组织工程支架材料及其降解产物血管化功能的体外研究及表征方法的建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文课题来源为国家自然科学基金项目“可降解生物材料与内皮细胞界面反应对内皮细胞功能蛋白表达的影响及机理研究”(No.30370411)。
     理想的组织工程材料应具有可控的生物降解性。要解决组织生长和材料降解的匹配问题,必须了解材料在使用中的生物学过程,并阐明材料降解与细胞生长和组织构建的相互作用机制。这是一个材料学与生命科学交叉的课题,也是生物材料研究中的难点。血管化问题是组织工程取得成功的关键环节,研究生物材料对组织血管化过程的影响和机理,设计和开发促血管化的支架材料是组织工程对生物材料的挑战。已有研究表明,材料的三维结构和表面性质可显著影响血管形成,但材料降解产物会不会影响以及如何影响血管形成目前尚不清楚。
     本论文针对以上问题,借鉴医学领域的研究方法,建立了组织工程材料降解产物血管化功能的表征体系。在此基础上,研究了组织工程材料降解产物的血管化功能,结合对材料降解产物的表征和降解规律的研究,探讨了降解时间及降解产物组分与血管化功能之间的关系。同时还研究了改性对材料/细胞界面上内皮细胞行为的影响。
     1.建立了组织工程材料降解产物血管化功能表征体系。
     依据血管形成过程及其分子调节机制,选择内皮细胞形成血管的三大步骤(包括增殖、迁移和血管样结构TLS的形成)为细胞水平指标,调节血管形成的VEGF、MMP-2的基因表达和F-actin重组作为分子水平指标,建立了组织工程材料降解产物血管化功能细胞水平和分子水平的的表征体系。新建了细胞迁移定量检测方法CMQM;新建了TLS的定量检测方法TLSQM;选择MTT比色法检测细胞增殖,实时荧光定量RT-PCR技术检测VEGF和MMP-2 mRNA的表达;BODIPYFL标记的鬼笔环肽标记F-actin,在荧光显微镜下观察其组装情况。
     2.研究了三类组织工程材料降解产物的血管化功能。
     分别以壳聚糖、聚乳酸和掺锶聚磷酸钙为例,以生理盐水为降解介质和对照,采用上述表征体系对天然高分子、合成高分子及生物陶瓷三大类组织工程材料降解产物的血管化功能进行了研究。结果表明,三类材料在生理盐水中均可降解,降解产物随时问累积,改变细胞生长的微环境,并对内皮细胞形成血管的重要步骤和调节血管形成的功能蛋白表达以及细胞骨架重构都有显著影响:可抑制也可促进血管化,取决于材料的种类和降解时间。且细胞水平和分子水平结果基本一致(掺锶聚磷酸钙的研究还表明体内动物实验和体外表征结果一致)。但降解时间的影响以及降解产物中单体所起的作用都各有不同。分述如下:
     (1)天然高分子壳聚糖(CS)降解产物的血管化功能
     降解时间的影响:在120天的降解时间内,细胞反应受到抑制不是在降解后期,而是在降解中期(20天~60天)。提示,天然高分子材料CS降解时间的延长和降解产物的累积不是影响内皮细胞行为的决定因素。不同时期产生的降解产物可能具有不同的分子结构,从而具有不同的生物活性。
     氨基葡萄糖(GS)单体的作用:在120天的降解时间内,CS降解液中GS浓度介于0.05~0.37mmol/L范围内。该浓度下,单纯的GS对内皮细胞增殖和迁移无显著影响,对TLS的作用效果也不同于降解液。提示,CS的降解产物中,影响内皮细胞行为的主要因素不是GS单体及其量的累积,而可能是GS齐聚物或与GS单体的共同作用。
     (2)合成高分子聚乳酸(PLA)降解产物的血管化功能
     降解时间的影响:降解初期(前7天),对细胞增殖、迁移和TLS的形成均无不良影响,或有一定促进。但随着降解时间的延长,细胞行为受到抑制:降解30天后显著抑制细胞迁移和TLS形成,降解90天显著抑制细胞增殖。提示,对合成材料PLA,适量的降解产物有促血管化功能,而过量累积则会严重破坏细胞生态环境,抑制其生长。
     乳酸(LA)单体的作用:120天的降解时间内,PLA降解液中LA单体浓度介于(16.13~431.32)mmol/L之间,碱水解后LA总浓度介于(63.91~799.91)mmol/L之间。该浓度下单纯的LA已显著抑制细胞行为,但PLA降解液中LA浓度达到190mmol/L时才对细胞增殖有显著抑制。提示,乳酸齐聚物的存在可降低高浓度单分子乳酸对细胞的毒性作用。
     (3)生物陶瓷掺锶聚磷酸钙(SCPP)的血管化功能
     降解时间的影响:与生理盐水和聚磷酸钙(CPP)比较,SCPP90天的降解产物对内皮细胞行为几乎都有促进作用。
     锶元素的作用:单纯的锶元素对细胞迁移无明显影响,但浓度在10nmol/L~1mmol/L范围内可不同程度地提高细胞增殖和形成TLS能力。SCPP90天降解产物中锶元素浓度介于3.92μmol/L~20.65μmol/L之间,对血管化有明显的促进作用。
     3.组织工程材料改性对材料/细胞界面上内皮细胞行为的影响
     对本论文重点研究的三种生物材料(CS、PLA以及CPP)分别进行改性,研究改性前后材料的细胞毒性和材料/细胞界面反应对内皮细胞行为的影响,结合改性前后材料性质变化探讨了改性对细胞行为影响的机理。结果发现,改性对三种材料的细胞毒性均无不良影响,却显著改变了细胞在材料表面的粘附、铺展以及形成TLS等行为。分述如下:
     (1)海藻酸钠(ALG)改性对内皮细胞在CS表面行为的影响:
     改性对CS表面性质的影响:AFM和水接触角实验结果表明,海藻酸钠改性能显著降低CS的表面粗糙度,增加表面亲水性;
     改性对细胞行为的影响:细胞在CS表面形成TLS结构,与胶原凝胶表面的TLS类似;但改性后的表面具有抗内皮细胞粘附的性能。材料表面亲水性的增加和粗糙度的下降可能导致细胞粘附下降的原因。
     (1)磷脂胆碱改性对PLA表面内皮细胞行为的影响:
     改性对PLA表面性质的影响:水接触角和摄水率结果表明,磷脂胆碱改性能提高聚乳酸的亲水性,且随着磷脂含量的增加,亲水性增强;XPS分析表明,改性后的材料在水环境发生表面重构,磷脂胆碱基团从材料的本体向表面发生翻转。
     改性对细胞行为的影响:与改性前相比,PC/LLA比例为1/46和1/30的材料表面,细胞的粘附和铺展相对滞后,但继续培养,细胞能在材料上完全粘附和铺展,并且增殖。细胞初期粘附铺展滞后可能是材料亲水性增强造成的。而具有生物活性的磷脂官能团向材料表面翻转使材料表面发生重构,可能是使细胞最终实现粘附并增殖的原因。
     (3)掺锶改性对CPP表面内皮细胞行为的影响:
     改性对CPP表面性质的影响:掺锶能显著影响CPP的微观结构。掺锶后材料晶粒尺寸增大,晶粒间连接紧密,形成更平滑的表面;掺锶能显著减少CPP经培养液浸泡后表面形成的凝胶状物质。
     改性对细胞行为的影响:掺锶改性能显著促进ECV304细胞在CPP表面的粘附和铺展,其原因可能是掺锶减少CPP凝胶并降低其表面粗糙度。
     本论文首次建立了组织工程材料降解产物血管化功能表征体系,为组织工程材料功能性的表征和评价提供新的思路和方法参考。对三类生物材料的表征发现,材料降解产物可改变细胞的微生态环境,进而显著改变内皮细胞形成血管的关键步骤以及调节血管形成的生长因子和蛋白酶的基因表达。该结果提示要解决组织工程中的血管化问题,必须重视材料降解产物对血管化的影响。对组织工程材料不仅要评价其安全性,还应深入研究其血管化功能。本论文的研究也为解决组织工程血管化问题探索了从非生长因子角度促血管化的可能性。
The work of this paper originates from the NSFC funded program, named "the study on the effect of interaction between degradable biomaterials and cells on function protein expression of EC and its mechanism (No.30370411)".
     Biodegradability is the basic characteristic of ideal tissue engineering (TE) scaffold. In order to match the tissue growth, it's necessary to learn about the biological process of degradable scaffold after implantation, and to elucidate the interaction between scaffold degradation and cell growth. However, it's an intersection between materials science and life science, and remains a difficulty in biomaterials research. On the other hand, angiogenesis has emerged as a main obstacle of tissue engineering success. Therefore, it's a big challenge to investigate the influence of biomaterials on angiogenesis, and to design or develop scaffold with aniogenic function for tissue engineering application. It has been proved that the 3-D structure and the surface properties of biomaterials can directly exert influences on angiogenesis during the tissue regeneration. However, little research has been down in whether and how the degradation product of TE scaffold affect the angiogenesis process.
     Aiming at the problem described above, and using the methods in medicine for reference, the present study has established a characterization system for angiogenic function of degradation products of TE scaffold. Using the system, the angiogenic function of degradation products were studied. Furthermore, how the degradation time and the compositions in degradation products affect the angiogenesis were discussed, according to the results of degradation products and degradation rule analysis. In addition, the effects of modification on the behavior of EC at the material/cell interface were also studied.
     1. A characterization system for angiogenic function of degradation products of TE scaffold has been established.
     According to the angiogenesis process and its molecular regulation mechanism, endothelial cells (EC) behaviors, including proliferation, migration and tube-like structure formation (TLS) were selected as cellular parameters of angiogenic characterization. In addition, the mRNA expression of vascular growth factor (VEGF) and metalloproteinase-2(MMP-2) and the reorganization of F-actin were selected and molecular parameters. Furthermore, cell migration quantitative method (CMQM) and TLS quantitative method (TLSQM) have been newly established in this paper. At the same time, MTT assay, real-time RT-PCR and phalloidin label were used to determine cell proliferation, mRNA expression and F-actin reorganization respectively.
     2. Angiogenic function of 3 kinds of TE biomaterials has been studied.
     With polylactic acid (PLA), chitosan (CS) and calcium polyphosphate (CPP) as model material respectively, and with the physiological saline as degradation medium and negative control, angiogenic function of three kinds of materials, involving the naturally occurring and synthetic polymers along with the bioceramics were investigated using the system. It indicated that the degradation products could significantly improve or restrain the angiogenesis depending on the kind of materials and the degradation time. Moreover, results at cellular level were consistent with those at molecular level. In addition, the results of CPP implantation showed that the results in vivo experiment was also consistent with those of in vitro experiments. However, the effects of degradation time and the role of monomer of 3 kinds of materials in angiogenic function were different. The results are as follows:
     (1) Angiogenic function of naturally occurred CS
     Effects of degradation time. In 120days, the effects of degradation products on angiogenic function various with time. It was not during the middle period but the latter period that cell behaviors were restrained. It suggested that the key reason for angiogenic function is not the simple accumulation of degradation products, but their molecular structure.
     The effect of glucosamine(GS). In 120 days, the concentration of GS in CS degradation fluid is between 0.001mmol/L and 0.37mmol/L. At this concentration, the single GS solution showed no obvious effects on angiogenesis. It suggested that the key factor in CS degradation that exerted effects on angiogenesis was not the GS monomer but its oligomer or the co-effects of GS and its oligomer.
     (2) The angiogenic function of synthetic polylactic acid (PLA)
     Effects of degradation time. At beginning of degradation (before 7 days), the degradation products showed no negative effects on the proliferation, migration and TLS formation of EC. Nevertheless, with the prolonged degradation time and the accumulation of the degradation products, the migration and TLS formation were significantly decreased since 30days, and the proliferation was dramatically reduced since 90days.
     The effects of lactic acid (LA). In 120days, the LA concentration in PLA degradation fluid was from 16.13mmol/L to 431.32mmol/L. At the concentration, the single LA solution restrained the EC behaviors evidently. Whereas, the proliferation of EC wasn't retrained until the LA concentration in degradation fluid amount to 190mmol/L. It suggested that the LA oligomer in degradation fluid might reduce the cytotoxicity of LA monomer.
     (3)Angiogenic function of strontium-doped calcium polyphosphate (SCPP).
     Effect of degradation time. Compared with the physiological saline and calcium polyphosphate, almost all the degradation products of SCPP in 90 days promoted the EC growth.
     Effects of strontium (Sr). although the Sr doesn't affect the EC migration, Sr (10nmol/L~1mmol/L) could improve the proliferation and TLS formation. The concentration of Sr in SCPP degradation fluid is 3.92μmol/L~20.65μmol/L, and can significantly accelerate angiogenesis.
     3. Effects of materials modification on cell behaviors at the material/cell interfaces have been studied.
     CS、PLS and CPP were modified respectively. The effects of modification on EC behaviors have been studied. The results showed that there's no negative effect of modification on cytotoxicity. However, the EC function, including attachment, spreading and TLS formation were evidently changed. The results are as follows:
     (1) Effects of sodium alginate (ALG) modification on EC behaviors on CS surface.
     Effects on surface properties. After modification, the surface roughness was evidently decreased, and the hydrophilicity was significantly improved.
     Effects on EC behavior. Before modification, EC on CS surface spontaneously formed into TLS, which was similar to the TLS on collagen gel. However, this phenomenon disappeared, and the attachment and spreading of EC was sharply down-regulated. It may result from the improved hydrophilicity and the decreased roughness.
     (2) Effects of hosphorylcholine (PC) modification on EC behaviors on PLA surface.
     Effects on surface properties. PC modification increased the hydrophilicity of PLA. After modified, the PC groupoverturn from the bulk to the surface of PLA, which lead to the surface reconstruction.
     Effects on EC behaviors. Compared with PLA, the modified one, whose PC/LLA ratio is 1/46 and 1/30, delayed the attachment and spreading of EC. However, after cultured for longer time, EC adhered to the surface and could fully spread, and finally proliferated. The improved hydrophilicity may account for the delayed attachment, and the surface reconstruct may lead to the final spreading and proliferation of EC.
     (3) Effect of Sr addition on EC behaviors on CPP surface.
     Effects on surface properties. Microstructure of CPP was evidently changed by Sr addition. The crystalline grain were enlarged and closely connected, resulting in a smoother surface. And the gel-like floc on the surface of CPP was distinctly decreased.
     Effects on EC behaviors. After Sr addition, EC closely attached to the surface of scaffold and fully spread, resulted in EC monolayer wrapping the surface of scaffold. The decreased roughness on micrometer scale and the decreased CPP gel on the scaffold surface may account for the improved EC attachment and spreading.
     A system for angiogenic function characterization of degradation products of TE scaffolds was initially established in the present study. It may provide a new aspect and method reference to the function evaluation of TE scaffold. According to the results of angiogenic function study on 3 kinds of biomaterials for TE, the degradation products could alter the microinviroment of EC, subsequently alter the angiogenic behaviors and growth factor and proteinase expression. It suggests that, to meet the angiogenesis need in TE, it's necessary to take the degradation products of biomaterials in to account and to evaluate the effects on angiogenesis. At the same time, this may propose a new non-growth factor way to solve angiogenesis in TE.
引文
1 杨志明.组织工程.北京:化学工业出版社.2002;9:1-2.
    2 曹谊林.组织工程学的建立与发展.组织工程与重建外科杂志.2006;1(1):5-8
    3 Langer R, Vacanti JP. Tissue engineering. Science: 1993;260: 920-926.
    4 Stock UA, Vacanti JP. Tissue engineering: current state and prospects. Annu Rev Med. 2001; 52: 443-451.
    5 Nerem RM. The challenge of limitating nature. Chapter 2, Page: 9-15 Lanza RP,. Langer R, and Vacanti JP. Principle of Tissue Engineering. 2nd edition,. San Diego Academic Press, 2000.
    6 txtell.lib.utexas.edu/stories/t0003-full.html
    7 曹谊林.组织工程学的基本科学问题.生命科学.2005;17(2):106-111
    8 Raffaello. Organogenesis and tissue engineering. Transplant immunology.2004; 12: 191-192.
    9 崔福斋,冯庆龄.生物材料学.北京:清华大学出版社.2004;134.
    10 周长忍.生物材料学.北京:中国医药科技出版社.2004;161-175.
    11 顾汉卿,徐国风.生物医用材料学.天津:天津科技翻译出版公司.2000:309.
    12 Wood J. How cells bind biomaterials determines response: Biomaterials. Materials today. 2005; 8(6): 16-19.
    13 Williams DF. A complete biomaterials text. Materials today. 2005; 8(2): 60-62.
    14 Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26 (27):5474-5491.
    15 Hench LL, Polak JM. Third-Generation Biomedical Materials.Science.2002;295:1014-1017.
    16 曹谊林,周广东.21世纪组织工程面临的机遇与挑战.中华医学杂志.2005;85(36):2523-2525
    17 Yarlagadda PK, Chandrasekharan M, Shyan JY. Recent advances and current developments in tissue scaffolding. Material Engineering. 2005; 15: 159-177.
    18 Linda G. Griffith, Gail Naughton. Tissue engineering-current challenges and expanding opportunities. Science. 2002; 295(8): 1009-1014
    19 Griffith LG. Acta Material. 2000; 48: 263-277.
    20 Anderson JM, Langone JJ. Journal of Controlled Release.1999; 57 (2): 107-113.
    21 王身国,杨健,万玉清,贝健中.组织工程用可降解生物材料的研究进展.2004;4:237-245
    22 Intire LVM, Griffith L. Study on Tissue Engineering Research. 2002; 7-17.
    23 Chandy T, Sharma CP. Chitosan——as a biomaterial. Biomat Art Cells. Art Org.1999;18 (1): 1~24
    24 朱慧光,计剑,高长有,封麟先,沈家骢.聚乳酸组织工程支架材料.功能高分子学报.2001;14(4):488-452
    25 Boden SD. Biology of lumbar spine fusion and use of bone graft substitutes: present, future, and next generation. Tissue Engineering. 2000;6:383-388.
    26 邱凯,陈馨,万昌秀.骨组织工程支架材料聚磷酸钙生物陶瓷研究进展.生物医学工程学杂志.2005;22(3):614-617
    27 Shi ZL, Chen XW Study on mechanical and degradation properties of calcium polyphosphate fibers. Journal of Lanzhou Railway University. 1999;18(5): 62-65
    28 Pilliar RM, Filiaggi MJ, Wells JD, Grynpas MD, Kandel RA. Porous calcium polyphosphate scaffolds for bone substitute applications——in vitro characterization. Biomaterials. 2001; 22(9): 963-972.
    29 Qiu K, Wan CX, Chen X, Zhang Q, Su HF. In vitro degradation studies of calcium polyphosphate ceramics prepared by controlled degree of polymerization and crystallization. Key Engineering Material.2005;288(2):553-557.
    30 Qiu K, Wan CX, Tang CWi, Chen YW. Synthesis and in vitro cell compatibility study of porous calcium polyphosphate. Space Medicine & Medical Engineering. 2005; 18 (6): 461~464
    31 Wang FM, Qiu K, Zhou XD,Wan CX. Biodegradable Porous calcium polyphosphate scaffolds for the three-dimensional culture of dental pulp cells. International Endodontic Journal, 2006; 39(6): 477-483.
    32 Tarek Y, Pilliar RM, Christopher A. Attachment, spreading, and matrix formation by human gingival fibroblasts on porous-structured titanium alloy and calcium polyphosphate substrates. Journal of Biomedical Material Research. 2002; 61(3): 482-492.
    33 Stephen DW, Grynpas MD, Pilliar RM, Kande RA. Characterization of cartilaginous tissue formed on calcium polyphosphate substrates in vitro. Journal of Biomedical Material Research. 2002; 62(3): 323-330.
    34 Lee YM, Seol YJ, Lira YT, Kim S, Han SB, Rhyu IC, et al. Tissue engineered growth of bone by marrow cell transplation using porous calcium polyphosphate matrices. Journal of Biomedical Material Research. 2001; 54(2): 216-223.
    35 Liu Y, Jian W, Jason H, J. Paul Santerre, et al, Synthesis and characterization of a novel polymer-ceramic system for biodegradable composite applications. Journal of Biomedical Material Research: Park A. 2003; 66: 622-632.
    36 Yang S. M., Kim S. Y., Lee S.J., Ku Y., et al. Tissue response of calcium polyphosphate in beagle dog, Key Engineering Materials.2002;218:657-660;
    37 Yang S. M., Kim S.Y., Lee S.J., Lee Y.K., et al, Tissue Response of Calcium Polyphosphate in Beagle Dog Part Ⅱ: 12 Month Result, Key Engineering Materials. 2004;254: 245-248.
    38 华楠,孙皎.生物降解材料的体内降解机理.国外医学生物医学工程分册.2004;27(3): 181-184
    39 Anselme K.Osteoblast adhesion on biomaterials.Biomaterials.2000;21(7):667-681
    40 Grzesik WJ, Robey PG. Bone matrix RGD glycoproteins: immunolocalization and interaction with human primary osteoblast bone cells in vitro. J Bone Miner Res.1994;9(4):487-496
    41 王身国,杨健,蔡晴等.组织工程用生物材料及细胞支架研究进展.中华整形外科杂志.2000;16(6):328-330
    42 Robert PL, Robert L, William L. Chick. Principles of tissue engineering, 1th edition. Georgetown, Texas, U. S. A: R. G. Lands Company, 1997
    43 Shelton RM, Rasmussen AC, Davies JE. Protein adsorption at the interface between charged polymer substrata and migrating osteoblasts. Biomaterials. 1988; 9:24-29
    44 Xu CY, Yang F, Wang S, Seeram Ramakrishna. In vitro study of human vascular endothelial cell function on materials with various surface roughnesses. Journal of Biomedical Material Research. 2004; 71A: 154-161.
    45 Curtis A, Wikinsion C. Topographical control of cells. Biomaterials. 1997; 18:1 573
    46 Meyle J, Gultig K, Nisch W. Variation in contact guidance by human cells on a microstmctured surface. Journal of Biomedical Materials Research, 1995; 29: 81-88
    47 冯庆玲.生物矿化与仿生材料的研究现状及展望.清华大学学报(自然科学版).2005;45(3):378-383
    48 Qi, HX, Kong, SL, Hu, P, et al. Biomimic tubulose scaffolds with multilayer prepared by electrospinning for tissue engineering Ater Sci Forum. 2006; 882-885
    49 Denise BA, Robert L. J. Am. Chem. Soc. 1993;115: 11010~11011.
    50 Nielsen SP. The biological role of strontium. Bone. 2004; 35(3): 583-588.
    51 Qiu K, Wan CX, Zhao CS, Chen YW. Effect of strontium ions on the growth of ROS17/2.8 cells on porous calcium polyphosphate scaffolds. Biomaterials.2006; 27:1277-1286
    52 Chou LS et al. Substratum surface topography alters cell shape and regulates fibronectin mRNA level, mRNA stability, secretion and assembly in human fibroblasts. J Cell sic. 1995; 108-1563
    53 Chou LS. Molecular Biocompatibility, Journal of Dental Research.1995; 74-190
    54 杨晓芳,奚廷斐.生物相容性评价的发展趋势.国外医学生物医学工程分册.1999;22 (4):237-242
    55 奚廷斐,孙皎.生物材料生物相容性的分子水平评价研究.生物医学工程学杂志.1999;16(增刊):63-66
    56 张真,卢晓风.生物材料有效性和安全性评价的现状与趋势.生物医学工程学杂志.2002;19(1):117-121
    57 范成相,陈亮.分子生物学在生物材料评价研究中的应用现状.国外医学生物医学工程分册.2004;27(6):375-379
    58 何晓宁;刘同军;石珊珊;程祥荣.壳聚糖胶原支架复合胰岛素样生长因子-1在牙周组织工程中的应用.2006;27(3):323-326
    59 李长青;周跃;罗刚;张传志;仿生髓核组织工程材料支架对体外培养髓核细胞合成代谢的影响.2006;16(6):450-454
    60 Kaps C, Frauenschuh S, Endres M, et al. Gene expression profiling of human articular cartilage grafts generated by tissue engineering, biomaterials. 2006;27 (19): 3617-3630
    61 Yamada Y, Fujimoto A, Ito A, et al. Cluster analysis and gene expression profiles: A cDNA microarray system-based comparison between human dental pulp stem cells (hDPSCs) and human mesenchymal stem cells (hMSCs) for tissue engineering cell therapy. Biomaterials. 2006; 27 (20): 3766-3781
    62 Klapperich, CM, Bertozzi, CR Global gene expression of cells attached to a tissue engineering scaffold. Biomaterials. 2004;25 (25): 5631-5641
    63 奚廷斐,陈亮,赵鹏等.组织工程医疗产品监督管理与标准研究.中国修复重建外科杂志.2003;17(6):480-487
    64 Grawal C, Chanasioon KA. Technique to contro 1 pH invicity of biodegrading PLA-PGA imp lants. Journal of Biomedical Research. 1997; 38 (2): 105
    65 Bostman O, Hirvensalo E, Vainionpaa S, et al. Ankle fractures treated using biodegradable intemal fixation, Clin. Orthop. Rel. Res. 1989;238(1):195-203;
    66 Bostman OM. Osteolytic changes accompanying degradation of absorbable fracture fixation implants. J. Bone Joint Surg.. 1991;73b:679-682
    67 Bostman O. Current concepts review: absorbable implants for fixation of fractures, J. Bone Joint Surg. 1991; 73A(1): 148-153
    68 Bostrnan O Hirvensalo E, Makinen J, Rokkanen P. Foreign-body reactions to fracture fixation implants of biodegradable synthetic polymers. J. Bone Joint Surg. 1990; 72B: 592-596
    69 Bergsma EJ, Rozema FR, Bos RRM, Debruijn WC. Foreign body reactions to resorbable poly(1-lactide) bone plates and screws used for the fixation of unstable zygomatic fractures. J. Oral Mazillofac. Surg. 1993; 51:666-670
    70 Bostman O, Paivarinta U, Partion E, Vaseniusm J. Manniner M, Rokkanen P. Degradation and tissue replacement. of an absorbable polyglycolide screw in the fixation of rabbit femoral osteomies. J. Bone Joint Surg. 1992; 74a(7): 1021-1031
    71 Fabian WC, Maarten FG, Cornelis APJ, et al. Cytotoxicity of poly(96L/4D—lactide): the influence of degradation and sterilization. Biomaterials.2000; 21:2433-2442
    72 Minnen B, Stegenga B, Leeuwen MBM, et al. A long-term in vitro biocompatibility of biodegradable polyurethane and its degradation products. Journal of Biomedical Materials Research.2006; 76A: 377-385
    73 孙皎,何伟,孟爱英.PGLA牙周再生片的细胞相容性研究.生物医学工程学杂志.2003; 20(3):388-391
    74 宁漱岩,刘建国,徐菁香等.人工合成骨科降解可吸收材料的细胞毒理学实验研究.白求恩医科大学学报.2000;26(5):513-515
    75 陆博,郑启新.羟基磷灰石/聚DL2乳酸复合内固定材料对成骨细胞活性影响的体外研究.中国生物医学工程学报.2003;22(4):350-357
    76 张力,吕春堂,周树下,熊成东.可吸收内固定材料L/DL—聚乳酸的体外生物学评价.2000;16(5):363-365
    77 Bouhadir KH, Mooney DJ. Promoting angiogenesis in engineered tissues. J Drug Target.2001; 9: 397-406.
    78 Colton CK. Implantable biohybrid artificial organs. Cell Transplant.1995; 4:415-436
    79 Cassell OC, Hofer SO, Morrison WA, et al. Br J Plast Surg. 2002; 55(8): 603-610
    80 杨志明,樊征夫,解慧琪,秦廷武,彭文珍.组织工程化人工骨血管化研究.中华显微外科杂志.2002;25(2):119-122
    81 张晔,曾秉芳.组织工程与血管形成.国外医学骨科分册.2003;24(6):363-367
    82 黄沙,金岩.组织工程方法新生血管化的重要性.国外医学口腔医学分册.2004;31(4):278-281
    83 曾宪利,裴国献.组织工程骨血管化机理及策略的研究进展.实用手外科杂志,2005;19(3):193-195
    84 Risau W. Mechanisms of angiogenesis. Nature. 1997; 386 (6626): 671-674.
    85 Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med. 2000; 6 (4): 389-395
    86 Ferrara N. Role of vascular endothelial growth factor in the regulation of angiogenesis. Kidney Int.1999; 56 (3):794-814.
    87 Coultas L, Chawengsaksophak K, and Rossant J. Endothelial cells and VEGF in vascular development. Nature. 2005; 438(7070): 937-945
    88 Ferrara N, Henzel WJ. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells.Biochem Biophys Res Commun. 1989; 161: 851-858.
    89 Ferrara N. Molecular and biological properties of vascular endothelial growth factor. J Mol Med. 1999; 77: 527-543.
    90 Yang S, Graham J, Kahn JW, et al. Functional roles for PECAM-1 (CD31) and VE cadherin (CD144) in tube assembly and lumen formation in three-dimensional collagen gels. Am J Pathol. 1999; 155: 887-895.
    91 Massova I, kotra Lp, Fridman R, et al. Matrix metaloproteinases: Structures, evolution and diversification. FASEB. 1998; (12): 1075-1095
    92 Gotlieb AI, Langille BL, Wong MKK, et al. Structure and function of the endothelial cytoskeleton. Lab Invest. 1991; 65:123
    93 HittAL. Cytoskeleton—plasma membrane interactions. Science. 1992; 258 (5084): 955-964
    94 Singer I. Association of fibronectin and vinculin with focal contacts and stress fibers in vascular endothelial cells in vivo. Science.1983;219: 867
    95 Shasby MD. Shasby SS, Sullivan JM , et al. Role of endothelial cytoskeleton in control of endothelial permeability. Circ Res.1982;51: 657
    96 Burldey IK. Fine structural and related aspectsof nonmuscle-cell motility. Cell Muscle Motil.1981;1: 137.
    97 VolbergT, Geiger B, Citi S, etal. Effect of protein kinas inhibitor H-7 on the contractility, and membrane anchorage of the microfilament system . Cell Motil Cytoskeleton. 1994;29:321.
    
    98 Miyamoto S. TeramotoH, Coso, etal. Integrin function : molecular hierarchiea of cytoskeletal and sigal molecules. J Cell Bid.1995;131:790-791
    
    99 Kou GS, Shiow CW, Bao WW et al. Saikosaponin C induces endothelial cells growth, migration and capillary tube formation. Life science. 2004; 76: 813-826
    
    100 Komorowski J, Jerczynska H, Siejka A, et al. Effect of thalidomide affecting VEGF secretion, cell migration, adhesion and capillary tube formation of human endothelial EA.hy 926 cells. Life science. 2006; 78:2558-2563
    101 Mooney DJ, Mikos AG. Growing new organs. Sci Am. 1999; 28: 60-65
    102 Whitaker MJ, Quirk RA, Howdle SM, et al. J Pharm Pharmacol. 2001; 53(11): 1427-1433
    103 Kidd KR, Nagle RB, Williams SK et al. Journal of biomedical materials research.. 2002; 59(2): 366-377
    104 Unger RE, Peters K, Huang Q, Funk A , Paul D and Kirkpatrick CJ, Vascularization and gene regulation of human endothelial cells growing on porous polyethersulfone (PES) hollow fiber membranes. Biomaterials. 2005; 26: 34-61
    105 Unger RE, Peters K, Wolf M, Motta A, Migliaresi C and Kirkpatrick CJ. Endothelialization of a non-woven silk fibroin net for use in tissue engineering: growth and gene regulation of hunian endothelial cells. Biomaterials. 2004; 25: 5137-5146
    106 Dziubla TD, Lowman AM. Vascularization of PEG-grafted macroporous hydrogel sponges: A three-dimensional in vitro angiogenesis model using human microvascular endothelial cells. Journal of Biomedical Materials Research. 2004; 68A: 603-614,
    107 Kidd KR, Nagle RB, Williams SK et al. Journal of biomedical materials research.2002; 59(2): 366-377
    108 王学明,裴国献. 组织工程骨血管化的监测. 中华创伤骨科杂志. 2004; 6(7): 822-824
    109 Ribatti D, Nico B, Vacca A, Roncali L, burri PH. Chorioallantoic membrane capillary bed:a useful target for studying angiogenesis and anti-angiogenesis in vivo. Anat rec.2001;264:317-324
    110 Borges J,Tegtmeier FT, Padron NT, Mueller MC. Chorioallantoic membrane angiogensis model for tissue engineering :a new twist on a clkassic model.Tissue Eng.2003;9: 441-450
    111 Kirpatrick CJ, Unger RE, Krump-konvalinkova V, et al. Experimental approaches to study vascularization in tissue engineering and biomaterial applications. Journal of materials science: materials in medicine.2003; 14:677-681
    112 Peters K, Schmidt H, Unger RE, et al. Software-supported image quantification of angiogenesis in an in vitro culture system: application to studies of biocompatibility. Biomaterials.2002; 23: 3413-3419
    113 Auerbach, R, Lewis, R, Shinners, B, et al. Angiogenesis assays: A critical overview Clin Chem. 2003; 49 (1): 32-40.
    114 Takahashi K, Sawasaki Y, Hata J I, et al. Spontaneous transformation and immortalization of human endothelial cells . in vitro Cell Dev Biol, 1990,25(2): 265-274.
    115 Ko HM, Jung HH, Seo KH, et al. Platelet-activating factor-induced NF-kappa B activation enhances VEGF expression through a decrease in p53 activity. FEBS LETT. 2006; 580 (13): 3006-3012
    116 Yao, JJ, Zhang, M, Miao, XH, et al. Isoform of vascular endothelial cell growth inhibitor (VEGI(72-251)) increases interleukin-2 production by activation of T lymphocytes. Acta Bioch Bioph Sin, 2006; 38 (4): 249-253
    117 Chen, WH, Chen, Y, Cui, GH. Effects of TNF-alpha and curcumin on the expression of VEGF in Raji and U937 cells and on angiogenesis in ECV304 cells. Chinese Med J-Peking. 2005; 118 (24): 2052-2057
    118 Ko, HM, Kang, JH, Choi, JH, et al. Platelet-activating factor induces matrix metalloproteinase-9 expression through Ca2+- or PI3K-dependent signaling pathway in a human vascular endothelial cell line. FEBS LETT 2005; 579 (28): 6451-6458
    119 Wang, Q, Ji, YP, Ni, JZ. Characterization of recombinant endostatin and analysis of its biological activities. Chinese J Anal Chem. 2005; 33 (4): 459-462
    120 Zheng, ZZ, Author Zheng Zhen-zhong Zheng, Zhen-zhong , Liu, ZX, et al. CD151 gene delivery increases eNOS activity and induces ECV304 migration, proliferation and tube formation. Acta Pharmacol Sin. 2007; 28 (1): 66-72,
    121 Stepien HM., Kolomecki K, Pasieka Z, Komorowski J, Stepien T, Kuzdak K, Angiogenesis of endocrine gland tumours — new molecular targets in diagnostics and therapy. European Journal of Endocrinology. 2002; 148: 143- 151.
    122 Jiang C, Agarwal R., Lu J., Anti-angiogenic potential of a cancer chemopreventive flavonoid antioxidant, sylimarin: inhibition of key attributes of vascular endothelial growth factor and angiogenic cytokine secretion by cancer epithelial cells. Biochemical and Biophysical Research Communications. 2000; 276, 371-378.
    123 司徒镇强,吴军正.细胞培养.西安:世界图书出版公司,2004:250
    124 郝和平.医疗器械生物学评价标准实施指南.北京:中国标准出版社,2000:109
    125 Laurent L, Boeuf L, Fabrice, Jacques H. Endothelial cell migration during angiogenesis. Circ Res.2007; 100 (6): 782-94
    126 Amin MA, Woods JM, Kumar P, et al. Migration inhibitory factor mediates angiogenesis via phosphatidylinositol 3-kinase (PI3K) and the mitogen activated protein kinase MEK1/2, Erk1/2, and Elk1. Arthritis Rheum.. 2002; 46 (9): S41-S41 Suppl.
    127 Tsuzuki T, Tsuyoshi, Shibata A, et al. Conjugated eicosapentaenoic acid inhibits vascular endothelial growth factor-induced angiogenesis by suppressing the migration of human umbilical vein endothelial cell. Jouranl of Nutrition. 2007; 137 (3): 641-646
    128 Vernon, RB, Gooden, MD New technologies in vitro for analysis of cell movement on or within collagen gels. Matrix Biology. 2002; 21 (8): 661-669
    129 Auerbach R, Lewis R, Shinners B, et al. Angiogenesis assays: A critical overview. Clin Chem 2003; 49 (1): 32-40
    130 Banal S, Haggroth L, Epstein S E, et al. Influence of extracellular magnesium on capillary endothelial cell proliferation and migration. Circ Res. 1990; 67 (3): 645-50
    131 Li YM, Feng, XC, et al. Expression of aquaporin-1 in SMMC-7221 liver carcinoma cells promotes cell migration. Chinese Science Bulletin. 2006; 51 (20): 2466-2471
    132 Mori, A, Satsu, H, Shimizu, M. New model for studying the migration of immune cells into intestinal epithelial cell monolayers. Cytotechnology. 2003; 43 (1): 57-64
    133 Malinda KM, Goldstein AL, Kleinman HK. Thymosin beta 4 stimulates directional migration of human umbilical vein endothelial cells. FASEB J 1997; 11 (6): 474-81
    134 Liang CC, Park AY, Guan JL. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc. 2007; 2 (2): 329-33
    135 梁光波,张国平,金惠铭,汤大侃.体外定量测定细胞迁移方法的建立及应用.中国病 理生理杂志. 2004,20(2): 175-179
    136 Shyu KG, Chwen S, Wang BW, et al. Saikosaponin C induces endothelial cells growth, migration and capillary tube formation. Life science. 2004; 76: 813-826
    137 Sottile J. Regulation of angiogenesis by extracellularmatrix. Biochim BiophysActa. 2004; 1654: 13-22.
    138 Robert B. Vemon and E. Helene Sage. Between molecules and morphology extracellular matrix and creation of vascular form. American journal of pathology. 1995; 147(4:) 873-883
    139 Vailhe B, Ronot X, Tracquit P, et al. In vitro angiogenesis is modulated by the mechanical properties of fibrin gels and is related to αvβ3 integrin localization. In Vitro Cell Dev. Biol.-Animal, 1997; 33: 763-773
    140 Robert B. Vemon and E. Helene Sage. Between molecules and morphology extracellular matrix and creation of vascular form. American journal of pathology, 1995; 147(4): 873-883
    141 Marisa L. Wong and Juan F. Medrano. Real-time PCR for mRNA quantitation. Biotechniques. 2005; 39(1): 1-11
    142 Sumanasinghe RD, Ruwan D, Bernacki SH, et al. Osteogenic differentiation of human mesenchymal stem cells in collagen matrices: Effect of uniaxial cyclic tensile strain on bone morphogenetic protein (BMP-2) mRNA expression. Tissue Engineering. 2006; 12 (12): 3459-3465
    143 Wang TW, Sun JS, et al. Skin basement membrane and extracellular matrix proteins characterization and quantification by real time RT-PCR. Biomaterials. 2006; 27 (29): 5059-5068
    145 Stangenberg L, Schaefer DJ, Buettner O, et al. Differentiation of osteoblasts in three-dimensional culture in processed cancellous bone matrix: Quantitative analysis of gene expression based on real-time reverse transcription-polymerase chain reaction. Tissue Engineering. 2005; 11 (5-6): 855-864
    146 Leong DT, Tai D, Gupta A, et al. Absolute quantification of gene expression in biomaterials research using real-time PCR. Biomaterials; 2007; 28 (2): 203-210
    147 Wang TW, Sun JS, et al. Skin basement membrane and extracellular matrix proteins characterization and quantification by real time RT-PCR. Biomaterials. 2006; 27 (29): 5059-5068
    148 Livak K.J. and Schmittgen T.D.. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001; 25:402-408.
    149 Liu, W. and D.A. Saint. A new quantitative method of real time reverse transcription polymerase chain reaction assay based on simulation of polymerase chain reaction kinetics. Anal. Biochem. 2002; 302:52-59.
    150 Medhurst, A.D., D.C. Harrison, SJ. Read, C.A. Campbell, M.J. Robbins, and M.N. Pangalos. The use of TaqMan RT-PCR assays for semiquantitative analysis of gene expression in CNS tissues and disease models. J. Neurosci. Methods. 2000; 98:9-20.
    151 Gough JE, Christian P, Scotchford CA, Rudd CD, Jones IA. Synthesis, degradation, and in vitro cell responses of sodium phosphate glasses for craniofacial bone repair. Journal of Biomedical Materials Research. 2002; 59: 481-489
    152 Chandy T, Sharma CP. Chitosan—as a biomaterial .Biomat Art Cells. Art Org .1999; 18 (1):1-24
    
    153 Okamoto Y, Shibazaki K,Minami S ,et al. Evaluation of chitin and chitosan on open wound healing in dogs. J Vet Med Sci. 1995; 57(5): 851-854
    154 Ueno H, Yamada H ,Tanaka I ,et al . Accelerating effects of chitosan for healing at early phase of experimental open wound in dogs.Biomaterials .1999 ;20 (15) : 1407-1414
    155 Cho Y W, Cho Y N, Chung SH, et al. Water soluble chitin as a wound healing accelerator. Biomaterials. 1999; 20 (22): 2139 -2145
    156 Mi FL, Shyu SS,Wu YB ,et al . Fabrication and characterization of a sponge21ike asymmetric chitosan membrane as a wound dressing. Biomaterials .2001;22 (2): 165-173
    157 Muzzarelli RA, Mattioli Belmonte M, Pugnaloni A, et al .Biochemistry ,histology and clinical uses of chitins and chitosan in wound healing. EXS .1999 ;87 :251-264
    158 Usami Y, Okamoto Y, Minami S, Matsuhashi A, Kumazawa NH, Tanioka S, Shigemasa Y. Chitin and chitosan induce migration of bovine polymorphonuclear cells. J Vet Med Sci.1994; 56:761-762.
    159 Usami Y, Okamoto Y, Minami S, Matsuhashi A, Kumazawa NH, Tanioka S, Shigemasa Y. Migration of canine neutrophils to chitin and chitosan. J Vet Med Sci. 1994; 56:1215-1216.
    160 Usami Y, Minami S, Okamoto Y, Matsuhashi A, Shigemasa Y.Influence of chain length of N-acetyl-d-glucosamine and dglucosamine residues on direct and complement-mediated chemotactic activities for canine polymorphonuclear cells. Carbohydr Polym. 1997; 32: 115-22.
    161 Mori T, Okumura M, Matsuura M, Ueno K, Tokura S, Okamoto Y, Minami S, Fujinaga T. Effect of chitin and its derivatives on the proliferation and cytokine production of fibroblasts in vitro. Biomaterials. 1997; 18: 947-51.
    162 Mori, T, Irie, Y, Nishimura, S, et al. Endothelial cell responses to chitin and its derivatives. Journal of Biomedical Materials Research. 1998; 43 (4): 469-472
    163 Okamoto Y, Watanabe M, Miyatake K, et al. Effects of chitin/chitosan and their oligomers/monomers on migrations of fibroblasts and vascular endothelium. Biomaterials. 2002; 23 (9): 1975-1979
    164 Tomoko T, Mayumi IK, Ryozou O, and Kaori S. A fluorimetric Morgan-Elson assay method for hyaluronidase activity Analytical Biochemistry. 2003; 322: 257-263
    165 李治,刘晓非,杨冬芝,管云林,姚康德.壳聚糖降解研究进展.化工进展.2000;(6):20-24
    166 Tokura S, et al. New Macromolecular Architecture and Functions. Proceedings of the OUMS'95. Toyonaka: Spring Verlag Berlin Heidelberg. 1996; 199-207
    167 张虞安.甲壳质衍生物的肝素样作用.海洋药物.1988;27(3):13-24
    168 朱慧光,计剑,高长有,封麟先,沈家骢.聚乳酸组织工程支架材料.功能高分子学报.2001;14(4):488-452
    169 Schindler A.,. Harper D. Polylactide.Ⅱ. viscosity-molecular weight relationships and unperturbed chain dimensions. Journal of polymer science: polymer chemistry dition. 1979; 17: 2593-2599.
    170 武汉大学化学系.仪器分析.北京:高等教育出版社,2001:120,16
    171 Holten, C H. Lactic Acid, Properties and Chemical of Lactic Acid and Derivatives. Verlag Chemie. Weinheim, 1971.
    172 Friederike B, Ruxandra G and Achim G. Erosion of biodegradable block copolymers made of poly (D,L-lactic acid) and poly (ethylene glycol). Biomaterials. 1997; 18:1599-1607
    173 Li SM, Michel V. Crytalline oligomeric stereocomplex as an intermediate compound in racemic poly (D, L-lactic acid) degradation. Polymer international. 1994; 33:37-41.
    174 Li SM, Stephen M. Further investigations on hydrolytic degradation of poly (D, L-lactide). Biomaterials. 1999;20:35-44.
    175 Li SM, Garreau H, Vert M. Strure-property relationships in the case of the degradation of massive poly (α-hydroxy acids) in apueous media, Part 3: Influence of the morphology of poly (L-lactic acid). Journal of Material Science Material Medicine. 1990; 1:198-206
    176 Therin M, Chtisterl P, Li S, et al. In vivo degradation of massive poly(α-hydroxy acids):validation of in vitro findings. Biomaterials. 1992; 13(9):594-600
    177 Lee T, Rosenthal A, and Gotlieb A I. Transition of aortic endothelial cells from resting to migrating cells is associated with three sequential patterns of microfilament organization. J.Vasc.Res. 1996; 33:13-24
    178 Wang DI and Gotlieb AI. Fibroblast growth factor 2enhances early stages of in vitro endothelial repair by microfilament bundle reorganization and cell elongation. Experimental and Molecular Patology. 1999; 66:179-190
    179 Xiong M, Elson G, Legarda D, Leibovich SJ. Production of vascular endothelial growth factor by murine macrophages: Regulation by hypoxia, lactate and inducible nitric oxide synthase pathway. Am J Pathol. 1998; 153: 587-598.
    180 Burns PA, Wilson DJ. Angiogenesis mediated by metabolite is dependent on vascular endothelial growth factor. Angiogenesis. 2003; 6: 73-77.
    181 Sameer Kumar VB,, Viji RI., Kiran MS. and Sudhakaran PR.. Endothelial Cell Response to Lactate: Implication of PAR Modification of VEGF. J. Cell. Physiol. 2007; 211:477-485
    182 冯庆玲.生物矿化与仿生材料的研究现状及展望.清华大学学报(自然科学版),2005;45(3):378-383
    183 Qi HX, Kong SL, Hu P, et al. Biomimic tubulose scaffolds with multilayer prepared by electrospinning for tissue engineering. Ater Sci Forum. 2006; 510-511: 882-885
    184 Qiu K, Wan CX, Zhao CS, Chen YW. Effect of strontium ions on the growth of ROS 17/2.8 cells on porous calcium polyphosphate scaffolds. Biomaterials 2006; 27:1277-1286
    185 Knott L, Bailey AJ. Collagen Cross-Links in Mineralizing Tissues: A Review of Their Chemistry, Function, and Clinical Relevance. Bone. 1998; 22(3): 181-187.
    186 Boccaccini. AR, Blaker JJ, Maquet V. Preparation and characterisation of poly(lactide-co-glycolide) (PLGA) and PLGA/Bioglass(?) composite tubular foam scaffolds for tissue engineering applications. Materials Science and Engineering: C. 2005; 25(1):23-31.
    187 Islam S, Ogane K, Ohkuma H, Suzuki S. Usefulness of acellular dermal graft as a dural substitute in experimental model. Surgical Neurology. 2004; 61(3): 297-302.
    188 石宗利,陈新文.高强度CPP纤维的力学及降解性能研究.兰州铁道学院学报,1999,18(5):62
    189 Nielsen SP. The biological role of strontium. Bone. 2004; 35(3): 583-588.
    190 Ku D D. Divalent cation regulation of endothelial-dependent relaxation in coronary blood vessels. Microcirc Endothelium Lymphatics. 1989; 5 (1-2): 99-120
    191 Ohashi K; Yamazaki J; Nagao T. Contractions and relaxations accompanied by endothelial nitric oxide production induced in the porcine coronary artery by Ca2+, Ba2+ and Sr2+. Author(s): Source: Eur J Pharmacol. 1995; 285 (2): 165-171
    192 曹谊林,周广东.21世纪组织工程面临的机遇与挑战.中华医学杂志.2005;85(36):2523-2525
    193 Yarlagadda PK, Chandrasekharan M, Shyan JY. Recent advances and current developments in tissue scaffolding. Mater Eng, 2005; 15:159-177
    194 冯庆玲.生物矿化与仿生材料的研究现状及展望.清华大学学报(自然科学版),2005;45(3):378-383
    195 Qi HX, Kong SL, Hu P, et al. Biomimic tubulose scaffolds with multilayer prepared by electrospinning for tissue engineering. Ater Sci Forum. 2006; 510-511: 882-885.
    196 王立坚,罗娟,罗祥林.等.天然甘油磷脂胆碱开环丙交酯的合成反应及其聚合物性能研究.高分子材料科学与工程.2007,in press
    197 Dutta PK, Dutta J, Chattopadhyaya MC, et al. Chitin and chitosan: Novel biomaterials waiting for future developments. Journal of Polymer Materials. 2004;21 (3): 321-333
    198 Augst AD, Alexander D, Kong HJ, et al. Alginate hydrogels as biomaterials. Macromol BioSci. 2006; 6(8): 623-633
    199 何淑兰,尹玉姬,张敏,姚康德.组织工程用海藻酸盐水凝胶的研究进展.化工进展.2004;23(11):1174-1178
    200 Shinn AH, Smith TJ. An overview of the biopharmaceutial applications of chitosan and alginate. Biopharm Int. 2003; 16(11): 34-35
    201 Li ZS, Ramaya HR, Kip D. Chitosan-alginate hybrid scaffolds for bone tissue engineering. Biomaterials. 2005;26:3919-3928
    202 Li ZS, Zhang MQ. Chitosan-alginate as scaffolding material for cartilage tissue engineering. J Biomed Mater Res. 2005;75A: 485-493
    203 Wang LH, Khor E, Wee A, Lim LY. Chitosan-alginate PEC membrane as a wound dressing: Assessment of incisional wound healing. Journal of Biomedical Materials Research. 2002; 63:610-618
    204 土桥正二.玻璃表面物理化学.黄占杰,松野静代译,北京:科学出版社,1986
    205 马莉华 于炜婷 马小军.壳聚糖-海藻酸聚电解质复合膜(Ⅰ)激光共聚焦扫描显微镜分析形貌.膜科学与技术.2005;25(2):30—33.
    206 Senger DR, Claffey KP, Benes JE, Perruzzi CA, Sergiou AP, Detmar M. Angiogenesis promoted by vascular endothelialgrowth factor: regulation through alphalbetal and alpha2betal integrins. Proc Natl Acad Sci USA 1997; 94:13612-7.
    207 Cross MJ, Claesson-Welsh L. FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol Sci. 2001; 22 (4): 201-207.
    208 Chavakis E, Dimmeler S. Regulation of endothelial cell survival and apoptosis during angiogenesis. Arterioscler Thromb Vasc Biol 2002; 22: 887-893.
    209 Guido S, Donatella V, Federico B. Integrins and angiogenesis: A sticky business. Experimental Cell Research 312.2006; 651-658
    210 汪堃仁,薛少白.细胞生物学.北京:北京师范大学出版社.2002
    211 盛民立.血管内皮细胞与疾病.上海医科大学出版社.1993:39
    212 Kumar S, Rooney P, Kumar S, Ponting JM, Rooney P, el al. Hyaluronan and Angiogenesis: Molecular Mechanisms and Clinical Applications. In: M E Maragoudakis, P M Gullino and P Lelkes. 1994; 26~44.
    213 Rooney P, Kumar S. Inverse Relationship between Hyaluronan and Collages in and angiogenesis. Differentiation1.993; 54: 1~9.
    214 Chung TW, Yang MG, Liu DZ, Chen WP, Pan CI and Wang SS. Enhancing growth human endothelial cells on Arg-Gly-Asp (RGD) embedded poly (ε-caprolactone) (PCL) surface with nanometer scale of surface disturbance Journal of Biomedical Materials Research. 2005; 72A: 213-219
    215 Chung TW, Liu DZ, et al. Enhancement of the growth of huaman endothelial cells by surface roughness at nanometer scale. Biomaterials 2003; 24:4655-4611
    216 宋月平,胡国华,董丽华,马敬红,李淑娟.海藻酸钠/壳聚糖的免疫隔离及生物相容性.吉林大学学报(医学版).2004;30(1):35—38.
    217 Risbud MV, Bhonde MR, Bhonde RR. Effect of chitosan-polyvinyl pyrrolidone hydrogel on proliferation and cytokine expression of endothelial cells: Implications in islet immunoisolation. Journal of Biomedical Materials Research. 2001;57 (2): 300-305
    218 Chapman D. Langmuir, 1993, 9: 39~40.
    219 王云起,焦延鹏,蔡继业.聚乳酸表面处理的AFM观察及对细胞粘附性的影响高分子材料科学与工程.2005;21(6):181
    220 Russell TP. Surface-Responsive Materials. Science, 2002, 297:964~967
    221 Discher DE and EisenbergA. Polymer Vesicles. Science, 2002, 297:967~973
    222 Robert R Matheson J. 20th-to 21st-century technological challenges in soft coating. Science, 2002, 297:976~979
    223 Assender H, Bliznyuk V, Porfyrakis K. How surface topography relates to materials' properties. Science, 2002, 297:973~976
    224 Kongtong S, Ferguson GS. A smart adhesive joint: entropic control of adhesion at a polymer/metal interface. J Am Chem Soc, 2002, 124: 7254~7255
    225 Andrade J D. Polymer Surface Dynamics. Plenum: New York, 1988.
    226 AnselmeK. Osteoblast adhesion on biomaterials. Biomaterials. 2000; 21(7):667-681
    227 贝建中,屈雪,王身国.生物材料与细胞的相互作用.北京生物医学工程.2005;24(1):65-70
    228 陈友琴,陈槐卿,吴立志.溶血磷脂酰胆碱对内皮细胞表面粘附分子表达的影响生物医学工程学杂志.2000;17(2):139-142
    229 张黎,芮耀诚,邱彦等.溶血磷脂酰胆碱对ECV304细胞中血管内皮生长因子表达的影响中国药理学报(英文版).2001;22(4):335
    230 邱凯.掺锶聚磷酸钙作为骨组织工程支架材料的研究.四川大学.2005
    231 江昕,方芳,闫玉华.钙磷多孔生物陶瓷的降解机理.国外建材科技.2001;22(4):11-15
    232 戴红莲.磷酸钙降解陶瓷的组成与结构在体内的变化及成骨机制研究.武汉理工大学.博士论文.2005
    233 Xu CY, Yang F, Wang S, Seeram Ramakfishna. In vitro study of human vascular endothelial cell function on materials with various surface roughnesses. Journal of Biomedical Materials Research. 2004; 71A: 154-161
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.