresholds were assessed with paw withdrawal latency (PWL) to von Frey filaments and radiant heat. The expressions of GFAP, NF-κBp65 and co-expressions of GFAP and NF-κB in spinal cord were examined 7d after CCI procedure by using immunocytochemical staining technique.
     Results At 7d post-lesion, CCI induced mechanical allodynia and thermal hyperalgesia and increased the numbers of GFAP and NF-κBp65 immunoreactive(IR) positive cells in the ipsilateral lumber spinal dorsal horn to the injury. Double immunocytochemical staining also showed the increase of GFAP/NF-κBp65-IR positive cells in the spinal dorsal horn in CCI group, while few positive cells were distributed in the sham group.
     Conclusion CCI activates NF-κBp65 in astrocytes in the dorsal horn and NF-κB pathways in astrocytes may be involved in the pathogenesis of neuropathic pain.
     Syudy 2 Alleviation of neuropathic pain by intrathecal injection of antisense oligonucleotides to p65 subunit of NF-κB
     Objective To investigate the effects of intrathecal administration of NF-κB p65 antisense oligodeoxynucleotides (ODN) on mechanical allodynia and thermal hyperalgesia and the expression of TNF-αand IL-6 mRNA in chronic constriction injury (CCI) model of rats.
     Methods Lumbar intrathecal catheters were implanted in male Sprague - Dawley rats. The chronic constriction injury (CCI) model was established and thermal and mechanical nociceptive thresholds were assessed with paw withdrawal latency (PWL) to radiant heat and von Frey filaments. The phosphorothioate -modified antisense oligodeoxynucleotides (ODNs) to p65 subunit of NF-κB were administered intrathecally on each of 5 successive days post-CCI. Nuclear NF-κB p65 expression was determined by Western blot. TNF-αand IL-6 mRNA were determined by RT-PCR.
     Results CCI induced mechanical allodynia and thermal hyperalgesia, and significantly increased the expression of NF-κB p65 protein, TNF-αand IL-6 mRNA. Intrathecal injection of antisense ODNs, but not missense ODNs, markedly suppressed the expression of NF-κB p65 protein, TNF-αand IL-6 mRNA, and significantly attenuated CCI-induced mechanical allodynia and thermal hyperalgesia.
     Conclusion The activation of NF-κB pathway and the release of TNF-αand IL-6 may contribute to neuropathic pain in CCI rats. NF-κBp65 is likely to be an effective target for the treatment of neuropathic pain.
引文
1. Wilson M. Overcoming the challenges of neuropathic pain. Nurs Stand. 2002;16:47-53
    2. Woolf CJ, Mannion R. Neuropathic pain: aetiology, symptoms, mechanisms, and management. Lancet. 1999;353:1959-1964
    3. Milligan ED, Twining C, Chacur M, et al. Spinal glia and proinflammatory cytokines mediate mirror-image neuropathic pain in rats. J Neurosci, 2003;23:1026-1040
    4. Koltzenberg M. Wall PD. McMahon SB. Does the right side know what the left isdoing? Trends Neurosci. 1999;22:122-127
    5. Hashizume H. DeLeo JA. Colburn RW, et al. Spinal glial activation and cytokine expression after lumabar root injury in the rat. Spine, 2000;26:1206-1217
    6. Colburn RW. Rickman AJ. DeLeo JA. The effect of site and type of nerve injury on spinal glial activation and neuropathic pain behavior. Exp Neurol. 1999;157:289-304
    7. Garrison CJ, Dougherty PM, Kajander KC, et al. Staining of glial fibrillary acidic protein (GFAP) in lumbar spinal cord increases following a sciatic nerve constriction injury. Brain Res. 1991;565:1-7
    8. Garrison CJ, Dougherty PM, Carton SM. GFAP expression in lumber spinal cord of naive and neuropathic rats treated with MK-801. Exp Neurol. 1994;129:237-243
    9. Watkins LR, Milligan ED, Maier SF. Spinal cord glia: new players in pain. Pain. 2001;93:201-205
    10.项红兵,田玉科.星形胶质细胞与疼痛敏化调控.临床麻醉学杂志2003; 19:576-577
    11. Hanani M, Huang TY, Cherkas PS, et al. Glial cell plasticity in sensory ganglia induced by nerve damage. Neuroscience, 2002, 114: 279-283.
    12. Watkins L, Maier SF. Beyond neurons: evidence that immune and glial cells contribute to pathological pain states. Physiol Rev. 2002;82: 981-1011
    13. Colburn RW, DeLeo JA. The effect of perineural colchicine on nerve injury-induced spinal glial activation and neuropathic pain behavior. Brain Res Bull. 1999;49:419-27
    14.李兰英,孙云,庞智玲.几种激素和IL-1β对人脑星形胶质细胞IL-6、TNF-α分泌的影响.中国神经免疫学和神经病学杂志, 2001;8:112-115
    15.张恒,周占松,刘丽梅,等P物质对脊髓星形胶质细胞活化和炎性因子IL-1β、TNF-α分泌的影响第三军医大学学报2006;28:681-5
    16. Winkelstein BA, Rutkowski MD, Sweitzer SM,et al. Nerve injury proximal or distal to the DRG induces similar spinal glial activation and selective cytokine expression but differential behavioral responses to pharmacologic treatment. J Comp Neurol. 2001;439:127-39.
    17. Ma W, Quirion R. Partial sciatic nerve ligation induces increase in the phosphorylation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) in astrocytes in the lumbar spinal dorsal horn and the gracile nucleus. Pain. 2002;99:175-84.
    18. Kaltschmidt C, Kaltscmidst B, Neumann H et al. Constitutive NF-κB activity in neurons .Mol Cell Biol,1994,14:3981.
    19. O`Neil,L.A.J Kaltschmidt C. NF-κB: a crucial transcription factor for glial and neuronal cell function. Trends Neurosci.1997; 20:252-258
    20. Ma W, Bisby MA Increased activation of nuclear factorκB in rat lumbar dorsal root ganglion neurons following partial sciatic nerve injuries.Brain Res. 1998;29;797(2):243-54.
    21. Laughlin TM, Bethea JR, Yesierski RP, et al. Cytokine involvement in dynorphin- induced allodynia. Pain. 2000;84:159-167
    22. Lee KM, Kang BS, Lee HL. Spinal NF-kB activation induces COX-2 upregulation and contributes to inflammatory pain hypersensitivity. Eur J Neurosci. 2004;19:3375-81.
    23. Doyle CA, Hunt SP. Reduced nuclear factorκB (p65) expression in rat primary sensory neurons after peripheral nerve injury. Neuroreport. 1997;8:2937-42.
    24. Watkins LR, Milligan ED, Maier SF. Glial proinflammatory cytokines mediate exaggerated pain states: implications for clinical pain. Adv Exp Med Biol. 2003;521: 1-21.
    1. Milligan ED, Twining C, Chacur M, et al. Spinal glia and proinflammatory cytokines mediate mirror-image neuropathic pain in rats. J Neurosci, 2003, 23(3) :1026-1040.
    2. Koltzenberg M. Wall PD. McMahon SB. Does the right side know what the left is doing? Trends Neurosci,1999,22:122-127.
    3. Watkins LR, Milligan ED, Maier SF. Glial activation: a driving force for pathologicalpain. Trends Neurosci,2001,24(8):450-455
    4. Garrison CJ, Dougherty PM, Kajander KC, et al. Staining of glial fibrillary acidic protein (GFAP) in lumbar spinal cord increases following a sciatic nerve constriction injury. Brain Res, 1991, 22; 565:1-7.
    5. Garrison CJ, Dougherty PM, Carton SM. GFAP expression in lumber spinal cord of naive and neuropathic rats treated with MK-801. Exp Neurol, 1994, 129: 237-243.
    6. Sweitzer SM. Martin D, Deleo JA. Intrathecal interleukin-1 receptor antagonist in combination with soluble tumor necrosis factor receptor exhibits an antiallodynic action in a rat model of neuropathic pain. Neuroscience, 2001,24:529-539
    7. Bennett GJ, Xie YK. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain, 1988;33:87-89
    8. Chaplan SR, Bach FW, Pogrel JW, et al. Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods, 1994, 53:55-63
    9. Hargreaves K, Dubner R, Brown F, et al. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain, 1988,32:77-81
    10. Ueda H, Rashid MH. Molecular mechanism of neuropathic pain. Drug News Perspect, 2003, 16: 665-713
    11. Wieseler-Frank J, Maier SF, Watkins LR. Glial activation and pathological pain. Neurochem Int, 2004, 45: 389-395.
    12. Watkin LR, Maier S. Beyond neurons: evidence that immune and glial cell contribute to pathological pain states. Physiol Rev, 2002, 82: 981-1011.
    13. Gomes FC, Paulin D, Moura NV, et al. Glial fibrillary acidic protein(GFAP):modulation by growth factors and its implication in astrocyte differentiation. Braz J Med Biol Res, 1999, 32 :619-631
    14. Inagaki N, Fukui H, Ito S, et al. Type-2 astrocyte show intracellular Ca2+ elevation in response to various neuroactive substances. Neurosci Lett,1991,128(2):257-260
    15. Kommers T, Vinade L, Pereira C, et al. Regulation of the phosphorylation of gliafibrillary acidic protein(GFAP)by glutamate and calcium ions in slices of immature rat spinal cord: comparison with immature hippocampus. Neurosci Lett, 1998, 248(2): 141-143
    16. Lau LT, Yu ACH. Astrocyte produce and release interleukin-1, interleukin-6, tumor necrosis factor alpha and interferon-gamma following traumatic and metabolic injury. Jneurotrauma, 2001,18:351-359.
    17. Palma C, Minghetti L, Astolfi M, et at. Functional characterization of substance P receptor on cultured human spinal cord astrocytes:Synergism of substance P with cytokines in inducing interleukin-6 and prostaglandin E2 production. Glia. 1997,21(2): 183-193
    1. Milligan ED, Twining C, Chacur M, et al. Spinal glia and proinflammatory cytokines mediate mirror-image neuropathic pain in rats. J Neurosci,2003,23(3):1026-1040.
    2. Lau LT, Yu ACH. Astrocyte produce and release interleukin-1, interleukin-6, tumor necrosis factor alpha and interferon-gamma following traumatic and metabolic injury. Jneurotrauma, 2001,18:351-359.
    3. Watkins LR, Maier SF, Goehler LE. Immune activation: the role of pro-inflammatory cytokines in inflammation, illness responses and pathological pain states. Pain. 1995,63(3):289-302.
    4. Wagner R, Myers RR. Schwarn cells produce tumor necrosis factor alpha: expression ininjured and non-injured nerves. Neuroscience 1996;73(3):625-9
    5. Okamoto K, Martin DP, Schmelzer JD, et al. Pro- and anti-inflammatory cytokine gene expression in rat sciatic nerve chronic constriction injury model of neuropathic pain. Exp Neural 2001;169(2):386-9
    6.姜小国,胡森,石德光,等刺激迷走神经后不同组织肿瘤坏死因子变化的实验研究中国临床康复,2003.7(2):334-5
    7.杨建平,蒋豪,吴珏.大鼠蛛网膜下腔置管并长期留置操作的改进中华麻醉学杂志,1993, 13:110-112
    8. Wieseler-frank J, Maier S F, Watkins L R. Glial activation and pathological pain. Neurochem Int, 2004, 45(2-3): 389–395
    9. Caccamo D, Campisi A, Marin IH, et al. Glutamate promotes NF-kappaB pathway in primary astrocytes: protective effects of RFI016, a synthetic vitamin E analogue. Exp Neurol, 2005, 193 (2):377-383
    10. Vitkovic L, Bockaert J, Jacque C.“Inflammatory”cytokine: neuromodulators in normal brain? Neurochem, 2000,74:457-471.
    11. Milligan ED, Mehmert KK, Hinde JL, et al. Thermal hyperalgesia and mechanical allodynia prouced by intrathecal administration of the human immunodeficiency Virus-1(HIV-1) envelope glycoprotein gp120.Brain Res,2000,861:105-116.
    12. Milligan ED, O’Connor KA, Nguyen KT, et al. Inrtathecal HIV-1 envelope glycoprotein gp120 induces enhancedpain states mediated by spinal cord proinflammatory cytokines .J Neurosci, 2001,21:2808-2819.
    13. Friedman R. Pain at the celular level: the role of the cytokine tumor necrosis factor-alpha. Reg Anesth Pain Med, 2000,25:110-112.
    14. Yaksh TL, Rudy TA. Chronic catheterization of the spinal subarachnoid space. Physiol Behav, 1976, 17: 1031-1036
    15.李兰英,孙云,庞智玲.几种激素和IL-1β对人脑星形胶质细胞IL-6、TNF-α分泌的影响.中国神经免疫学和神经病学杂志, 2001,8 (2): 112-115
    16.张恒,周占松,刘丽梅,等P物质对脊髓星形胶质细胞活化和炎性因子IL-1β、TNF-α分泌的影响第三军医大学学报2006,28(7)681-5
    17. Woodroofe MN, Sarna GS, Wadhwa M, et al. Detection of interleukin-1 and interleukin-6 in adult rat brain, following mechanical injury, by in vivo microdialysis: evidence of a role for microglia in cytokine production. Neuroimmunol. 1991,33(3):227-36.
    18. Deleo JA, Colburn RW. Proinflammatory cytokines gial cells: their role in neuropathicpain. In: Watkins LR, mater SF eds. Cytokines and pain. Basel:birkhauser verlag,1999,159-182.
    19. Sweitzer SM, Schubert P, Deleo JA, et al. Propentofylline, a glial modulating agent, exhibits anti-allodynic properties in a rat model of neuropathic pain. J Pharmacol Exper Ther, 2001, 297: 1210-1217.
    20. Arruda JL, Colburn RW, Rickman AJ, et al. Increase of interleukin-6 mRNA in the spinal cord following peripheral nerve injury in the rat: potential role of IL-6 in neuropathic pain, Mol. Brain Res. 1998,62:228–235.
    21. Deleo JA, Colburn RW, Nichols M, et al. Interleukin-6-mediated hyperalgesia/allodynia and increased spinal IL-6 expression in a rat mononeuropathy model, J.Interferon Cytokin Res. 1996,16: 695-700
    22. Bao L, Zhu Y, Elhassan AM etc. Adjuvant-induced arthritis: IL-1 beta, IL-6 and TNF-alpha are up-regulated in the spinal cord. Neuroreport. 2001,21;12(18):3905-8
    23. Leskovar A, Moriarty LJ, Turek JJ, et al. The macrophage in acute neural injury: changes in cell numbers over time and levels of cytokine production in mammalian central and peripheral nervous systems. J Exp Biol 2000;203(12):1783-95
    24. Covey WC, Ignatowski TA, Rneauld AE, et al. Expression of neuron-associated tumor necrosis factor alpha in the brain is increased during persistent pain. Reg Anesth Pain Med 2002;27(4):357-66
    25. Paulsen RE, Contestabile A, Villani L,et al. An in vivo model for studying function ofbrain tissue temporarily devoid of glial cell metabolism: the use of fluorocitrate. J. Neurochem. 1987,48: 1377–1385.
    26. Watkins LR, Martin D, Ulrich P, et al. Evidence for the involvement of spinal cord glia in subcutaneous formalin induced hyperalgesia in the rat. Pain 1997,71:225–235
    27. Coyle DE. Partial peripheral nerve injury leads to activation of astroglia and microglia which parallels the development of allodynic behavior. Glia, 1998,23(1):75-83.
    28. Chacur M, Millingan EO. Gazda LS, et al. A new model of sciatic in flammatory neuritis (SIN): induction of unilateral and bilateral mechanical allodynia following acute unilateral perisciatic immune activation in rats. Pain, 2001,94:231-244
    29. Raghavendra V, Rutkowski MD, Deleo JA. The role of spinal neuroimmune activation in morphine tolerance/hyperalgesia in neuropathic and sham-operated rat. J Neurosci, 2002,22: 9980-9989.
    30. Song P, Zhao ZQ. The involvement of glial cells in the development of morphine tolerance. Neurosci Res, 2001,39:281-286
    1. Meller ST, Dykstra C, Grzybycki D,et al. The possiblerole of glia in nociceptive processing and hyperalgesia in the spinal cord of the rat. Neuropharmacology 1994; 33:1471–1478.
    2. Watkins LR, Martin D, Ulrich P, et al. Evidence for the involvement of spinal cord glia in subcutaneous formalin induced hyperalgesia in the rat. Pain 1997; 71:225–235.
    3. Sweitzer SM, Colburn RW, Rutkowski M, et al. Acute peripheral inflammation induces moderate glial activation and spinal IL-1beta expression that correlates with pain behavior in the rat. Brain Res 1999; 829:209–221
    4. Deleo JA, Colburn RW, Rickman AJ. Cytokine and growth factor immuno- histochemical spinal profiles in two animal models of mononeuropathy. Brain Res 1997;759: 50–57.
    5. Hashizume H, Deleo JA, Colburn RW, et al.. Spinal glial activation and cytokine expression after lumbar root injury in the rat. Spine 2000;25: 1206–1217.
    6. Coyle DE. Partial peripheral nerve injury leads to activation of astroglia and microglia which parallels the development of allodynic behavior. GLIA 1998; 23:75–83.
    7. Sweitzer SM, Schubert P, Deleo JA. Propentofylline, a glial modulating agent, exhibits antiallodynic properties in a rat model of neuropathic pain. J Pharmacol Exp Ther 2001a;297:1210–1217
    8. Ma W, Quirion R. Partial sciatic nerve ligation induces increase in the phosphorylation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) in astrocytes in the lumbar spinal dorsal horn and the gracile nucleus. Pain, 2002, 99: 175-184.
    9. Raivich G, Bohatschek M, Kloss CU, et al. Neuroglial activation repertoire in the injured brain: graded response, molecular mechanisms and cues to physiological function.Brain Res Brain Res Rev. 1999;30(1):77-105.
    10. Lieberman AP, Pitha PM, Shin HS, Shin ML. Production of tumor necrosis factor and other cytokines by astrocytes stimulated with lipopolysaccharide or a neurotropic virus. Proc Natl Acad Sci 1989;86:6348–6352.
    11. Bhat NR, Zhang P, Lee JC, et al. Extracellular signal-regulated kinase and p38 subgroups of mitogen-activated protein kinases regulate inducible nitric oxide synthase and tumor necrosis factor-alpha gene expression in endotoxin- stimulated primary glial cultures. J Neurosci. 1998,18(5):1633-1641
    12. Lee SJ, Drabik K, Van Wagoner NJ, et al. Benveniste EN. ICAM-1-induced expression of proinflammatory cytokines in astrocytes: involvement of extracellular signal-regulated kinase and p38 mitogen-activated protein kinase pathways. J Immunol 2000; 165:4658–4666.
    13. Arruda JL, Sweitzer S, Rutkowski MD, et al.. Intrathecal anti-IL-6 antibody and IgG attenuates peripheral nerve injury-induced mechanical allodynia in the rat: possible immune modulation in neuropathic pain. Brain Res 2000;879:216–225,
    14. Sweitzer S, Martin D, Deleo JA. Intrathecal interleukin-1 receptor antagonist incombination with soluble tumor necrosis factor receptor exhibits an anti-allodynic action in a rat model of neuropathic pain. Neuroscience 2001b; 103:529–539
    15. Bian D, Ossipov MH, Zhong C, et al. Tactile allodynia, but not thermal hyperalgesia, of the hindlimbs is blocked by spinal transection in rats with nerve injury. Neurosci Lett 1998; 241:79–82
    16. Sung B, Na HS, Kim YI, et al. Supraspinal involvement in the production of mechanical allodynia by spinal nerve injury in rats. Neurosci Lett 1998;246:117–119.
    17. Sun H, Ren K, Zhong CM, et al. Nerve injury-induced tactile allodynia is mediated via ascending spinal dorsalcolumn projections. Pain 2001;90:105–111
    18. Lau LT, Yu ACH. Astrocyte produce and release interleukin-1, interleukin-6, tumor necrosis factor alpha and interferon-gamma following traumatic and metabolic injury. J Neurotrauma,2001,18:351-359
    19. Ciccarelli R, Ballerini P, Acbatino G, et al. Involvement of astrocyte in purine-mediated repatative processes in the brain. J Devl Neurosci, 2001,19:395-414
    20. Sen R, Baltimore D, Inducibility of kappa immunoglobulin enhancer-binding protein Nf-kappa B by a posttranslational mechanism. Cell 1986,47(6):921-928
    21. Chen F, Castranova V, Shi X, New insights into the role of nuclear factor-kappaB in cell growth regulation. Am J. Pathol.2001,159(2):387-397
    22. Suzuki T, Mitake S, Okumura Noji K, et al. Presence of NF-κB-like and IκB-like immunoreactivities in postsynaptic densities. Neuroreport, 1997,8:2931.
    23. Carter BD, Kaltschmidt C, kaltschmidt B et al. Selective activation of NF-κB by nerve growth factor through the neurotrophin receptor p75 Science,1996,272:542.
    24. Whiteside ST, Israe IA. I kappa B proteins: structure, function and regulation. Semin Cancer boil,1997,8:75-82
    25. Murase, T., Kume, N., Hase, T., et al. Gallates inhibit cytokine-induced nuclear translocation of NF-kappaB and expression of leukocyte adhesion molecules in vascular endothelial cells. Arterioscler. Thromb. Vasc. Biol. 1999,19:1412–1420.
    26. Liu SF, Ye X, Malik AB. Inhibition of NF-kappaB activation by pyrrolidine dithiocarbamate prevents In vivo expression of proinflammatory genes. Circulation,1999,100(12):1330-1337
    27. Chan CF, Sun WZ, Lin JK, et al. Activation of transcription factors of nuclear factorκB, activator protein-1 and octamer factors in hyperalgesia. Eur J Pharmacol. 2000, 18:61-68.
    28. Laughlin TM , Larson AA, Wilcox. Mechanisms of induction of persistent nociception by dynorphin. J.Pharmacol.Exp.Ther, 2001,299:6-11
    29. .Ledeboer A, Gamanos M, Lai W, et al. Involvement of spinal cord nuclear factor kappaB activation in rat models of proinflammatory cytokine-mediated pain facilitation Eur J Neurosci. 2005;22(8):1977-1986
    30. Molina-Holgado E, Ortiz S, Molina-Holgado F, et al. Induction of COX-2 and PGE(2) biosynthesis by IL-1beta is mediated by PKC and mitogen-activated protein kinases in murine astrocytes. Br J Pharmacol 2000;131:152–159.
    31. Zhao Z, Chen SR, Eisenach JC, et al. Spinal cyclooxygenase-2 is involved in development of allodynia after nerve injury in rats.Neuroscience 2000;97:743–748.
    32. Lashbrook JM, Ossipov MH, Hunter JC, et al. Synergistic antiallodynic effects of spinal morphine with ketorolac and selective. Pain 1999;82:65–72.
    33. Yoon YW, Sung B, Chung JM. Nitric oxide mediates behavioral signs of neuropathic pain in an experimental rat model. NeuroReport 1998;9:367–372
    34. Levy D, Kubes P, Zochodne DW. Delayed peripheral nerve degeneration, regeneration, and pain in mice lacking inducible nitric oxide synthase. J Neuropathol Exp Neurol 2001;60:411–421
    35. Sousa AM, Prado WA. The dual effect of a nitric oxide donor in nociception. Brain Res 2001;897:9–19
    36. Blanco AM, Pascual M, Valles SL, et al. Ethanol-induced iNOS and COX-2 expression in cultured astrocytes via NF-kappa B.Neuroreport. 2004 22;15(4):681-685
    1. Kaltschmidt C, Kaltscmidst B, Neumann H etal. Constitutive NF-κB activity in neurons. Mol Cell Biol, 1994,14:3981
    2. O`Neil,L.A.J Kaltschmidt C. NF-κB: a crucial transcription factor for glial and neuronal cell function. Trends Neurosci, 1997, 20:252-258
    3. Ma W, Bisby MA. Increased activation of nuclear factor kappa B in rat lumbar dorsal root ganglion neurons following partial sciatic nerve injuries. Brain Res 1998, 797: 243–254.
    4. Chan,C.F., Sun,W.Z.,Lin,J.K., Lin-Shiqu,S.Y. Activation of transcription factors of nuclear factor kappa B, activator protein-1 and octomer factors in hyperalgesia. Eur.J. Pharmacol.,2000;402:61-68
    5. D'Acquisto F, May MJ, Ghosh S. Inhibition of Nuclear Factor Kappa B (NF-kB) An Emerging Theme in Anti-Inflammatory Therapies. Mol Interv, 2002; 2:22-35
    6. Lee,F.D. The role of interleukin-6 in development, Dev. Biol. 1992,151:331–338
    7. J. Gauldie J, Richard C, Harnish D, et al. Interferon b2/ B-cell stimulating factor type 2 shares identity with monocyte-derived hepatocyte-stimulating factor and regulates the acute phase response in liver cells, Proc. Natl. Acad. Sci. 1987,84: 7251–7259
    8. Campbell I.L, Abraham C.R, Masliah E, et al, Neurologic disease induced in transgenic mice by cerebral overexpression of interleukin 6, Proc. Natl. Acad. Sci. 1993,90: 10061–10065
    9. Chiang C., Stalder A., Samimi A., et al. Reactive gliosis as a consequence of interleukin-6 expression in the brain: studies in transgenic mice, Dev. Neurosci. 1994,16: 212–221
    10. Fattori E, Lazzaro D, Musiani P, et al, IL-6 expression in neurons of transgenic mice causes reactive astrocytosis and increase in ramified microglial cells but no neuronal damage, Eur. J. Neurosci. 1995,7:2441–2449
    11. Geiss A., Varadi E., Steinbach K., et al, Psychoneruoimmunological correlates of persisting sciatic pain in patients who underwent discectomy, Neurosci. Lett. 1997,237:65–68
    12. Oka T., Oka K., Hosoi M., et al, Intracerebroventricular injection of interleukin-6 induces thermal hyperalgesia in rats. Brain Res. 1995,692:123–128
    13. Pahan K, Sheikh FG, Namboodiri AM. et al. Lovastatin and phenylacetate inhibit the induction of nitric oxide synthase and cytokines in rat primary astrocytes, microglia, and macrophages. J Clin Invest. 1997,100(11):2671-2679
    14. Watkins LR, Wiertelak EP, Goehler LE. et al. Characterization of cytokine-induced hyperalgesia. Brain Res 1994,654:15–26.
    15. Watkins LR, Maier SF, Goehler LE. Immune activation: the role of pro-inflammatory cytokines in inflammation, illness responses and pathological pain states. Pain 1995,63:289–302.
    16. Haller H, Maasch C, Dragun D, et al. Antisense oligodesoxynucleotide strategies in renal and cardiovascular disease. Kidney Int. 1998,53(6):1550-1558.;
    17. Flanagan WM. Antisense comes of age. Cancer Metastasis Rev. 1998,17(2):169-176
    18. Laughlin TM, Bethea JR, Yezierski RP, et al. Cytokine involvement in dynorphin -induced allodynia. Pain. 2000,84:159-167.
    19. Tegeder I, Niederberger E, Schmidt R, et al Specific Inhibition of IkappaB kinase reduces hyperalgesia in inflammatory and neuropathic pain models in rats.J Neurosci. 2004;24(7):1637-1645
    20. Sakaue, Gaku Shimaoka, Motomu ,et al. NF-[κ]B decoy suppresses cytokine expression and thermal hyperalgesia in a rat neuropathic pain model Neuroreport , 2001 12(10): 2079-2084
    21. Lee KM, Kang BS, Lee HL. Spinal NF-kB activation induces COX-2 upregulation and contributes to inflammatory pain hypersensitivity. Eur J Neurosci. 2004 ,19(12): 3375-81.
    22. Bethea JR, Castro M, Kearne RW, et al. Traumatic spinal cord injury induces nuclear factor-kappaB activation. J Neurosci, 1998;18: 3251-3260.
    23. Sakaue, Gaku Shimaoka, Motomu, et al. NF-kB decoy suppresses cytokine expression and thermal hyperalgesia in a rat neuropathic pain model. Neuroreport, 2001;12:2079-2084
    24. Laughlin TM Bethea JR Yesierski,R.P, Cytokine involvement in dynorphin-induced allodynia. Pain, 2000;84:159-167
    25. Lee KM, Kang BS, Lee HL. Spinal NF-kB activation induces COX-2 upregulation and contributes to inflammatory pain hypersensitivity. Eur J Neurosci, 2004 ;19:3375-3381.
    26. Laughlin TM, Larson AA. Wilcox. Mechanisms of induction of persistent nociception by dynorphin. J Pharmacol Exp Ther, 2001;299:6-11.
    27. Kraus J, Borner C, Giannini E, et al. The role of nuclear factorκB in tumor necrosis factor-regulated transcription of the human mu-opioid receptor gene. Mol Pharmacol, 2003;64:876-884.
    28. Park HJ, Lee HS, Lee HJ, Decrease of the electroacupuncture-induced analgesic effects in nuclear factor-κB1 knockout mice. Neurosci Lett, 2002; 22:141-144.
    29. Fulvio D`Acqursto, Michael J.May, Sankar Ghosh. inhibition of nuclear factor kappa B(NF-κB):an emerging theme in anti-inflammatory therapies Mol Interv.2002;2(1):22-35.
    30. Sakaue G, Shimaoka M, Fukuoka T, et al, NF-kappa B decoy suppresses cytokine expression and thermal hyperalgesia in a rat neuropathic pain model. Neuroreport. 2001,12(10):2079-2084.
    31. Lee KM, Kang BS, Lee HL, Son SJ,et al, Spinal NF-κB activation induces COX-2 upregulation and contributes to inflammatory pain hypersensitivity. Eur J Neurosci. 2004,19(12):3375-3381.
    32.王文,武胜昔,李云庆.疼痛的转基因研究.神经解剖学杂志, 2000, 16: 173-177
    33. Lee CE, Kest B, Jenab S, et al. Effect of supraspinal antisense oligodeoxynucleotide treatment on delta-opioid receptor mRNA levels in mice. Brain Res Mol Brain Res, 1997,48: 17-22
    34. Mizoguch i H, Narita M, Nagase H, et al. Antisense oligodeoxynucleotide to a delta-opioid receptor blocks the antinociception induced by cold water swimming. Regul Pept, 1995, 59: 255-259
    35. Pugh G Jr, Abood ME, Welch SP. Antisense oligodeoxynucleotides to the kappa-1 receptor block the antinociceptive effects of delta 9-THC in the spinal cord. Brain Res, 1995, 689: 157-158
    36. Hemmins-Mieszczak M, Dorn G, Natt FJ, et al. Inpendent combinatorial effect of antisense oligonucleotides and RNAi-mediated specific inhibition of the recombinant rat P2X3 receptor. Nucleic Acids Research, 2003, 31(8):2117-2126
    37. Hou WY, Shyu BC, Chen TM , et al. Intrathecally administered c-fos antisense oligodeoxynucleotide decreases formalin-induced nociceptive behavior in adult rats. Eur J Pharmacol, 1997, 329: 17-26
    38. Lai J, Crook TJ, Payne A, et al. Antisense targeting of delta opioid receptors in NG 108-15 cells: direct correlation between ligodeoxynucleotide uptake and receptor density. J Pharmacol Experi Therap, 1997, 281: 589-596
    39. White DM. Neurotrophin-3 antisense oligonucleotide attenuates nerve injury-inducedAβ-fibre sprouting. Brain Research, 2000,888: 79-86
    40. Bitner RS, Nikkel AL, Donnelly DL, et al. Reduced nicotinic receptor-m ediated antinociception following in vivo antisense knock-down in rat. Brain Research, 2000, 871:66-74
    41. Ghelardini C, Galeotti N, Calvani M, et al. Acetyl-l-carnitine induces muscarinic antinociception in mice and rats. Neuropharmacology, 2002, 43:1180-1187
    42. Ma W, Hatzis C, Eisenach JC. Intrathecal injection of cAMP response element binding protein (CREB) antisense oligonucleotide attenuates tactile allodynia caused by partial sciatic nerve ligation. Brain Research, 2003, 988:97-104
    43. Paul D, Yao DD, Zhu PM, et al. 5-Hydroxytryptamine3(5-HT3) receptors mediate spinal 5-HT antinociception: an antisense approach. J Pharmacol Exper Ther, 2001, 298:674-678
    44. Porreca F, Lai J, Bian D, et al. A comparison of the potential role of the tetrodotoxin-insensitive sodium channels , SNS/ PN3 and NaN/ SNS2 , in rat model of chronic pain. Proc Natl Acad Sci USA ,1999 ,96: 7640-7644.
    45. Wahlestedt C. Antisense oligonucleotide strategies in neuropharmacology. Trends Pharmacol Sci, 1994, 15: 42-46
    46.万丽,罗爱林,田玉科.鞘内注射蛋白激酶Cγ反义寡核苷酸对慢性神经痛大鼠的镇痛作用.中华麻醉学杂志, 2005,25(1): 52-54
    47. Lai J, Gold MS, Kim CS, et al. Inhibition of neuropathic pain by decreased expression of the etrodotoxin- resistant sodium channel, NaV1.8. Pain, 2002, 95:143-152
    48. Voisard, R., Huber, N., Baur, R., et al. Different effects of antisense RelA p65 and NF-kappaB1 p50 oligonucleotides on the nuclear factor-kappaB mediated expression of ICAM-1 in human coronary endothelial and smooth muscle cells. BMC Mol. Biol. 2001;2:7–11
    49. Murano M, Maemura K, Hirata I, et al. therapeutic effect of intracolonically administered nuclear factor kB(p65) antisense oligonucleotide on mouse dextransulphate sodium (DSS) induced colitis. Clin Exp Immunol, 2000;120(1):51
    50. Higgins, K.A., Perez, J.R., Coleman, T.A. et al. Antisense inhibition of the p65 subunit of NF-kappa B blocks tumorigenicity and causes tumor regression. Proc. Natl. Acad. Sci. 1993;90: 9901-9905;
    51. Wu,G.S., Petersson, S., Spiik, A.K., et al, A. Antisense NF-kappaB p65 prolongs experimental allo- and xenograft survival. Transplant. Proc. 2001;33:360-366
    52. Wang Y, Rangan GK, Tay YC, et al. Induction of monocyte chemoattractant protein-1 by albumin is mediated by nuclear factor-kB in proximal tubule cells. Am Soc Nephrol. 1999;10(6):1204-1213;
    53. Schlaak,J.F., Barreiros,A.P., Pettersson,S., et al. Antisensephosphorothioate oligonucleotides to the p65 subunit of NF- kappaB abrogate fulminant septic shock induced by S.typhimurium in mice. Scand J Immunol. 2001;54:396–403.
    54. Watkins LR,Milligan ED,Maier SF. Glial activation: a driving force for pathological pain. Trends Neurosci,2001,24(8):450-455
    55. Kommers T, Vinade L, Pereira C, et al. Regulation of the phosphorylation of glial fibrillary acidic protein (GFAP) by glutamate and calcium ions in slices of immature rat spinal cord: comparison with immature hippocampus.Neurosci Lett. 1998,248(2): 141-143.
    56. Watkins IR, Milligan ED, Maier SF. Glial activation : a driving force for pathological pain. Trends Neurosci, 2001,24:450-455
    57. Uberti D, Belloni M, Crilli M et al. Induction of tumour-suppressor phosphoprotein p53 in the apoptosis of cultured rat celebella neuron striggered by excitatory aminoacids. Eur J Neurosci,1998,10:246-249.
    58. Raghavendra V, Tanga FY, DeLeo JA. Complete Freunds adjuvant-induced peripheral inflammation evokes glial activation and proinflammatory cytokine expression in the CNS.Eur J Neurosci. 2004 ,20(2):467-473.
    59. Murata Y, Onda A, Rydevik B, et al. Changes in pain behavior and histologic changescaused by application of tumor necrosis factor-alpha to the dorsal root ganglion in rats.Spine. 2006 1;31(5):530-535.
    60. Rocha AC, Fernandes ES, Quintao NL, et al. Relevance of tumour necrosis factor-alpha for the inflammatory and nociceptive responses evoked by carrageenan in the mouse paw. Br J Pharmacol. 2006;148(5):688-695.
    61. Xu JT, Xin WJ, Zang Y, et al. Pain. The role of tumor necrosis factor-alpha in the neuropathic pain induced by Lumbar5 ventral root transection in rat. 2006,123(3): 306-21.
    62. DeLeo J.A. Colburn R.W. Nichols M., et al, Interleukin-6-mediated hyperalgesia allodynia and increased spinal IL-6 expression in a rat mononeuropathy model, J. Interferon Cytokine Res. 1996, 16:695–700.
    63. Murphy P.G., Ramer M.S., L. Borthwick, J. et al. Endogenous interleukin-6 contributes to hypersensitivity to cutaneous stimuli and changes in neuropeptids associated with chronic nerve constriction in mice, Eur. J. Neurosci. 1999,11:2243–2253.
    64. Ramer M.S., Murphy P.G., Richardson P.M., et al. Spinal nerve lesion-induced mechanoallodynia and adrenergic sprouting in sensory ganglia are attenuated in interleukin-6 knockout mice. Pain 1998,78:115–121.
    65. Arruda J.L., Colburn R.W., Rickman A.J., et al, Increase of interleukin-6 mRNA in the spinal cord following peripheral nerve injury in the rat: potential role of IL-6 in neuropathic pain, Mol. Brain Res. 1998,62:228–235
    66. Ringheim, G.E., Burgher, K.L. Herouk, J.A., Interleukin-6 mRNA expression by cortical neurons in culture: evidence for neuronal sources of interleukin-6 production in the brain, J. Neuroimmunol., 1995,63:113–123.
    67. Lee Hye-Lim, Lee Kyung-Min, Son Sun-Joo, et al. Temporal expression of cytokines and their receptors mRNAs in a neuropathic pain model Neuroreport. 2004,15(18): 2807-2811
    68. Hirohata, H., Kiyama, H., Kishimoto, T. Accelerated nerveregeneration in mice byupregulated expression of interleukin (IL) 6 and IL-6 receptor after trauma, J. Exp. Med., 1996,183: 2627–2634.
    1. Merskey H, Bogduk N. Classification of chronic pain: Description of chronic pain syndromes and definitions of pain terms. 2nd ed Seattle, IASP Press, 1994;394
    2. Ganju P, Hall J, Potential applications of siRNA for pain therapy. Exp Opin Biol Ther. 2004;4:531-542
    3. Wilson M. Overcoming the challenges of neuropathic pain. Nurs Stand. 2002; 16:47-53.
    4. Thuluvath PJ, Connolly GM, Forbes A, et al. Abdominal pain in HIV infection. Q J Med. 1991;78:275-285
    5. Koltzenberg M, Wall PD, McMahon SB. Does the ritht side know what the lefe is doing? Trend Neurosci. 1999;22:122-127
    6. Ventura R, Harris KM. Three-dimensional relationships between hippocampal synapses and astrocytes. J Neurosci. 1999;19:6897-6906.
    7. Yu AC, Lau LT Expression of interleukin-1 alpha, tumor necrosis factor alpha and interleukin-6 genes in astrocytes under ischemic injury. Neurochem Int. 2000;36:369-377
    8. Rouach N, Glowinski J, Giaume C. Activity-dependent neuronal control of gap-junctional communication in astrocytes., 2000;26:1513-1526
    9. Kommers T, Vinade L, Pereira C, et al. Regulation of the phosphorylation of glial fibrillary acidic protein (GFAP) by glutamate and calcium ions in slices of immature rat spinal cord: comparison with immature hippocampus.Neurosci Lett. 1998;29:141-143.
    10. Porter JT, McCarthy KD. Astrocytic neurotransmitter receptors in situ and in vivo. ProgNeurobiol. 1997;51:439-455
    11. Cotter DR, Parante CM, Everall IP. Glial cell abnormalities in major psychiatric disorders: the evidence and implication. Brain Res Bull, 2001;55:585-595
    12. Millan MJ. The induction of pain: an integrative review. Prog Neurobiol. 1999;57:160-164.
    13. Krenz NR, Weaver LC. Nerve growth factor in glia and inflammatory cells of the injured rat spinal cord. J Neurochem. 2000;74:730-739
    14. Dougherty KD, Dreyfus CF, Black IB. Brain-derived neurotrophic factor in astrocytes, oligodendrocytes, and microglia/macrophages after spinal cord injury. Neurobiol Dis. 2000;7:574-585
    15. Lau LT, Yu ACH. Astrocyte produce and release interleukin-1, interleukin-6, tumor necrosis factor alpha and interferon-gamma following traumatic and metabolic injury. J Neurotrauma. 2001; 18:351-359
    16. Watkins LR, Nguyen KT, Lee JE, et al. Dynamic regulation of proinflammatory cytokines. Adv Exp Med Biol. 1999;461:153-178.
    17. Smith ME, Hoerner MT. Astrocytes modulate macrophage phagocytosis of myelin in vitro. J Neuroimmunol. 2000; 24:154-162
    18. Milligan ED, Connor KAO, Nguyen KT, et al. Intrathecal HIV-1 envelope glycoprotein gpl20 induces enhanced pain states mediated by spinal cord proinflammatory cytokines. J Neurosci. 2001;21:2808-2819
    19. Garrison CJ, Dougherty PM, Kajander KC, et al. Staining of glia: fibrillary acidic protein (GFAP) in lumbar spinal cord increases following a sciatic nerve constriction injury Brain Res 1991;565:l-7
    20. Coyle DE. Partial peripheral nerve injury leads to activation of astroglia and microglia which parallels the development of allodynic behavior. Glia. 1998;23:75-83.
    21. Colbum RW, Rickman AJ, DeLeo JA. The effect of site and type of nerve injury on spinal glial activation and neuropathic pain behavior. Exp Neurol. 1999; 157:289-304
    22. Stuesse SL, Crisp T, MeBumey DL, et al. Neuropathic pain in aged rats: behavioral responses and astrocytic activation. Exp Brain Res. 2001;137 :219-227
    23. Hashizume H, DeLeo JA, Colburn RW, et al. Spinal glial activation and cytokine expression after lumbar root injury in the rat. Spine, 2000;25:1206-1217
    24. Meller ST, Dykstra C, Grzybycki D, et al. The possible role of glia in nociceptive processing and hyperalgesia in the spinal cord of the rat.Neuropharmacology. 1994;33:1471-1478
    25. Milligan ED, Mehmert KK, Hinde JL, et al. Thermal hyperalgesia and mechanical allodynia produced by intrathecal administration of the human immunodeficiency virus-1 (HIV-1) envelope glycoprotein, gpl20.Brain Res. 2000;861:105-116
    26. Watkins LR, Martin D, Ulrich P, et al. Evidence for the involvement of spinal cord glia in subcutaneous formalin induced hyperalgesia in the rat. Pain. 1997;71:225-235
    27. Sweitzer SM, Schubert P, DeLeo JA. Propentofylline, a glial modulating agent, exhibits antiallodynic properties in a rat model of neuropathic pain.J Pharmacol Exp Ther. 2001;297:1210-1217
    28. kreutzberg GW. Microglia: a sensor for pathological events in the CNS. Trends Neurosci. 1996; 19:312-318
    29. Qin L, Liu Y, Cooper C, et al. Microglia enhance beta-amyloid peptide-induced toxicity in cortical and mesencephalic neurons by producing reactive oxygen species. J Neurochem. 2002;83:973-983
    30. Cassina P, Peluffo H, Pehar M, et al. Peroxynitrite triggers a phenotypic transformation in spinal cord astrocytes that induces motor neuron apoptosis. J Neurosci Res. 2002;67:21-29
    31. Xu J, Weng YI, Simonyi A, et al. Role of PKC and MAPK in cytosolic PLA2 phosphorylation and arachadonic acid release in primary murine astrocytes. J Neurochem. 2002;83:259-270
    32. Ates M, Hamza M, Seidel K, et al. Intrathecally applied flurbiprofen produces anendocannabinoid-dependent antinociception in the rat formalin test. Eur J Neurosci. 2003; 17:597-604
    33. Inoue A, Ikoma K, Morioka N, et al. Interleukin-1 beta induces substance P release from primary afferent neurons through cyclooxygenase-2 system. J Neurochem, 1999; 73:2206-2213
    34. DeLeo JA, Colburn RW. Proinflammatory cvtokines and glial cells; their role in neuropathtc pain. In; Watkins LK. Mater SF eds. Cytokines and pains. Basel: Birkhauser verlag. 1999; 13:159-182
    35. Schwei MI, Hnnore P. Rogers SD.et al. Neurochemical and cellular reorganization of the spinal cord in a murine model of bone cancer pain. J Neurosci. 1944;19:10886-10897
    36. Watkins LR. Milligan ED, Maier SF. Glial activation; a driving force for pathological pain. Trends Neurosci. 2001;24:450 -455
    37. Metier ST. Dysksira C. Grzybycki D. et al. The possible role of glia in nociceptive processing and hyperalgesia in the spinal cord of the rat. Neuropharmacology. 1994;33:1471-1476
    38. Deleo JA, Rutkowski MD, Stalder AK, et al. Transgenic expression of TNF by astrocytes increases mechanical allodynia in a mouse neuropathy model. Neuroreport, 2000; 11:599-602
    39. Milligan ED, Twining C, Chacur M, et al. Spinal glia and proinflammatory cytokines mediate mirror-image neuropathic pain in rats.J Neurosci. 2003;23:1026-1040
    40. Raghavendra V, Rutkowski MD, DeLeo JA. The role of spinal neuroimmune activation in morphine tolerance/hyperalgesia in neuropathic and sham-operated rats.J Neurosci. 2002;22:9980-9989
    41. Constandil L, Pelissier T, Soto-Moyano R, et al. Interleukin-1 beta increases spinal cord wind-up activity in normal but not in monoarthritic rats. Neurosci Lett. 2003 ;342:139-142.
    42. Watkins LR, Millgan ED, Maier SF. Glial proinfalmmatory cytokines mediated exaggerated pain states: implications for clinical pain. In: Machelska H, Stein C, editor. Immune mechanisms of pain and analgesia. Austin TX: Landes Biosciences, 2001,199-213
    43. Ma JY, Zhao ZQ. The involvement of glia in long-term plasticity in the spinal dorsal horn of the rat. Neuroreport. 2002; 13:1781-1784
    44. Salio C, Cottone E, Conrath M, et al. CB1 cannabinoid receptors in amphibian spinal cord: relationships with some nociception markers.J Chem Neuroanat. 2002;24:153-162
    45. Weiya Mai, Remi Quirion Partial sciatic nerve ligation induces increase in the phosphorylation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) in astrocytes in the lumbar spinal dorsal horn and the gracile nucleus. Pain. 2002;99:175-184
    1. Sen R, Baltimore D, Inducibility of kappa immunoglobulin enhancer-binding protein Nf-kappa B by a posttranslational mechanism. Cell. 1986,47:921-928
    2. Chen F, Castranova V, Shi X, et al. New insights into the role of nuclear factor-kappaB in cell growth regulation. Am J. Pathol. 2001,159:387-397
    3. Thanos D, Maniatis T, NF-kappa B: a lesson in family values. Cell. 1995,80:529-532
    4. Abraham E, NF-kappaB activation. Crit Care Med. 2000,28:100-104
    5. Whiteside ST, Israel A. I kappa B proteins: structure, function and regulation. Semin Cancer Biol. 1997,8:75-82
    6. Senftleben U, Cao Y, Xiao G, et al. Activation by IKKalpha of a second, evolutionaryconserved, NF-kappaB signaling pathway. Science, 2001,293:1495-1499
    7. Nakano H, Shindo M, Sakon S, et al. Differential regulation of IkappaB kinase alpha and beta by two upstream kinases, NF-kappaB-inducing kinase and mitogen-activated protein kinase/ERK kinase kinase-1. Proc Natl Acad Sci. 1998,31: 3537-3542
    8. Hoffmann A, Levehenko A, Scott ML, et al. The I kappaB- NF-kappaB signaling module: temporal control and selective gene activation. Science. 2002, 8;1241-1245
    9. De Martin R Hoeth M, Hofer-Warbinek R, et al. The transcription factor NF-kappa B and the regulation of vascular cell function. Arterioscler Thromb Vasc Biol. 2000,20:E83-88
    10. Liu SF, Ye X, Malik AB. Inhibition of NF-kappaB activation by pyrrolidine dithiocarbamate prevents In vivo expression of proinflammatory genes. Circulation. 1999,21:1330-1337.
    11. Kaltschmidt C, Kaltscmidst B, Neumann H et al. Constitutive NF-κB activity in neurons. Mol Cell Biol. 1994,14:3981-3985
    12. Suzuki T, Mitake S, Okumura Noji K, et al. Presence of NF-κB-like and IκB-like immunoreactivities in postsynaptic densities. Neuroreport. 1997,8:2931-2936
    13. Carter BD, Kaltschmidt C, kaltschmidt B, et al. Selective activation of NF-κB by nerve growth factor through the neurotrophin receptor p75 Science. 1996,272:542.
    14. Uberti D, Belloni M, Grilli M et al. Induction of tumour-suppressor phosphoprotein p53 in the apoptosis of cultured rat celebellar neuron striggered by excitatory aminoacids. Eur J Neurosci. 1998,10:246-249
    15. Park HJ, Lee HS, Lee HJ, et al. Decrease of the electroacupuncture-induced analgesic effects in nuclear factor-κBl knockout mice. Neurosci Lett. 2002,22:141-144.
    16. Lee KM, Kang BS, Lee HL, et al. Spinal NF-kB activation induces COX-2 upregulation and contributes to inflammatory pain hypersensitivity. Eur J Neurosci. 2004,19:3375-3381
    17. Chan CF, Sun WZ, Lin JK, et al. Activation of transcription factors of nuclear factor kB,activator protein-1 and octamer factors in hyperalgesia. Eur J Pharmacol. 2000,18:61-68
    18. Ma W, Bisby MA Increased activation of nuclear factor k B in rat lumbar dorsal root ganglion neurons following partial sciatic nerve injuries. Brain Res. 1998,29:243-254
    19. Doyle CA, Hunt SP. Reduced nuclear factor kB (p65) expression in rat primary sensory neurons after peripheral nerve injury. Neuroreport. 1997,8:2937-2942
    20. Tegeder I, Niederberger E, Schmidt R Specific Inhibition of IκB kinase reduces hyperalgesia in inflammatory and neuropathic pain models in rats. J Neurosci. 2004,18:1637-1645
    21. Sakaue, Gaku, Shimaoka, et al. NF-κB decoy suppresses cytokine expression and thermal hyperalgesia in a rat neuropathic pain model. Neuroreport, 2001,12: 2079-2084
    22. O'Neil,L.A.J, Kaltschmidt C. NF-κB: a crucial transcription factor for glial and neuronal cell function. Trends Neurosci, 1997,20:252-258
    23. Barnes,P.J. Adcock,I.M. NF-κB: a pivotal role in asthma and a new target for therapy. Trends Pharmacol.Sci, 1997,8:46-50
    24. Vanegas,H, Schaible HG. Prostaglandins and cyclooxyenases in the spinal cord. Prog. Neurobiol. 2001,64:327-363
    25. Samad TA, Moore KA, Sapristein A, et al. Interleukin-1β-mediated induction of Cox-2 in the CNS contributes to inflammatory pain hypersensitivity. Nature, 2001,410: 471-475
    26. Feibich, BL. Mueksch, B. Boehringer, M et al. Interleukin-1βinduces cyclooxy genase-2 and prostaglandinE2 synthesis in human neuroblastoma cell: involvement of p38 mitogen-acivated protein kinase and nuclear factor-κB. J Neurochem. 2000,75: 2020-2028
    27. Yang,CM, Chien,CS, Hsiao LD. et al. Interleukin-1β-induced cyclooxygenase-2 expression mediated through activation of p42/44 and p38 MAPKS, NF-κB pathways in canine tracheal smooth muscle. Cell Signal. 2002,14:899-911
    28. Kraus J, Borner C, Giannini E, et al. The role of nuclear factor kB in tumor necrosisfactor-regulated transcription of the human mu-opioid receptor gene. Mol Pharmacol. 2003,64:876-884
    29. Laughlin TM. Bethea JR. Yesierski, RP. et al. cytokine involvement in dynorphin-induced allodynia. Pain 2000,84:159-167
    30. Laughlin TM, Larson AA , Wilcox. Mechanisms of induction of persistent nociception by dynorphin. J. Pharmacol.Exp.Ther. 2001,299:6-11
    31.Leskovar A, Moriarty LJ, Turek JJ. et al. The macrophage in acute neural injury: changes in cell numbers over time and levels of cytokine production in mammalian central and peripheral nervous systems. J Exp Biol. 2000,203: 1783-1795.
    32. Benveniste EN. Inflammatory cytokines within the central nervous system: sources, function, and mechanism of action. Am J Physiol. 1992,263:C1-16
    33. Pahan K, Sheikh FG, Namboodiri AM. et al. Lovastatin and phenylacetate inhibit the induction of nitric oxide synthase and cytokines in rat primary astrocytes, microglia, and macrophages. J Clin Invest. 1997,100:2671-2679
    34. Watkins LR, Wiertelak EP, Goehler LE. et al. Characterization of cytokine-induced hyperalgesia. Brain Res. 1994,15:15-26
    35. Watkins LR, Wiertelak EP, Furness LE, et al. Illness-induced hyperalgesia is mediated by spinal neuropeptides and excitatory amino acids. Brain Res. 1994, 21:17-24
    36. Watkins LR, Maier SF, Goehler LE. Immune activation: the role of pro-inflammatory cytokines in inflammation, illness responses and pathological pain states. Pain. 1995,63:289-302
    37. Kobierski LA. Cytokines and inflammation in the central nervous system. In: Borsook D, ed. Molecular Neurobiology of Pain: Progress in Pain Research and Management. Seattle: IASP Press; 1997:45-58.
    38. Sorkin LS, Xiao WH, Wagner R. et al. Tumour necrosis factor-alpha induces ectopic activity in nociceptive primary afferent fibres. Neuroscience. 1997,81:255-862
    39. Wagner R, Myers RR. Endoneurial injection of TNF-alpha produces neuropathic painbehaviors. Neuroreport. 1996,7:2897-2901
    40. Vanguri P. Interferon-gamma-inducible genes in primary glial cells of the central nervous system: comparisons of astrocytes with microglia and Lewis with brown Norway rats. J Neuroimmunol. 1995, 56:35-43
    41. Ferreira V, Sidenius N, Tarantino N. et al. In vivo inhibition of NF-kappa B in T-lineage cells leads to a dramatic decrease in cell proliferation and cytokine production and to increased cell apoptosis in response to mitogenic stimuli, but not to abnormal thymopoiesis. J Immunol. 1999,62:6442-6450
    42. Baeuerle PA, Baltimore D. NF-kappa B: ten years after. Cell. 1996,87:13—20
    43. Inoue T, Mashimo T, Shibata M. et al. Rapid development of nitric oxide-induced hyperalgesia depends on an alternate to the cGMP-mediated pathway in the rat neuropathic pain model. Brain Res. 1998,792:263-270
    44. Levy D, Hoke A, Zochodne DW. Local expression of inducible nitric oxide synthase in an animal model of neuropathic pain. Neurosci Lett. 1999,260:207-209
    45. Luo ZD, Chaplan SR, Scott BP et al. Neuronal nitric oxide synthase mRNA upregulation in rat sensory neurons after spinal nerve ligation: lack of a role in allodynia development. J Neurosci. 1999,19:9201-9208
    46. Constantin G, Piccio L, Bussini S. et al. Induction of adhesion molecules on human schwann cells by proinflammatory cytokines, an immunofluorescence study. J Neurol Sci. 1999,170:124-130
    47. Meberg PJ, Kinney WR, Valcourt EG. et al. Gene expression of the transcription factor NF-kappa B in hippocampus: regulation by synaptic activity. Brain Res Mol Brain Res. 1996,38:179-90
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.